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Abstract—Graphics Processing Units (GPUs) are currently
used in many computing facilities. However, GPUs present several
side effects, such as increased acquisition costs as well as larger
space requirements. Also, GPUs still require some amount of
energy while idle and their utilization is usually low.

In a similar way to virtual machines, using virtual GPUs may
address the mentioned concerns. In this regard, remote GPU
virtualization allows to share the GPUs present in the computing
facility among the nodes of the cluster. This would increase
overall GPU utilization, thus reducing the negative impact of
the increased costs mentioned before. Reducing the amount of
GPUs installed in the cluster could also be possible.

In this paper we explore some of the benefits that remote GPU
virtualization brings to clusters. For instance, this mechanism
allows an application to use all the GPUs present in a cluster.
Another benefit of this technique is that cluster throughput,
measured as jobs completed per time unit, is doubled when this
technique is used. Furthermore, in addition to increasing overall
GPU utilization, total energy consumption is reduced up to 40%.
This may be key in the context of exascale computing facilities,
which present an important energy constraint.

Keywords-GPU, CUDA, GPU virtualization, rCUDA, SLURM,
virtual machine, cloud computing, InfiniBand

I. INTRODUCTION

Currently, the massive parallel capabilities of GPUs (Graph-

ics Processing Units) are leveraged to accelerate specific parts

of applications. In this regard, programmers exploit GPU

resources by off-loading the computationally intensive parts of

applications to them. To that end, although programmers must

specify which parts of the application are executed on the CPU

and which parts are off-loaded to the GPU, the existence of

libraries and programming models such as CUDA (Compute

Unified Device Architecture) [11] noticeably ease this task.

In this context, GPUs significantly reduce the execution time

of applications from domains as different as Big Data [28],

chemical physics [21], computational algebra [29], image

analysis [17], finance [26], and biology [1] for instance.

Current computing facilities typically include one or more

GPUs at every node of the cluster. However, using GPUs

in such a configuration is not exempt from side effects. For

example, let us consider the execution of a distributed MPI

(Message Passing Interface) application which does not require

the use of GPUs. Typically, this application will spread across

several nodes of the cluster flooding the CPU cores available

in them. In this scenario, the GPUs in the nodes involved

in the execution of such an MPI application would become

unavailable for other applications because all the CPU cores

in those nodes would be devoted to the non-accelerated MPI

application. This would force those GPUs to remain idle for

some periods of time.

Another example of the concerns associated with the use of

GPUs in clusters is related to the way that job schedulers such

as Slurm [31] perform the accounting of resources in a cluster.

These job schedulers use a fine granularity for resources such

as CPUs or memory, but not for GPUs. For instance, job

schedulers can assign CPU resources in a per-core basis, thus

being able to share the CPU sockets present in a server among

several applications. In the case of memory, job schedulers

can also assign, in a shared approach, the memory present in a

given node to the several applications that will be concurrently

executed in that server. However, in the case of GPUs, job

schedulers use a per-GPU granularity. In this regard, GPUs are

assigned to applications in an exclusive way. Hence, a GPU

cannot be shared among several applications even when it has

enough resources to allow the concurrent execution of those

applications, causing that overall GPU utilization is, in general,

low. This fact not only reduces the effective computing power

of computing facilities but also causes that a non-negligible

amount of energy is wasted, being both aspects key concerns

in the context of exascale computing.

In order to address the side effects related to the use of

GPUs, the remote GPU virtualization mechanism could be

used. This software mechanism allows an application being

executed in a computer which does not own a GPU to

transparently make use of accelerators installed in other nodes

of the cluster. In other words, the remote GPU virtualization

technique allows physical GPUs to be logically detached

from nodes, thus allowing that decoupled (or virtual) GPUs

are concurrently shared by all the nodes of the computing

facility in a transparent way to applications. This not only

increases overall GPU utilization but also allows to create

cluster configurations where not all the nodes in the cluster

own a GPU, thus reducing the costs associated with the

acquisition and later use of GPUs. In this regard, the total

energy required to operate a computing facility would be

decreased, thus loosening the big energy concerns of future

exascale computing facilities.
In this paper we explore some of the benefits that the

remote GPU virtualization mechanism provides to clusters.

