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Abstract

In this paper we introduce a calibration procedure for validating
of agent based models. Starting from the well-known financial model
of Brock and Hommes 1998, we show how an appropriate calibration
enables the model to describe price time series. We formulate the cal-
ibration problem as a nonlinear constrained optimization that can be
solved numerically via a gradient-based method. The calibration re-
sults show that the simplest version of the Brock and Hommes model,
with two trader types, fundamentalists and trend-followers, replicates
nicely the price series of four different markets indices: the S&P 500,
the Euro Stoxx 50, the Nikkei 225 and the CSI 300. We show how the
parameter values of the calibrated model are important in interpret-
ing the trader behavior in the different markets investigated. These
parameters are then used for price forecasting. To further improve
the forecasting, we modify our calibration approach by increasing the
trader information set. Finally, we show how this new approach im-
proves the model’s ability to predict market prices.
JEL codes: C53; C63; G17.
Keywords: Calibration, Validation, Forecasting, Agent-based
models, Asset pricing, Heterogeneous beliefs.

1 Introduction

The growing expansion of the financial sector and its influence on the real
economy has made it essential to understand how it operates. In recent
decades, in fact, the massive transfer of resources from the productive to the
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financial sector has characterized the economic systems. This re-allocative
process, well known as the “financialization of the economy”, is a major cause
of the recent financial instability, characterized by recurrent crises of increas-
ing intensity and culminating in the current global crisis1(see Orhangazi 2008;
Rochon and Rossi 2010).

Financial markets are a powerful channel of prediction and transmission
of economic crises making the understanding of their complex behavior im-
portant. Some insights into trader strategies and their impact on aggregate
variables have been provided by agent-based models. These models have
shown that the interactions at the micro-level are crucial in comprehending
macro-economic dynamics. The agent-based model approach has highlighted
the interplay between the micro and macro levels, revealing the similarities
and differences between the overall system and its parts (see Delli Gatti et
al. 2011).

Following the pioneering Santa Fe Artificial Stock Market (see Le Baron
et al. 1999), several artificial financial markets have been developed over the
last 15 years (see, for instance, Raberto et al. 2001, 2003; Ponta et al. 2011).
The manner in which sophisticated agents are able to reproduce stock market
stylized facts has been widely studied in the economic literature (see Hommes
2006 and LeBaron 2006 for extensive surveys). For example, Lux and March-
esi (2000), Chiarella et al. (2009), Gaunersdorfer et al. (2008), and LeBaron
et al.(2007, 2009) have analyzed how mechanisms of behavioral switching or
the coordination of traders’ strategies by market mediated interactions (for
example by following chartist trading rules) can generate persistence of asset
price volatility. In particular, Brock and Hommes, in several papers (1997a,
1997b, 1998), have studied an asset pricing model where traders can switch
among different forecasting strategies. The switching mechanism is driven
by a fitness measure, which is a function of past realized profits. The price
dynamics driven by heterogeneous strategies is capable of explaining a range
of complex financial behaviors. Collective behavior, nonetheless, gives rise to
the phenomenon known as herding which occurs when agents imitate each
other (see Bannerjee 1992; Bannerjee 1993; LeBaron et al. 2009; Tedeschi et
al. 2009; Tedeschi et al. 2012). The studies on collective behavioral effects
have shown how herding can lead to large price fluctuation and volatility
clustering.

1Different interpretations of the current financial crisis have been shown. In a recent
paper, for instance, Delli Gatti et al. (2012) propose an explanation of the crisis which
emphasizes the sectoral dislocation following localized technical change in the presence of
barriers to labor mobility.
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While agent-based models are able to reproduce many of the stock market
stylized facts (see Cont 2007), they suffer from a serious weakness. Agent
based models are, in fact, very often not calibrated and their outputs not
validated against observed data.

This weakness arises from two contrasting aspects of the models. On the
one hand the large number of parameters employed by these models might
permit to fit with any feature of real data. On the other hand, this large num-
ber increases the difficulty of getting analytical expressions for model eval-
uation. The calibration and validation of agent-based models is, therefore,
becoming crucial for researchers working with this approach (see Troitzsch
2004; Fagiolo et al. 2007). Despite the efficiency of these tools in the study-
ing a wide set of issues in economics, the number of validated agent based
models is not large. Most of these validated models are based either on a
descriptive output validation or on an input validation2 (see Bianchi et al.
2007; Bianchi et al 2008; Cirillo and Gallegati 2011). However, the important
field of the predictive output validation (see Hassan et al. 2013), has essen-
tially not been addressed (see Tesfatsion 2013). Furthermore, the calibration
of the AB models’ parameters suffers from some weaknesses. Most of the
calibration techniques are based on “trial and error” procedures (see Brock
and Hommes 1997b; Hommes 2001), which produce mismatches between real
and simulated time series. Important exceptions can be found in the results
of Winker and Gilli (2001) and Gilli and Winker (2003) where the authors
present an agent-based exchange market model and introduce a global op-
timization algorithm for calibrating the model’s parameters via simulation.
Other important contributions are Alfarano et al. 2005, 2006, 2007. These
authors obtain the analytical solution for the return probability distribution
of a simple agent-based financial market model, and, consequently, estimate
the model parameters via maximum likelihood.

The aim of our paper is the development of a rigorous calibration pro-
cedure designed to validate agent-based models. To this end, we undertake
the estimation of the parameters of the agent based model developed by
Brock and Hommes 1998 (BH hereinafter), using market data. The BH
model, which uses the familiar demand-supply cobweb framework (see Muth

2As Leigh Tesfatsion points out in her website on the validation of ACE models, there
are three different ways of validating computational models: a) descriptive output valida-
tion, which matches computationally generated output against already-acquired system
data; b) input validation, which ensures that the structural conditions, institutional ar-
rangements and behavioral dispositions incorporated into the model capture the salient
aspects of the actual system; c) predictive output validation, which matches computation-
ally generated output against yet-to-be-acquired system data.
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1961) and considers an adaptive belief system where heterogeneous agents
can choose among different trading strategies, is well suited for our calibra-
tion exercise. It is, in fact, very popular in the ABM literature, as well as
being analytically tractable and involving few parameters. The use of a well-
known framework allows us to focus more on the calibration process than on
the model itself.
The calibration procedure that we propose identifies the set of model param-
eters by minimizing a loss function. This function is the sum of the squared
residuals which are computed as the difference between the observed and
simulated market price at given date. This approach, known as least squares
calibration, is commonly used in asset and option pricing (see Andersen and
Andreasen, 2000; Avellaneda et al. 2000; Fouque et al. 2001). We solve
the resulting minimization problem numerically via a gradient-based method
(see, for example, Andersen and Andreasen 2000; Bates 1996; Recchioni and
Scoccia 2000). We show that a simplified version of the BH model, consid-
ering only fundamentalist and trend-follower strategies, is able to reproduce
the daily price time series of four different markets indices (i.e. the S&P
500, the Euro Stoxx 50, the Nikkei 225 and the CSI 300). Moreover, the
calibration of the model parameters provides some information on the micro
market behavior. In fact, the values of the parameters resulting from model
calibration on different markets show the differences and the similarities in
the behavior of agents operating in the markets considered. This means
we are able to answer questions about risk aversion, imitative behavior and
agents’ strategies in the investigated markets.