To that end, Section II presents a review of this virtualization

technique and introduces the rCUDA technology, which will

be used in this work to quantify the benefits of the remote

GPU virtualization mechanism. Later, Section III introduces

four of its benefits. Finally, Section IV concludes the paper.
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II. REMOTE GPU VIRTUALIZATION

Frameworks such as CUDA [11] assist programmers in

using GPUs for general-purpose computing. In addition, sev-

eral remote GPU virtualization solutions exist for this frame-

work, such as GridCuda [15], DS-CUDA [18], gVirtuS [4],

vCUDA [25], GViM [5], and rCUDA [19].

Figure 1 depicts the architecture underlying most of these

virtualization solutions, which follow a client-server dis-

tributed approach. The client part of the middleware is in-

stalled in the cluster node executing the application requesting

GPU services, whereas the server side runs in the computer

owning the actual GPU. Generally, the client middleware of-

fers the same application programming interface (API) as does

the NVIDIA CUDA Runtime API [12]. In this way, the client

receives a CUDA request from the accelerated application and

appropriately processes and forwards it to the remote server.

In the server node, the middleware receives the request and

interprets and forwards it to the GPU, which completes the

execution of the request and provides the execution results

to the server middleware. In turn, the server sends back the

results to the client middleware, which forwards them to the

initial application, which is not aware that its request has been

served by a remote GPU instead of a local one.

Current virtualization frameworks provide different features.

For example, DS-CUDA supports CUDA 4.1 and includes

specific communication support for InfiniBand, although it

presents several severe limitations like not allowing data trans-

fers with pinned memory. Regarding the vCUDA technology,

it supports the old CUDA 3.2 version and implements an

unspecified subset of the CUDA runtime API. Moreover,

its communication protocol presents a considerable overhead

because of the costs of the encoding and decoding stages,

which cause a noticeable drop in overall performance. On

the other hand, GViM is based on the old CUDA version

1.1 and, in principle, does not implement the entire runtime

API. Similarly, the gVirtuS approach is based on the old

CUDA 2.3 version and implements only a small portion

of the runtime API. Furthermore, it only provides TCP/IP

communications between clients and servers, thus reducing the

effective bandwidth in networks such as InfiniBand. GridCuda,

supports CUDA 3.2 and has no public version that may be

used for testing and comparison. In the case of rCUDA, it

is binary compatible with CUDA 7.0 and implements the

entire CUDA Runtime and Driver APIs (except for graphics

functions). It provides support for the libraries included within

CUDA (cuBLAS, cuFFT, etc). Additionally, it supports several

underlying interconnection technologies by making use of

network-specific communication modules. Currently two com-

munication modules are available: TCP/IP and InfiniBand. The

former can be used in any TCP/IP compatible network whereas

the latter makes use of the high performance InfiniBand Verbs

API available in the InfiniBand network adapters. Furthermore,

as shown in [23], rCUDA outperforms the rest of available

remote GPU virtualization solutions. For these reasons, we

use this middleware in our study.

Fig. 1: Organization of remote GPU virtualization frameworks.

III. BENEFITS OF USING REMOTE GPU VIRTUALIZATION

In this section we introduce four of the benefits that the

remote GPU virtualization mechanism presents. Namely, these

benefits, which will be further described and analyzed in the

next subsections, are the following ones:

1) More GPUs are available for a single application.

2) Cluster throughput is increased at the same time that

energy consumption is reduced. Overall GPU utilization

is also increased.

3) Cluster upgrades are made easier and cheaper just by

attaching GPU servers to a non-GPU cluster.

4) Several virtual machines can concurrently access the

same GPU in a shared manner.

The next subsections further describe and analyze these

benefits by including a performance evaluation for each of

them. To that end, the testbed leveraged is based on the use

of 1027GR-TRF Supermicro servers, each of them including

two Intel Xeon E5-2620 v2 processors (six cores with Ivy

Bridge architecture) operating at 2.1 GHz and 32 GB of DDR3

memory at 1600 MHz. They also have a Mellanox ConnectX-

3 VPI single-port FDR InfiniBand adapter connected to a

Mellanox Switch SX6025 (InfiniBand FDR compatible) to

exchange data at a maximum rate of 56 Gb/s. Furthermore,

an NVIDIA Tesla K20 GPU is installed at each node.