Our work is closely related to Boswijk et al. 2007. In their paper the
authors consider the BH model and estimate the model parameters by non-
linear least squares using yearly US stock price data. Their analysis focuses
mainly on the agents’ switching behavior between fundamentalists and trend-
followers. Specifically, their estimation results show statistically significant
behavioral heterogeneity and substantial time variation in the average senti-
ment of investors. In this paper, instead, we are more interested in analyzing
the accuracy of our calibration procedure in reproducing short-run price dy-
namics. Interestingly, although we consider a different time frequency and
a different time window, we discover quite similar features in the traders’
behavior. As in Boswijk et al. 2007, in the markets we find a switching
between the two predictors and a dominance of the trend following regime.
The estimation method we propose has some similarities with Boswijk et al.
but also many significant differences. Both calibration procedures are non-
linear optimization problems solved numerically via a gradient method. The
first difference between this work and that of Boswijk et al. 2007 is the algo-
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rithm used to solve the optimization problem. Specifically, our constrained
optimization problem is solved via a metric variable steepest descent method
(see Recchioni and Scoccia 2000). This method is an iterative procedure
that starts from an initial point in the feasible region and moves in the di-
rection of minus the gradient in a suitable metric. This approach has two
important advantages. Firstly, the points generated by this method belong
to the feasible region when the starting point is also in this region. Secondly,
the gradient is rescaled in order to ensure the convergence of the iterative
process.
The second important difference concerns the BH model specifications. We
both use an evolutionary fitness based on realized profits for modeling the
agent switching between different forecasting expectations. However, Boswijk
et al. estimate the BH model with no memory (i.e. the fitness equals real-
ized profit in the previous period) while we estimate the model with infinite
memory (i.e. the fitness equals total wealth as given by accumulated real-
ized profits over the entire past). We consider this scenario not only because
the analyzed time series seem to have very long memory, but also because,
theoretically, it is not clear whether, in the case of infinity memory, the price
dynamics are stable (see Hommes 2001).
The last relevant difference is in the investigation approach. Boswijk et al.
estimate the model in order to investigate whether deviations from the funda-
mental price are significant. They define the asset fundamental value using
the Gordon growth model which assumes an exogenously given stochastic
process. We, on the other hand, do not assume any noise in prices and,
therefore, our calibration procedure is deterministic.

Having successfully proven our calibration for input and output valida-
tion, we also test its efficiency in generating predictive output validation.
This exercise requires not only that the procedure describe aggregate regu-
larities, but that it also forecast macro dynamics. To this end, we investigate
how our calibration mechanism is able to provide reasonable price trend pre-
dictions. We see the opportunity to improve these predictions by introducing
a second calibration approach able to incorporate market information in the
trader information set. This method (ABH method) differs from the previous
one in that it assumes that agents, in order to calculate the simulated market
price, use the values of the spot price observed in the real stock market in
the preceding period.
We study how these two methodologies compete in describing and forecast-
ing market prices. Our findings show a good performance of both procedures
in data validation, with the ABH one slightly outperforming the BH one.
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The rest of the paper is organized as follows. In Section 2 we describe
the BH model. In Section 3 we formulate the calibration problems and their
numerical solution. In Section 4 we present the numerical experiments on
four market indices. Finally, in Section 5 we draw conclusions.

2 The mathematical structure of the model

This section describes the asset pricing model with heterogeneous beliefs de-
veloped in Brock and Hommes 1998. Considering its simplicity, its analytical
tractability, and the small number of parameters, this model is well suited
for the calibration which is the main purpose of our work.

Traders can either invest in a risk free asset, which is perfectly elastically
supplied at a gross return R = (1 + r) > 1, or in a risky one, which pays an
uncertain dividend y and with a price of p̂. Wealth dynamics is given by

Wt+1 = RWt + (p̂t+1 + yt+1 −Rp̂t)zt, (1)

where Wt+1, p̂t+1 and yt+1 are random variables and zt the number of the
risk asset shares purchased at time t.
In the market there is a publicly available information set on past prices
and dividends so that we can define the conditional expectation, Et, and
variance Vt. We assume that agents are heterogeneous in that they have
different forecasts (beliefs) about conditional expectation and variance. In
particular, Eh,t and Vh,t are the beliefs of trader h on these operators. Each
investor is assumed to be a myopic mean-variance maximizer so, her demand
zh,t for the risk asset solves

Maxz,t[Eh,t(Wt+1)− α

2
Vh,t(Wt+1)], (2)

i.e.,
zh,t = Eh,t(p̂t+1 + yt+1 −Rp̂t)/ασ2, (3)

with α to be the risk aversion parameter and σ2 the conditional variance
which is assumed constant and equal for all traders.
The market equilibrium equation, in the case of zero supply of outside shares
and of different trader types h, can be written as:

Rp̂t =
H∑
h=1

nh,tEh,t(p̂t+1 + yt+1), (4)
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where nh,t denotes the fraction of agents h at time t.
In a world with identical and homogeneous traders, from eq. (4), we can
obtain the arbitrage market equilibrium equation with rational expectations3:

Rp∗t = Et(p
∗
t+1 + yt+1), (5)

where p∗t is the fundamental price and Et the conditional expectation on the
information set It = [p̂t−1, p̂t−2, ...; yt−1, yt−2, ...].

Agents’ strategy

Trading happens over a number of periods, denoted by t = 1, ..., T . At
the beginning of each trading period t, agents make expectations about fu-
ture prices and dividends. We assume that agents are heterogeneous in that
they have different forecasts of p̂t+1 and yt+1.

It is convenient to define the price deviation from the fundamental:

x̂t = p̂t − p∗t . (6)

Following Brock and Hommes (1998), we assume that all beliefs are of the
form:

Eh,t(p̂t+1 + yt+1) = Et(p
∗
t+1 + yt+1) + fh(x̂t−1, ..., x̂t−L), ∀h, t. (7)

According to the assumption (7), investors believe that, in a heterogeneous
world, prices may deviate from the fundamental value p∗t by some function
fh depending upon past deviation from the fundamental price.
Many forecasting strategies, fh, have been implemented in economic litera-
ture4, each one corresponding to a different agents’ trading rule.
In this framework, we use two simple linear trading rules with only one lag.
The first one describes fundamentalists, i.e., fh,t ≡ 0, believing that market
price will be equal to fundamental price, or equivalently that the deviation
x̂ from the fundamental will be 0. The second strategy describes trend fol-
lowers, i.e., fh,t = gx̂t−1, where g is the trend parameter.

We can, now, reformulate the market equilibrium equation (4) as deviation
from the fundamental. In particular, substituting the price forecast (see eq.

3We refer the reader to Brock and Hommes (1998) p.1239 for the solution of the fun-
damental price.

4See, for instance, Brock and Hommes (1997a,1997b,1998).
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7) in the market equilibrium equation (4) and using the definition of fun-
damental price in eq. (5), we obtain the equilibrium equation in deviations
from fundamental:

Rx̂t =
H∑
h=1

nh,tfh,t. (8)

In our framework, with fundamentalists and trend followers, eq. (8) simply
becomes:

Rx̂t = n1,tf1,t + n2,tf2,t, (9)

with f1,t to be the fundamentalist strategy, n1,t the fraction of these traders
at time t, f2,t the trend followers strategy and n2,t their fraction.

The evolution of the agents’ strategy

We, now, describe how trader’s strategies are updated over time, that is,
how the fractions nh,t of investor types in eq. (8) evolve time by time. We
implement an endogenous mechanism of “strategy evolution” based on a fit-
ness parameter given by the accumulated realized profits of investors. Our
fitness measure is

Uh,t = (p̂t + yt −Rp̂t−1)zh,t − Ch + ωUh,t−1, (10)

where zh,t is defined in eq.(3), Ch represents the cost of obtaining a “good”
forecasting strategy and ω ∈ [0, 1] is a memory parameter.