Regarding the software configuration of the cluster, Linux

CentOS 6.4 was used along with CUDA 7.0 and Mellanox

OFED 2.4-1.0.4 (InfiniBand drivers and administrative tools).

For those experiments involving a job scheduler, Slurm version

14.11.0 was used. It was configured to use the backfill

scheduling policy. In this way, jobs can overtake others. Fi-

nally, for those applications requiring the MPI library, version

2.0b of the MVAPICH2 implementation of MPI, specifically

tuned for InfiniBand, was used.

Benefit 1: More GPUs for a Single Application

When using CUDA, an MPI application can be distributed

across several nodes in the cluster in order to make use of

the GPUs installed in those nodes. However, a shared-memory

application based on the use of threads can only run in a single

node and therefore it can only benefit from the GPUs installed

in that node. On the contrary, when rCUDA is leveraged, an

application being executed in a single node can use all the
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(a) Total options per second computed.

(b) Execution time.

Fig. 2: Performance of the MontecarloMultiGPU Sample by NVIDIA
with a varying number of GPUs when using CUDA and rCUDA.

GPUs in the cluster, thus boosting its performance. In this case,

the only limitation is the ability of the programmer to code

the application in the proper way so that it takes advantage of

as many GPUs as they are available.

Figure 2 shows the performance of the MontecarloMulti-

GPU Sample by NVIDIA when executed in a single node

owning 4 GPUs with CUDA and also when executed in a

cluster making use of up to 14 GPUs with rCUDA. The

CUDA executions have been performed in a node based on

the Supermicro SYS7047GR-TRF server, populated with four

NVIDIA Tesla K20 GPUs. Given that CUDA can only use

the GPUs installed in the same node that is executing the

application, only up to 4 GPUs can be used for the CUDA

executions. On the contrary, when rCUDA is used, many

additional GPUs can be provided to the application. Figure 2

shows how the use of a large amount of GPUs contributes to

reduce total execution time. Notice also that for 1 and 2 GPUs,

execution time with rCUDA is slightly lower than with CUDA.

This is mainly due to the higher bandwidth attained by rCUDA

for moving data to/from the GPU, as shown in [24].

On the other hand, Figure 3 depicts part of the output

provided by the execution of the deviceQuery sample by

NVIDIA. In this case, all the 64 GPUs installed in one of

the clusters owned by the Barcelona Supercomputing Center

were provided to the application.

Benefit 2: Increased Cluster Throughput

When the remote GPU virtualization mechanism is used in

a cluster, GPUs can be concurrently shared among several

applications as far as there are enough memory resources

available in the GPUs for the applications being executed.

Additionally, given that a GPU can be used by applications

being executed in a node other than the one where the GPU

is installed, when all the CPU cores in the node owning the

GPU are busy with a non-accelerated application, the GPU can

still be used from a remote node. These features contribute to

a higher GPU utilization, what translates into an increased

cluster throughput (measured in jobs per time unit) and a

reduced energy consumption.

In order to quantify the benefits of these features, in this

subsection we study the impact that using the remote GPU

virtualization mechanism has on the performance of a small

cluster. To that end, we have executed several workloads in

the cluster by submitting a series of randomly selected job

requests to the Slurm queues. After job submission, several

parameters have been measured, such as total execution time

of the workloads, energy required to execute them, and GPU

utilization. We have considered two different scenarios for

workload execution. In the first one, the cluster uses CUDA

and therefore applications can only use those GPUs installed

in the same node where the application is being executed.

In this scenario, an unmodified version of Slurm has been

used. In the second scenario we have made use of rCUDA and

therefore an application being executed in a given node can use

any of the GPUs available in the cluster. Moreover, we have

modified Slurm [6] so that it is possible to schedule the use of

remote GPUs. These two scenarios will allow to compare the

performance of a cluster using CUDA with that of a cluster

using rCUDA. A 16-node cluster has been used for executing

the workloads. The characteristics of the nodes are the ones

mentioned before. One additional node has been leveraged

in order to execute the central Slurm daemon responsible for

scheduling jobs (the slurmctld process).