It is useful to compute the realized excess returns Rt in deviation from
fundamental to obtain:

Rt = p̂t + yt −Rp̂t−1 = x̂t + p∗t + yt −Rx̂t−1 −Rp∗t−1

= x̂t + p∗t + yt −Rx̂t−1 −Rp∗t−1 − Et−1(p∗t + yt) + Et−1(p∗t + yt)

≡ x̂t −Rx̂t−1 + δt, (11)

where Et−1(p∗t+yt)−Rp∗t−1 = 0 (for the arbitrage market equilibrium equation
with rational expectations (see eq. 5)) and δt ≡ p∗t + yt − Et−1(p∗t + yt) is
a martingale difference sequence. By using Eq.(11), we can reformulate the
fitness measure in deviations from the fundamental as:

Uh,t = (x̂t −Rx̂t−1 + δt)(
fh,t−1 −Rx̂t−1

ασ2
)− Ch + ωUh,t−1. (12)

In our simple model, with two trading rules, we can easily derive the fitness
of the fundamentalist (h = 1) and of the trend follower (h = 2). Specically,

U1,t = (x̂t −Rx̂t−1 + δt)
(−Rx̂t−1)

ασ2
− C1 + ω U1,t−1,
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U2,t = (x̂t −Rx̂t−1 + δt)
(gx̂t−2 −Rx̂t−1)

ασ2
− C2 + ω U2,t−1. (13)

As time goes by, a strategy may become more profitable than the other one
in term of fitness.
Each agent h starts with her own strategy. Strategies are rewound at the
beginning of each period in the following way: each agent h reassesses her own
strategy profitability with respect to the competitive one. The probability
that a trader chooses the strategy h is given by the ’Gibbs’ probability:

nh,t =
exp(β Uh,t)∑H
h=1 exp(βUh,t)

. (14)

The rewind algorithm is designed so that the successful strategy gains a
higher number of followers nh and thus has a higher probability of being fol-
lowed. Nonetheless the algorithm introduces a certain amount of randomness,
and the more profitable strategy has a finite probability to be not followed in
favor of the less successful belief. In this way, we model imperfect information
and bounded rationality of agents. The randomness also helps unlocking the
system from the situation where all traders follow to the same belief. The pa-
rameter β ∈ [0,∞) in Eq.(14) represents the intensity of choice and answers
the question how much traders trust on the information (expectation) about
other agents’ performances. In some sense, β measures the “imitative behav-
ior”. In fact, the most profitable strategy has more followers. This means
agents tend to synchronize (or coordinate) their own expectations. Specif-
ically, when β is zero, agents act independently from each other, however,
increasing β, agents behave similarly and their rationality increases.

3 The calibrated model

We calibrate the agent based model described in the previous section with
two agent’s strategies, i.e., fundamentalists and trend followers. The BH
model, which depends on few parameters, allows us to easily associate them
to some behavioral features of the investigated stock market or to compare
differences and similarities of several stock markets through the values of the
calibrated parameters.

The BH model is calibrated using two different approaches. The first
one uses the deviation from fundamental as in Eq. (8). In this way, we
show how the BH model well reproduces some market indices behaviour.
The second calibration approach assumes that agents observe the realized
spot prices available from the real stock market, instead of the simulated
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equilibrium market price. This adjusted version of the BH model (ABH
model in the following) allows us to include in the trader information set It
the realized spot prices. Specifically, our traders in order to calculate the
simulated equilibrium market price at time t = τ use the realized spot price
up to t = τ − 1. The ABH model may be used as a tool to generate a
satisfactory forecast of stock price dynamics.

3.1 The expectation formation mechanism in the cali-
bration

Let us consider a time series of observed market spot prices pot , t = 0, 1, . . . , τ−
1, τ > 1, where t = 0, t = τ − 1 correspond, respectively, to the first and the
last observation dates used in the calibration procedures. Specifically, pot is
the daily closing stock price or the daily closing index value.

Let ph,t = Eh,t(p̂t+1), t > 0, h = 1, 2, be the agents simulated expectation
on the spot price at time t, p̂t, t > 0, the simulated equilibrium market price
at time t (see Eq. (4)), p∗t the fundamental price and, finally, x̂t = p̂t − p∗t ,
t > 0, the deviation from the fundamental price.

The following steps identify the time sequence necessary for the calibra-
tion of the BH model:

Step i1): compute fitness measures of fundamentalists and trend-followers:

U1,t−1 = [x̂t−1 −Rx̂t−2]
(−Rx̂t−2)

ασ2
+ ω U1,t−2, (15)

U2,t−1 = [x̂t−1 −R x̂t−2]
gx̂t−3 −R x̂t−2

ασ2
+ ω U2,t−2. (16)

Step i2): compute the agents’ expectation on the spot price:

f1,t = 0 (fundamentalists), (17)

f2,t = g x̂t−1 (trend− followers), (18)

Step i3): compute the simulated equilibrium market price and its deviation
from fundamental:

x̂t = (n1,t−1f1,t + n2,t−1f2,t)/(1 + r),

p̂t = p∗t + x̂t, (19)

where n1, n2 are given by:

nh,t−1 =
exp(β Uh,t−1)∑2
h=1 exp(βUh,t−1)

, h = 1, 2. (20)
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Step i4) if t ≤ τ go to Step i1 else stop.

We underline that, in the time window of the calibration procedure, we as-
sume the cost, Ch, equals zero and the dividend process, yt, constant. Con-
stant dividends imply a constant fundamental price in Eq. (5) and, therefore,
the martingale difference sequence δt in Eq. (13) equals zero5. This assump-
tion makes deterministic the proposed calibration process since it does not
involve any noise in previous steps.

The calibration procedure for the ABH model requires the same steps
i1)-i4) but with a relevant difference in the definition of “deviation from
fundamental” x̂t. In particular, this procedure requires a step, i0), which
anticipates the previous steps i1)− i4):

Step i0): set x̂t−1 = pot−1 − p∗, xt−2 = pot−1 − p∗.

In the step i0) we are substituting the simulated equilibrium market price p̂t
with the observed spot price pot . The motivation of this identification lies in
the fact that the observed spot price pot is the effective market price resulting
from the transactions in the “real” financial market. In this way, we are
assuming that, at time t, our agents know the previous time realized price in
the “real” stock market.

3.2 Calibration problems and their numerical solution

We now formulate the calibration problems.
Let p̂BH,t and p̂ABH,t the simulated equilibrium market price obtained us-

ing the BH and ABH models respectively and pot the observed spot price.

Let R4 be the four-dimensional real Euclidean space and Θ ∈ R4 be the
vector containing the model parameters to be determined, Θ= (β, g, p∗, α) ∈
R4, and let M ⊂ R4 be the set of the feasible parameter vectors defined as
follows:

M=
{

Θ= (β, g, p∗, α) ∈ R4 , β ≥ 0, α ≥ 0
}
. (21)

The calibration problems considered are formulated as follows:

min
Θ∈M

FL(Θ), L = BH, ABH, (22)

5All other parameters are to be interpreted as in the Sec 2.
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where the objective function FL(Θ) is given by:

FL(Θ) =
τ∑
t=1

(
p̂L,t − pot

pot

)2

,

Θ ∈M, L = BH, ABH. (23)

Problem (22) is a nonlinear constrained least squares problem that we
solve with a local minimization algorithm. Specifically, we use a variable
metric steepest descent method (see Recchioni and Scoccia 2000). It is an
iterative procedure that, given an initial point Θ0 ∈M generates a sequence
{Θk}, k = 0, 1, . . ., of feasible vectors (i.e.: Θk ∈ M, k = 0, 1, . . .) obtained
making a step in the direction of minus the gradient of FL with respect to Θ.
This gradient is computed in a suitable metric which is defined according to
the constraints defined in M. Roughly speaking, the metric is defined by a
diagonal positive definite matrix depending on the current point of the iter-
ative procedure and the “new” gradient is the standard gradient multiplied
by this matrix. It is important to emphasize that a deterministic model,
which is what we consider here, makes the estimation via the variable metric
steepest descent method much more robust.

To be more specific the optimization algorithm used to solve problem (22)
consists of the following basic steps:

1 set k = 0 and initialize Θ0 = Θ̃
0
;

2 evaluate FL(Θk), if k > 0 and |FL(Θk)−FL(Θk−1)| < ε |FL(Θk)|, where
| · | denotes the absolute value of ·, go to item 7;

3 evaluate the gradient (in cartesian coordinates) of the function∇FL(Θk);

4 perform the steepest descent step evaluating Θk+1 =Θk−ηkD(Θk)∇FL(Θk),
where ηk is a positive real number that determines the length of the
step in the direction D(Θk)∇FL(Θk) and guarantees that FL(Θk) is a
non-increasing function of k and D(Θk) is a diagonal matrix related to
the use of the “variable metric”;

5 if ||Θk+1 −Θk|| < ε, go to item 7;

6 set k = k + 1, if k < Miter go to item 2;

7 approximate Θ∗ with Θk+1 and stop,

where ε > 0 is a fixed tolerance value, and Miter is the maximum number
of iterations of the optimization procedure allowed.
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Figure 1: Re-scaled index values from February 25th 2011 (t = 1) to February
23th 2012 (t = 245). Data from February 25th 2011 (t = 1) to December 16th

2011 (t = 200) are used in calibration experiments. Data from December 19th

2011 (t = 201) to February 23th 2012 (t = 245) are used in the forecasting
experiments.

4 Numerical experiments

4.1 Data Description

In the numerical experiments we use the daily closing values of four stock
market indices: the USA S&P 500, the Euro Stoxx 50, the Nikkei 225 and the
CSI 300. We have chosen these indices because they represent four different
geographical areas (i.e. USA, Europe, Japan and China, respectively). The
currency of each series corresponds to the one of the Country (i.e US dollar,
Euro, Yen and Yuan, respectively).
The data run from February 25th 2011 to February 23th 2012, corresponding
to 245 daily observations.

Figure 1 shows the re-scaled observed market price (i.e. the re-scaled
index values) used in the calibration procedure. The x-axis displays the day
index, where t = 1 corresponds to February 25th 2011 and t = 245 to Febru-
ary 23th 2012.
Figure 1 shows some broken-trend behaviors. For the S&P 500 and Euro
Stoxx 50 indices, it occurs at t = 114− 116 (i.e. August 8-9 2011). In those
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days, Federal Reserve policy makers were likely to embark on a third round of
large-scale asset purchases which have strongly impacted on the two Western
indices. The same broken-trend behavior appears in the Nikkei 225 index at
t = 10, which corresponds with the Japanese Earthquake of March 11 2011.

In order to calibrate our model, a delicate issue is the choice of the initial

point, Θ̃
0
, of the iterative algorithm described in Steps [1]-[7]. In this regard,

we solve the same minimization problem (22) starting from different initial
points. Specifically, we generate 400000 initial points uniformly distributed
in the following set6:

S =
{

Θ= (β, g, p∗, α, ω) ∈ R5 , 0 ≤ β ≤ 5, 0 ≤ g ≤ 4, 0 ≤ p∗ ≤ 1,

5 ≤ α ≤ 20, 0 ≤ ω ≤ 1} . (24)

The parameter values are chosen as follows:

βi = 0.5(i− 1), i = 1, 2, . . . , 20, gi = 0.2 i, i = 1, 2, . . . , 20,

p∗i = 0.1 i, i = 1, 2, . . . , 10, αi = 5 + 2 (i− 1), i = 1, 2, . . . , 10,

ωi = (i− 1)/9, i = 1, 2, . . . , 10. (25)

We evaluate the objective functions FBH and FABH on 400000 points, Θi =
(βν , gn, p

∗
k, αm, ωj), ν = 1, 2, . . . , 20, n = 1, 2, . . . , 20, k = 1, 2, . . . , 10, m =

1, 2, . . . , 10, j = 1, 2, . . . , 10, i = 1, 2, . . . , 400000. We, then, sort the vectors
containing the values of the objective functions, FBH(Θi) and FABH(Θi), in
ascending order and use, as starting points, the values of parameters corre-
sponding to the smallest value of the objective functions. Tables 1 and 2
show the starting points used in the BH and ABH calibration procedures.

Table 1: Initial points BH calibration procedure

Parameters S&P 500 Euro Stoxx 50 Nikkei 225 CSI 300

β 1.9 0.6 0.95 0.01
g 2.0 2.0 1.8 1.8
p∗S 0.8 0.8 0.8 0.8
α 16.4 18.20 12.4 14.0
ω 1 1 1 1

Tables 1 and 2 show the value of parameters corresponding to the small-
est value of the objective functions (i.e. our starting points in the calibration

6Initial points of each market index have been selected by using the set S.
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Table 2: Initial points ABH calibration procedure

Parameters S&P 500 Euro Stoxx 50 Nikkei 225 CSI 300

β 2.15 0.55 7.05 0.75
g 2.0 2.0 2.0 2.0
p∗S 0.8 0.8 0.7 0.9
α 16.40 20 9.2 16.2
ω 1 1 0.78 0.56
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Figure 2: The first ten values of the BH model parameters corresponding to
the ten smallest values of the objective function FBH evaluated at the initial
points Θi of the set S (S&P 500 (solid line), Euro Stoxx 50 (dashed-dot line),
Nikkei 225 (dotted line), CSI 300 (dashed line))

exercise) while Figures 2 (BH moodel) and 3 (ABH model) display the values
of parameters corresponding to the first ten smallest values of the objective
functions. These figures show that negligible variations of the objective func-
tions correspond to negligible variations of g, p∗ and ω for both procedures.
This observation is not true for β and α. In fact, negligible variations of the
objective functions correspond to large variations of these two parameters.
Since the objective functions are plateaux, despite large variations of α and
β it means that any initial value of these parameters does not significantly
affect the objective functions.

Moreover, by comparing Figures 2 and 3 (as well as Tables 1 and 2) we
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Figure 3: The first ten values of the ABH model parameters corresponding
to the ten smallest values of the objective function FABH evaluated at the
initial points Θi of the set S (S&P 500 (solid line), Euro Stoxx 50 (dashed-dot
line), Nikkei 225 (dotted line), CSI 300 (dashed line))

observe that the initial points for both calibration procedures are quite sim-
ilar, with the only exception being for α and β in the two eastern markets.
The selection of the same set of initial points by both methods indicates
the ability of the BH model in describing the market behavior through the
value of parameters. The two methods, in fact, only differ in the definition
of the past market equilibrium price: the BH uses the simulated equilibrium
price while the ABH the observed spot price. Given that the introduction
of the observed spot price does not generate different information from that
obtained using the simulated equilibrium price we can conclude that the BH
model already fully captures all the information contained in the data.

In the first experiment, we investigate the efficacy of our calibration pro-
cess in replicating daily price time series. We solve problem (22) for the BH
and ABH approaches with τ = 200 (i.e. from February 25th 2011 to Decem-
ber 16th 2011) and Miter = 10000.
In both calibration procedures, we fix the parameters r = 0.01/250 (daily
risk free return), σ = 0.1 and ω = 1. The initial point of the traders’ fraction,
nh,0, is 1/2. The initial values of the remaining parameters are fixed as in
Tables 1 and 2. In the calibration procedure we do not estimate the parame-
ter ω for two important reasons. First the choice of ω = 1 (i.e. the so-called
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infinity memory case) is supported by the analysis on starting points (see
Tables 1 and 2). In fact, this value corresponds to the smallest values of the
objective function for all indices of the BH model and for many indices of
the ABH model. Second the dynamics generated by the infinity memory
case are controversial. From a theoretical point of view it remains an open
question whether, in this circumstance, fundamentalists are able to stabilize
the price towards its fundamental value and can drive trend-followers out of
the market (see Brock and Hommes 1998; Hommes 2001). From an empiri-
cal point of view the BH model has only been estimated in the case of zero
memory (see Boswijk et al. 2007). To cope with these shortcomings, we have
decided to focus on the case of infinite memory, i.e. ω = 1.

Tables 3-4 show the optimal parameters obtained by the BH and ABH
calibration procedures. Since both our calibration procedures are determin-

Table 3: Model parameters and objective function values obtained using the BH calibra-
tion procedure.