Several workloads have been considered in order to provide

a more representative range of results. The workloads are

composed of the following applications (see Table I): GPU-

BLAST [27], LAMMPS [2], mCUDA-MEME [16], GRO-

MACS [22], BarraCUDA [14], MUMmerGPU [8], GPU-

LIBSVM [3], and NAMD [20]. They have been selected from

the list of NVIDIA’s Popular GPU-Accelerated Applications

Catalog [13] because of their different characteristics. The

versions of NAMD and GROMACS used in this study do not

Fig. 3: Screenshot of the deviceQuery Sample by NVIDIA when used with rCUDA after assigning 64 GPUs to an application.
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TABLE I: Applications used in this study. Configuration details for each application

Application Configuration Execution time (s) Memory per GPU

GPU-Blast 1 process with 6 threads in 1 node 21 1599 MB
LAMMPS 4 single-thread processes in 4 different nodes 15 876 MB
mCUDA-MEME 4 single-thread processes in 4 different nodes 165 151 MB
GROMACS 2 processes with 12 threads each one in 2 nodes 167
BarraCUDA 1 single-thread process in 1 node 763 3319 MB
MUMmerGPU 1 single-thread process in 1 node 353 2104 MB
GPU-LIBSVM 1 single-thread process in 1 node 343 145 MB
NAMD 4 processes with 12 threads each one in 4 nodes 241

make use of GPUs and therefore they are intended to con-

tribute to a higher degree of heterogeneity of the workloads.

Table I provides additional information about the applica-

tions used in this study, such as the exact execution configu-

ration used for each of the applications, showing the amount

of processes and threads used for each of them. It can be seen

that LAMMPS, mCUDA-MEME, GROMACS, and NAMD

are MPI applications that will spread across several nodes in

the cluster. On the contrary, the other four applications will

execute in a single node. Additionally, some of the applications

also make use of threads. For instance, it can be seen in the

table that the GPU-Blast application uses a single process

composed of 6 threads. During execution, each of these threads

will use a different CPU core. In a similar way, the NAMD

application will be distributed across 4 different nodes of the

cluster (4 processes) and 12 threads will be launched at each

node. Therefore, the NAMD application will make use of 4

entire nodes. In a similar way, the GROMACS application will

keep busy two entire nodes while being executed.

Table I also shows the execution time for each application,

which ranges from 15 up to 763 seconds for LAMMPS

and BarraCUDA, respectively. Applications can be classified

according to their execution time. In this regard, GPU-Blast,

LAMMPS, mCUDA-MEME, and GROMACS require less

than 170 seconds to complete execution (they are “short”

applications) whereas BarraCUDA, MUMmerGPU, GPU-

LIBSVM, and NAMD require more than 240 seconds to be

executed (“long” applications).

In addition to execution time, Table I also shows the GPU

memory required by each application. For those applications

composed of several processes, the amount of GPU memory

depicted in Table I refers to the individual needs of each

particular process. Notice that the amount of GPU memory

is not specified for the GROMACS and NAMD applications

because we are using non-accelerated versions of these appli-

cations. The reason for this choice is simply to increase the

heterogeneity degree of the workloads by using some CPU-

only applications, as it could be the case in many data centers.

The previous applications have been combined in order to

create three different workloads as shown in Table II. Work-

load labeled as “Set 1” is composed of 400 instances randomly

selected from applications GPU-Blast, LAMMPS, mCUDA-

MEME, and GROMACS. The exact amount of instances

for each application is shown in the table. Additionally, the

exact sequence of the applications within the workload is also

TABLE II: Workload composition

Workload
Application Set 1 Set 2 Set 1+2

GPU-Blast 112 57
LAMMPS 88 52
mCUDA-MEME 99 55
GROMACS 101 47
BarraCUDA 112 51
MUMmerGPU 88 52
GPU-LIBSVM 99 37
NAMD 101 49

Total 400 400 400

randomly set. In a similar way, workload labeled as “Set 2”

is composed of 400 instances of applications BarraCUDA,

MUMmerGPU, GPU-LIBSVM, and NAMD. Finally, a third

workload, referred to as “Set 1+2”, has been created with

instances from all the applications.