Parameters S&P 500 Euro Stoxx 50 Nikkei 225 CSI 300

β 2.044 0.642 1.274·10−3 0.078
St. Dev (3.590·10−2) (3.898·10−3) (2.480·10−2) (5.266·10−3)

Rel. Err. (1.252·10−2) (5.458·10−3) (8.558·10−0) (5.209·10−2)

Bias (4.545·10−3) (-1.621·10−3) (9.243·10−3) (6.394·10−4)

g 2.030 2.009 1.979 1.996
St. Dev (1.023·10−2) (3.516·10−3) (3.005·10−3) (9.196·10−4)

Rel. Err. (3.632·10−3) (2.091·10−3) (1.247·10−3) (3.640·10−4)

Bias (3.230·10−3) (3.483·10−3) (-4.437·10−4) (-1.805·10−4)

α 8.597 18.207 14.062 13.999
St. Dev (1.413·100) (3.883·10−3) (1.288·10−3 (3.765·10−5)

Rel. Err. (1.138·10−1) (1.919·10−4) (3.386·10−5) (1.636·10−6)

Bias (-7.182·10−2) (1.643·10−3) (-4.616·10−4) (-1.399·10−4)

p∗S 1189.80 (0.782) 2249.65 (0.746) 8246.43 (0.719) 2302.84 (0.682)
St. Dev (7.843·10−3) (1.532·10−2) (1.768·10−2) (1.475·10−2)

Rel. Err. (6.870·10−3) (1.271·10−2) (1.397·10−2) (1.219·10−2)

Bias (3.137·10−3) (6.188·10−3) (1.466·10−3) (-1.014·10−3)

FBH(Θ∗) 0.0025 0.0034 0.0032 0.0020
St. Dev (2.617·10−4) (3.752·10−4) (9.571·10−5) (9.267·10−5)

Rel. Err. (5.538·10−2) (6.625·10−2) (3.853·10−2) (4.688·10−2)

Bias (1.583·10−4) (2.480·10−4) (1.221·10−4) (1.130·10−4)

istic (i.e they do not include any noise in the simulated equilibrium market
price), the confidence interval of the estimated values of parameters in Ta-
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Table 4: Model parameters and objective function values obtained using the ABH cali-
bration procedure.

Parameters S&P 500 Euro Stoxx 50 Nikkei 225 CSI 300

β 2.140 0.586 0.032 0.363
(St. Dev.) (1.143·10−1) (5.251·10−1) (1.546·10−2) (2.051·10−1)

(Rel. Err.) (3.594·10−2) (1.019·10−1) (4.711·10−1) (4.758·10−1)

(Bias) (-3.542·10−2) (-5.589·10−2) (-6.697·10−3) (4.711·10−2)

g 1.976 2.030 1.919 2.023
(St. Dev.) (1.148·10−1) (1.056·10−2) (7.664·10−3) (5.618·10−2)

(Rel. Err.) (4.731·10−3) (5.124·10−3) (4.939·10−3) (1.851·10−3)

(Bias) (-5.721·10−3) (-8.642·10−3) (-8.997·10−3) (-1.702·10−3)

α 16.884 16.034 13.824 16.588
(St. Dev.) (2.551) (1.313·10−1) (2.239·10−2) (1.232·10−2)

(Rel. Err.) (5.599·10−1) (1.242·10−1) (2.196·10−2) (1.035·10−2)

(Bias) (4.343·10−1) (1.179·10−1) (1.360·10−2) (-2.923·10−3)

p∗S 1194.85(0.785) 2228.92 (0.739) 8863.52 (0.771) 2999.4 (0.889)
(St. Dev.) (8.443·10−3) (1.304·10−2) (7.401·10−3) (3.221·10−2)

(Rel. Err.) (6.734·10−3) (1.008·10−2) (5.834·10−3) (2.508·10−2)

(Bias) (-1.081·10−3) (-4.624·10−4) (9.448·10−4) (1.812·10−2)

FABH(Θ∗) 0.0011 0.0013 0.0011 0.0008
(St. Dev.) (1.297·10−4) (1.393·10−4) (1.141·10−4) (9.371·10−5)

(Rel. Err.) (7.449·10−2) (6.777·10−2) (7.808·10−2) (1.453·10−1)

(Bias) (8.836·10−5) (1.017·10−4) (9.850·10−5) (1.382·10−4)

bles 3-4 are obtained running the calibration procedure on 100 trajectories
for each index. These trajectories are obtained by applying the maximum
entropy bootstrap algorithm7 on the time series (see Vinod and Lòpez-de-
Lacalle 2009). Standard deviations (St. Dev.), mean relative errors (Rel.
Err.) and biases confirm that the parameters are statistically significant.

Comparing the two tables, we observe that for both procedures the opti-
mal values of the investigated parameters are quite similar with the except
of α and β on the two eastern markets. The interpretation of these model
parameters is substantially the same as the one given in the analysis of the
starting points. On the one hand, similarities between the two tables rein-
force our belief of the ability of the BH model to accurately interpret the
dataset. Given that the value of parameters obtained by following a simple
deterministic calibration (i.e. the BH procedure) does not deviate signif-

7The software is free downloadable from the website http :
//www.jstatsoft.org/v29/105/.
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icantly from that obtained introducing a noise coming from the observed
spot price8 (i.e. the ABH procedure), we can conclude that the BH model
nicely describes market behaviors. On the other hand, differences in the val-
ues of the parameters α and β show that the objective functions are relatively
independent of these parameters. We emphasize, however, that the intensity
of choice, β, is of little significance in switching models (see Boswijk et al.
2007; Teräsvirta 1994).

The analysis of the calibrated parameters of the four indices shows there
are differences and similarities in the behavior of traders operating in differ-
ent geographical areas. For the S&P 500 and the Euro Stoxx 50 indices, the
intensity of choice β is significantly larger than for the Nikkei 225 and the
CSI 300. This indicates, according to the interpretation of the implemented
ABM framework, that in the first two financial markets there is a stronger
collective behavior. In the two Asian markets the intensity of choice β is
close to zero meaning that the agents’ strategies are independent. In all the
investigated markets, our results show that the trend follower behavior is pre-
dominant. As shown by Hommes (2001), when we have a sufficiently large
value of the trend parameter g (i.e. g > 1+r), trend-followers can destabilize
the system and prices may not converge to the fundamental. Moreover, it is
important to emphasize that the value of the parameter g is approximately
2. This value of g has been found also in other studies involving S&P 500
index (see Boswijk et al. 2007). This suggests that, even considering differ-
ent scenarios, such as annual observations and a model with zero memory
(i.e. ω = 0), as in Boswijk et al. 2007, the persistence of the trend-following
strategy and its ability to deviate prices from the fundamental is a constant
feature in financial markets. The value of the risk aversion parameter α is
also very large in all considered markets. This finding can be explained by
the persistent financial crisis in the considered period which induces agents
to be more cautious. As expected, the values of the ABH objective function,
FABH are smaller than those of the BH one. This is consequence of the re-
placement, in the ABH calibration procedure, of the simulated equilibrium
market price, p̂, with the observed spot market price, po, at each time step.

In Figures 4 and 5 we compare, for the four market indices, the time se-
ries of the observed market price, pot , with the simulated equilibrium market
price, p̂t, (i.e. the simulated prices obtained in the final step of the iterative

8Also the ABH calibration procedure is deterministic. However, here, the deviation
from fundamental by including the observed spot price, incorporates the noise arising from
the market data.
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Figure 4: Time series of the observed market price po(t) and the simulated
equilibrium market price p̂(t) for the BH model, with the corresponding
fraction of fundamentalists n1(t) and trend-followers n2(t). Time series are
obtained using the parameters in Table 3. Panels (a), (b), (c), (d) show
the fitting of the S&P 500, Euro Stoxx 50, Nikkei 225 and CSI 300 indices
respectively.

procedure) and we show the corresponding fractions of fundamentalists, n1,t,
and trend-followers, n2,t. All simulated time series use, as input, the cali-
brated parameters obtained at the final iteration step of the BH and ABH
procedures respectively. It is worth noting that while the BH simulated se-
ries (see Figure 4) looks like a “regression” of the observed data, the ABH
one (see Figure 5) follows the same trend behavior of the observed index
value. The ABH approach is able to track satisfactorily the observed prices
despite the fact that it does not involve any stochastic noise. The reason
for this lies in the fact that we substitute the simulated equilibrium mar-
ket price p̂t with the observed spot price pot in the agents’ information set
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Figure 5: Time series of the observed market price po(t) and the simulated
equilibrium market price p̂(t) for the ABH model, with the corresponding
fraction of fundamentalists n1(t) and trend-followers n2(t). Time series are
obtained using the parameters in Table 4. Panels (a), (b), (c), (d) show
the fitting of the S&P 500, Euro Stoxx 50, Nikkei 225 and CSI 300 indices
respectively.

It = [p̂t−1, p̂t−2, . . . ; yt−1, yt−2, . . .], t < τ . The inclusion of the observed spot
prices in the trader information set acts as a kind of “filtering” method. In
fact, we have a temporal time-series of observable data (spot prices pot ) and
a model (the ABH model) that uses some unobservable variables (the frac-
tions of agents nh,t). This allow us to construct an algorithm containing a
transition equation linking our two consecutive unobservable variables, and a
measurement equation relating the observed data to these hidden variables.
Our filtering approach is based on the following two steps (see, for example,
Wells 1996): first, we estimate the hidden variables a priori by using all the
information prior to that time-step. Second, using these predicted values
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together with the new observation, we obtain a conditional a posteriori esti-
mation of the variables.

Figures 4 and 5 simply show the final step of our calibration processes. The
BH and ABH good fitting of the price dynamics shown in these figures means
that the estimated parameters (see tables 3-4) are able to describe traders’
strategies in the analyzed markets. In fact, if there were no correspondence
between simulated and observed prices nothing could be said about the reli-
ability of the calibrated parameters9.

Furthermore, the values of the fraction of traders, nh,t, shown in Figures 4
and 5 indicate that the agents act more independently of one another in Asian
markets than in the other markets. This finding has already been stressed in
the analysis of the optimal values of the intensity of choice parameter, β. In
fact, when β = 0, we obtain the same fraction of fundamentalists and trend
followers. In this case, the equation (14) implies nh,t=0.5 for any value of the
fitness measure Uh,t. This means that the trader decision making process is
independent of the fitness measure.
It is also evident that, in all the investigated scenarios (markets and pro-
cedures), we do not observe a strong switching between traders’ strategies,
that is, the fraction of fundamentalists and trend-followers is relatively sta-
ble. This result seems to contrast with the results of Boswijk et al. 2007.
In fact, the authors show a substantial time variation and switching between
strategies. However, it is essential to stress that the BH model estimated
by Boswijk et al. uses annual stock price data. It is well known that traders
slowly adjust their strategies (see Boswijk et al. 2007). This makes our
model, which is estimated on daily data, less suitable in capturing wide
switching phenomena. However, given our daily horizon, we can still observe
some fluctuations in the fractions of agents using fundamentalist and trend
follower forecasting rules.

In order to assess the accuracy of our methodology, we calculate, for
both the calibration procedures, the relative errors of the simulated equi-
librium market prices. Specifically, Figures 6 and 7 show the quantities10

er,t = |pot − p̂t|/|pot | versus t, t = 0, 1, . . . , τ . Note that the larger relative
errors are found at the broken-trend behaviors. They occur on t = 114− 116
for the S&P 500 and Euro Stoxx 50 indices and on t = 10 for the Nikkei 225

9A simple random walk could be able to fit the observed prices as well as our models.
However, by using a random walk, we could not infer any information about agents’
strategies.

10Figures 6 and 7 are on the same scale in order to be comparable.
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Figure 6: Relative error er,t between the observed price and the simulated
equilibrium market price versus time obtained using the BH model with the
parameters shown in Table 1. Panels (a), (b), (c), (d) show relative errors
relative to the S&P 500, Euro Stoxx 50, Nikkei 225 and CSI 300 indices
respectively.

index. On these days, the relative errors of the three indices obtained using
the BH model are 10%, 15% and 20% respectively. The larger relative errors
using the ABH model also occur on the same days. These errors are 7%, 6%
and 12% which are significantly smaller than those of the BH model. (see
panels (a), (b), (c) of Fig. 7).
The robustness of our calibration procedures is also investigated. In Ap-
pendix A we analyze the sensitivity of the estimated parameters with respect
to starting points and additive noises on the observed market indices. The
results confirm the robustness of the calibration procedures.

In the second experiment, we validate the BH and ABH models. We
follow the two-step calibration scheme in which the available data set is
divided into two parts (see Hansen and Heckman 1996; Sims 1996). In this
scheme, the first step is labeled “calibration” and the second step is labeled
“verification”11. In the calibration step, described in the first experiment, the

11An alternative approach, in order to divide the calibration process from the validation
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Figure 7: Relative error er,t between the observed price and the simulated
equilibrium market price versus time obtained using the ABH model with
the parameters shown in Table 1. Panels (a), (b), (c), (d) show relative
errors relative to the S&P 500, Euro Stoxx 50, Nikkei 225 and CSI 300
indices respectively.

parameters of the BH and ABH model are estimated in order to fit the prices
of the first part of the data (from February 25th 2011, t = 1, to December
16th 2011, t = 200). In the validation step, the two models are run and the
results are compared with the prices of the second part of the data (from
December 19th 2011, t = 201, to February 23th 2012, t = 245).
Here our goal is to understand whether the distribution functions of the
simulated equilibrium market prices reproduce those of the observed market
prices.

At this aim we work with the daily log-returns (also called continuously
compounded returns) instead of daily prices because they can be assumed to
be from an independent and identically distributed population.

For each market index we compare out-of-sample (i.e. December 19th

one, consists in using two different samples. In this regard, an interesting contribution is
Midgley et al. 1997. Authors use a genetic algorithm to calibrate their model and, then,
compare the output from the simulated interactions of the synthetic brands with historical
data, which had not been used during the model calibration.
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2011 – February 23th 2012) the observed index log-returns with the simu-
lated BH and ABH log-returns obtained using the model parameters shown
in Tables 3-4. Simulations are repeated 500 times with different random
seeds12. For all the investigated markets, Figure 8 shows the decumulative
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Figure 8: Decumulative distribution function (DDF) of log-returns. Each
panel shows the DDF of the observed market log-returns and of log returns
obtained by the BH and ABH approaches (Panel (a) -S&P 500 index, Panel
(b) - Euro Stoxx 50 index, Panel (c) - Nikkei 225 index and Panel (d) -
CSI 300 index. The values of the parameters are those shown in Tables 1
(BH-model) and 2 (ABH-model). The comparison of the DDF is relative to
out-of-sample observations (December 19th 2011 to February 23th 2012).

distribution functions (DDF) of the three sets of data. The shape of the sim-
ulated log-return distributions well fits the observed log-return distributions.
Our results are supported by the generalized Kolmogorov-Smirnov test with
a confidence interval 95%. We can conclude that, for each index, the three
samples belong to the same distribution.

12In particular, the random term δ which represents the uncertainty of economic divi-
dend is a random variable normally distributed with zero mean and st. dev. 0.1.
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More statistical details relative to the DDF are shown in Table 5. The sta-
tistical analysis confirms the previous conclusion.
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Table 5: Statistical quantities relative to the DDF shown in Figure 8 (out-
of-sample period: December 19th, 2011 - February 23th 2012)

S&P 500 index experiment

Observed BH ABH

Mean 0.0019 0.0023 0.0020
Std. Dev. 0.0080 0.0075 0.0086
Min value -0.0150 -0.0150 -0.0151
Max value 0.02938 0.0191 0.0317

excess kurtosis 4.5895 2.6079 4.2429
skewness 0.6047 -0.05901 0.7420

Euro Stoxx 50 index experiment

Observed BH ABH
Mean 0.0010 -0.0015 0.0009

Std. Dev. 0.0134 0.0156 0.0142
Min value -0.0317 -0.0368 -0.0348
Max value 0.0266 0.0286 0.0312

excess kurtosis 2.7501 2.2793 2.7316
skewness -0.0839 0.1431 -0.01965

Nikkei 225 index experiment

Observed BH ABH
Mean 0.0028 0.0023 0.0029

Std. Dev. 0.0080 0.0097 0.0081
Min value -0.0144 -0.0185 -0.0164
Max value 0.0227 0.0209 0.0202

excess kurtosis 2.5582 2.1752 2.8020
skewness 0.0143 0.1255 -0.0249

CSI 300 index experiment

Observed BH ABH
Mean 0.0020 0.0008 0.0018

Std. Dev. 0.0145 0.0128 0.0153
Min value -0.0021 -0.0028 -0.0025
Max value 0.0478 0.0238 0.0467

excess kurtosis 4.0249 2.1676 3.8809
skewness 0.8827 0.1076 0.9673
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4.2 Forecasting of market indices

In this subsection we investigate the important field of the predictive output
validation. We try to understand if a well calibrated ABM is able to repro-
duce future trends. In this regards, we present the one and two days ahead
forecast values obtained by the BH and ABH models.

The relevance of price forecasting is well known in finance. Several ap-
proaches have been proposed in order to match asset and derivative prices
using both time continuous and discrete stochastic processes (see, for exam-
ple, Fusai, Roncoroni, 2008 and Liu 2009). In particular, the stock market
forecasting has been modeled also through neural network approaches (see,
for a survey, Preethi and Santhi 2012). However, two main methodologies
compete in forecasting prices, one based on econometric time series analy-
sis and the other one on mathematical finance analysis. Roughly speaking,
both these techniques use some modification of the price expected value to
predict the observed one. However, the econometric approach is not always
suitable for financial forecasting (see Chen and Pearl 2013 and the reference
therein). In fact, when the stochastic price dynamic is simple, some more
complex approaches are necessary to get satisfactory forecasts such as neural
networks (see, Hadavandi et al. 2010).

Indeed, the conditional expected value can be an adequate tool able to
predict also spiky prices when the prices are described by more sophisticated
stochastic models (see, Fatone et al. 2013 and the reference therein).

However, statistical analysis alone is not sufficient to interpret price dy-
namics, and economic mechanism that can explain the origin of these phe-
nomena are needed. Our analysis shows that a very naive model and a
suitable calibration procedure allow us not only to explain the micro mecha-
nism beyond the price dynamics but also to provide a reasonable price trend
prediction13.

Let us briefly describe our forecasting procedure. We use the time series
from February 25th 2011 (t = 1) to February 23th 2012 (t = 245). The data
from February 25th 2011 (t = 1) to December 16th 2011 (t = 200) are those
used in the previous calibration experiment. The one and two days ahead
price forecasting starts from t = 201 and goes on up to t = 244.

The forecast value of the index at t = τ + n, with n=1,2, is obtained by
solving the calibration problem (22) at the current date, t = τ , using a time

13As for the issue of using agent-based models to predict, important contributions are
Bentley et al. 2009, 2013. Authors use agent-based models of angiogensis to predict in
silico behaviour that had never been observed in vivio, but that was subsequently seen to
occur.
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window of 200 consecutive daily observations from t = τ −199 to t = τ , with
τ = 200, 201, ..., 244. Specifically, when the current date changes, we solve
again the calibration problem but we add the new observation and discard
the oldest observation of the window14. Hence, we solve 45 calibration prob-
lems, one problem for each current date in the aforementioned period15.

The initial values, Θ̃
0
, of the calibration procedure, which solves the 45 prob-

lems, are the optimal values in Tables 3-4. All other parameters are as in the
previous experiment (see Subsection 3.2).

To compute n-days ahead forecast values, the BH and ABH models follow
the iterative procedure described in steps i1)–i4) (see Subsection. 3.1), but
an adjustment is needed to the ABH model to predict more than one-day
ahead prices. Specifically, steps i1), i2) have to be modified as follows: for
t = 1, 2, . . . , 201, the deviation from the fundamental, x̂t, is computed as
x̂t = pot−p∗, where pot is the observed market price; for t = 200+2, . . . , 200+n,
we define x̂t = p̂t − p∗, where p̂t is the simulated equilibrium market price.
The ABH forecast value for the last n steps, thus, is simply the BH simulated
price.

Moreover, results of one and two days ahead forecast values of the BH
and ABH model are compared with those of a random walk. Specifically,
the random walk forecast value (RW hereinafter) can be written as pτ+n =
pτ+
√
nσN (0, 1), with σ to be the standard deviation of the observed market

returns in the considered time window and n to be 1 (2) in the case of one
(two) day ahead forecast values.

Figures 9-10 show the one and two days ahead forecast values of indices
for the BH, ABH and RW models respectively. In case of the one day ahead
forecasts, the BH and ABH models are not completely suitable to match
accurately the price behavior in periods of persistent asset price volatility.
For example, in the case of the Euro Stoxx 50 and CSI 300 indices, which
show a persistent volatility during all the investigated time period, the BH
model suffers from the strong market instability while the ABH model seems
to be not too affected by the volatility. For the S&P 500 and the Nikkey 225
indices, instead, both models fit quite well the observed values. Finally, the
predictions of both models on all indexes match the observed values better
than the random walk. In the case of the two days ahead forecasts, the

14In this way the length of the time window used in the calibration is constant.
15It is important to highlight that the price forecasting is performed out of the calibration

sample. In fact, to forecast prices in t = τ + n, the model is calibrated on the data up to
t = τ .
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Figure 9: Observed and one day ahead forecast prices, with the corresponding
relative errors, of the S&P 500 (a), Euro Stoxx 50 (b), Nikkei 225 (c) and
CSI 300 (d) indices using BH, ABH and RW forecasting approaches.

ability of models in predicting prices slightly falls and the competition with
the random walk becomes more tight. For instance, in the case of the S&P
500, the RW gives better results than the BH model, while the ABH model
produces forecasts in line with the RW. The opposite is true for the CSI
300, where the ABH lose the competition against the RW, while the BH
maintains the supremacy. To better quantify these observations we calculate
the average relative errors of the BH, ABH and RW model on all indices in
the case of one and two days forecasts. Tables 6-7 confirm the accuracy of
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Figure 10: Observed and two days ahead forecast prices, with the corre-
sponding relative errors, of the S&P 500 (a), Euro Stoxx 50 (b), Nikkei 225
(c) and CSI 300 (d) indices using BH, ABH and RW forecasting approaches.

our results.
However, the forecast values of both procedures are able to track the

trend of the observed index values despite of the simplicity of the agent
based model considered. To better analyze the quality of the forecasts in
predicting the trend, we compute how many times the forecast value matches
the upward/downward trend of the observed value16. Tables 8-9 show that,

16The upward/downward trend at t = τ + 1 is measured by the sign of the difference
between the index value at t = τ+1 and t = τ . A negative (positive) sign means downward
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Table 6: Ave. relative errors on one-day ahead forecasts

BH ABH Random Walk

S&P 500 0.0061 0.0025 0.0063
Euro Stoxx 0.0106 0.0059 0.0112
Nikkei 225 0.0054 0.0042 0.0073
CSI 300 0.0103 0.0071 0.0104

Table 7: Ave. relative errors on two-day ahead forecasts

BH ABH Random Walk

S&P 500 0.0089 0.0078 0.0082
Euro Stoxx 0.0155 0.0155 0.0153
Nikkei 225 0.0092 0.0087 0.0098
CSI 300 0.0146 0.0183 0.0150

for both the one and two days ahead forecasts, the BH and ABH procedures
show good performances in predicting the trend of the indices with the ABH
model better performing than the BH model (with the only exception of the
Nikkei 225, as shown in Tab. 8). Moreover, in all the investigated scenarios
the two models always outperform the RW, except for the two-days ahead
forecast of the Nikkei 225, where the BH is weaker than the RW.

Table 8: Percent one-day ahead forecasts

BH ABH Random Walk

S&P500 74.41 79.07 53.48
Euro Stoxx 58.13 72.09 44.18
Nikkei 225 65.11 55.81 41.86
CSI 300 51.16 67.44 41.86

Table 9: Percent two-day ahead forecasts

BH ABH Random Walk

S&P500 62.79 69.76 58.13
Euro Stoxx 51.16 53.48 51.16
Nikkei 225 34.88 46.51 41.86
CSI 300 27.91 48.83 25.58

(upward) trend in price.
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5 Concluding remarks

In this paper we have shown that well calibrated agent-based models are
effective descriptive and predictive tools. The calibration technique we have
introduced has allowed us to improve the results of the validation experi-
ments proposed by Hommes (2001) on the BH model. The calibrated BH
model produces price time series which replicate nicely those observed in
various stock markets. Thus, the calibration procedure enables the model
to generate satisfactory descriptive output as well as, thanks to a simple
interpretation of the estimated parameter values, to explain behaviors and
strategies of traders operating in different financial markets.
Our results have also shown that an appropriate calibration procedure allows
the BH model to perform well in the predictive output validation. In fact,
the model has attained satisfactory results in forecasting stock price trends
and dynamics.
Although our calibration process has been applied to the BH model, it is
easily applicable to any agent-based model. The use of appropriately cal-
ibrated agent-based models as descriptive and forecasting tools is a rather
unexplored field which deserves further investigation.

Appendix A. Robustness analysis on the cali-

bration procedures

In this Appendix we analyze the robustness of our deterministic calibration
procedures. Specifically, we evaluate the sensitivity of the estimated param-
eter values (see Tables 3-4) with respect to the choice of the starting point
and, then, to noise effects.

Firstly, we investigate the basin of attraction of the optimal solutions Θ∗

shown in Tables 3 and 4. In particular, we solve problem (22) using different

initial points Θ̃
0

j , j = 1, 2, . . . , Ns (see Subsection 3.2 Step 1) given by:

Θ̃
0

j = Θ∗ +
εr
4
ξ
j
, j = 1, 2, . . . , Ns, (26)

where εr is a positive number, 0 < εr ≤ 1 and ξ
j
∈ R4 are vectors whose

elements are random numbers uniformly distributed in [−1, 1]. The initial

points Θ̃
0

j belong to a ball having centre at Θ∗ and radius εr with real Eu-
clidean distance from the optimal point Θ∗ smaller than εr.

We denote with Θa
j the new solution of problem (22) obtained starting

from the new initial point Θ̃
0

j (see Eq. (26)).
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We compute the average of the relative errors between Θ∗ and Θa
j , j =

1, 2, . . . , Ns, as follows:

es =
1

Ns

Ns∑
j=1

‖Θ∗ −Θa
j‖

‖Θ∗‖
, (27)

where ‖ · ‖ is the real Euclidean norm of · and Ns = 100.

Table 10: Robustness analysis of the BH calibration procedure

Index (0.01, e1) (0.05, e2) (0.1, e3) (0.5, e4) (1, e5)

S&P500 (0.01, 5.79 10−3) (0.05, 7.04 10−3) (0.1, 1.04 10−2) (0.5, 1.85 10−2) (1, 3.86 10−2)
Euro Stoxx 50 (0.01, 1.24 10−4) (0.05, 1.12 10−3) (0.1, 1.75 10−3) (0.5, 7.24 10−3) (1, 1.82 10−2)

Nikkei 225 (0.01, 2.14 10−4) (0.05, 2.32 10−3) (0.1, 4.86 10−3) (0.5, 2.01 10−2) (1, 4.06 10−2)
CSI 300 (0.01, 8.02 10−4) (0.05, 1.91 10−3) (0.1, 3.05 10−3) (0.5, 1.29 10−2) (1, 2.47 10−2)

Table 11: Robustness analysis of the ABH calibration procedure

Index (0.01, e1) (0.05, e2) (0.1, e3) (0.5, e4) (1, e5)

S&P500 (0.01, 2.16 10−4) (0.05, 1.29 10−3) (0.1, 2.13 10−3) (0.5, 4.82 10−3) (1, 9.28 10−3)
Euro Stoxx 50 (0.01, 1.94 10−4) (0.05, 8.33 10−4) (0.1, 1.32 10−3) (0.5, 4.35 10−3) (1, 8.21 10−3)

Nikkei 225 (0.01, 1.79 10−4) (0.05, 8.71 10−4) (0.1, 1.64 10−3) (0.5, 8.86 10−3) (1, 1.71 10−2)
CSI 300 (0.01, 5.49 10−3) (0.05, 5.47 10−3) (0.1, 5.48 10−3) (0.5, 7.71 10−3) (1, 9.69 10−3)

Tables 10 and 11 display the couples (εr, es) with εr =0.01, 0.05, 0.1, 0.5,
1.0. Our results show that the mean error, es, is smaller than the radius,
εr, in both models. Furthermore, by increasing εr, the mean relative error,
es, increases but with a decreasing rate and it is anyhow smaller than 10−2.
Roughly speaking, even in the worst case (i.e. es = 10−2) Θ∗ and Θa

j have at
least two common significant digits. It means that the solution obtained with
the calibration procedures is substantially not influenced from the choice of
the initial point so that both procedures can be considered robust. However,
the ABH procedure slightly outperforms the BH one. In fact, for any value
of the radius, the error of the ABH model is smaller than the corresponding
one of the BH model, with the only exceptions being for the Euro Stoxx 50
with εr = 0.01 and the CSI 300 with εr = 0.1.

Secondly, we analyze the robustness to additive noise effects. We perturb
the observed market spot prices, pot , adding a noise sampled from a normal
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Figure 11: Robustness of the BH (solid line) and ABH (dotted line) cali-
bration procedures to an additive noise normally distributed with zero mean
and standard deviation σn proportional to the standard deviation of the S&P
500 historical series σs (i.e. σn = ξ σs). The four panels show the value of
the estimated parameters as a function of the noise to signal ratio ξ.

distribution with zero mean and standard deviation given by σn = ξ σs,
where σs is the standard deviation of the observed data and ξ is a constant
also known as “noise to signal ratio”. This noise is used to describe bid-ask
bounce effects on exchange rates and equity (see, for example, Nielsen and
Frederiksen 2007, Mancino and Sanfelici 2012). We consider the S&P 500
index and the CSI 300 index17 from February 25th 2011 to December 16th

2011. The standard deviations of the S&P 500 and CSI index are σs = 88.37
and σs = 315.074 respectively. We generate 100 trajectories for each index
and for each value of the noise to signal ratio, ξ, with ξ = ξi = (i−1)0.004σs,
i = 1, 2, . . . , 50. We then estimate the BH and ABH parameters. Figures 11
(S&P 500 index) and 12 (CSI 300 index) show the values of the estimated
parameters versus the value of ξ. The two figures show that the estimated
parameters are substantially unchanged for both indices when the standard
deviation of the noise is below the 8% of the standard deviation of the series

17Analyses on Euro Stoxx 50 and Nikkei 225 are available under request, but results are
similar.
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Figure 12: Robustness of the BH (solid line) and ABH (dotted line) cali-
bration procedures to an additive noise normally distributed with zero mean
and standard deviation σn proportional to the standard deviation of the CSI
300 historical series σs (i.e. σn = ξ σs). The four panels show the value of
the estimated parameters as a function of the noise to signal ratio ξ.

(i.e. σn ≤ 7.06 in the case of S&P 500 index and σn ≤ 25.20 in the case of
the CSI 300 index). This experiment shows that the calibration procedures
are sufficiently robust to additive noises.
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