Figure 4 shows the performance results. The figure shows,

for each of the workloads depicted in Table II, the perfor-

mance when CUDA is used along with the original Slurm

workload manager (results labeled as “CUDA”) as well as the

performance when rCUDA is used in combination with the

modified version of Slurm (label “rCUDA”). Figure 4(a) shows

total execution time for each of the workloads. Figure 4(b)

depicts the averaged GPU utilization for all the 16 GPUs in

the cluster, whereas Figure 4(c) shows total energy required

for completing workload execution.

As can be seen in Figure 4(a), workload “Set 1” presents

the smallest execution time, given that it is composed of

the applications requiring the smallest execution times. Fur-

thermore, using rCUDA reduces execution time for the three

workloads. In this regard, execution time is reduced by 48%,

37%, and 27% for workloads “Set 1”, “Set 2”, and “Set 1+2”,

respectively. Regarding GPU utilizacion, Figure 4(b) shows

that the use of remote GPUs helps to increase overall GPU

utilization. Actually, when rCUDA is used with “Set 1” and

“Set 1+2”, average GPU utilization is doubled with respect to

the use of CUDA. Finally, total energy consumption is reduced

accordingly, as shown in Figure 4(c), by 40%, 25%, and 15%

for workloads “Set 1”, “Set 2”, and “Set 1+2”, respectively.

Several are the reasons for the benefits obtained when GPUs

are shared across the cluster. First, as already mentioned,

the execution of the non-accelerated applications makes that

GPUs in the nodes executing them remain idle when CUDA

is used. On the contrary, when rCUDA is leveraged, these

GPUs can be used by applications being executed in other
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(a) Total execution time of the workloads. (b) Average GPU utilization. (c) Total energy consumed.

Fig. 4: Performance results from the 16-node 16-GPU cluster.

nodes of the cluster. The second reason for the improvements

shown in Figure 4 is related to the usage that applications

make of GPUs. As Table I showed, some applications do

not completely exhaust GPU memory resources. For instance,

applications mCUDA-MEME and GPU-LIBSVM only use

about 3% of the memory present in the NVIDIA Tesla K20

GPU. However, the unmodified version of Slurm (combined

with CUDA) will allocate the entire GPU for executing each

of these applications, thus causing that almost 100% of the

GPU memory is wasted during application execution. On the

contrary, when rCUDA is used, GPUs can be shared among

several applications provided that there is enough memory for

all of them. Obviously, GPU cores will have to be multiplexed

among all those applications, what will cause that all of

them execute slower. However, one interesting point of view

related to the slower execution of the applications sharing a

GPU is that despite the slower execution of each individual

application, the entire workload is completed earlier, as shown

in Figure 4. This means that (1) the time spent by applications

waiting in the Slurm queues is reduced and (2) the execution

of each individual application is completed earlier.

Benefit 3: Cheaper Cluster Upgrade

The use of GPUs in a cluster usually puts several burdens

on the physical configuration of the nodes in the cluster. For

instance, nodes owning a GPU need to include larger power

supplies able to provide the energy required by the acceler-

ators. Also, GPUs are not small devices and therefore they

require a non-negligible amount of space in the nodes where

they are installed. These requirements make that installing

GPUs in a cluster which did not initially include them is

sometimes expensive (power supplies need to be upgraded)

or simply impossible (nodes do not have enough physical

space for the GPUs). However, the workload in some data

centers may evolve towards the use of GPUs. At that point,

the concern is how to address the introduction of GPUs in the

computing facility.

One possible solution to the concern above is acquiring

some amount of servers populated with GPUs and divert

the execution of accelerated applications to those nodes.

The Slurm workload manager would automatically take care

of dispatching the GPU-accelerated applications to the new

servers. However, although this approach is feasible, it presents

the limitation that GPU jobs will probably have to wait for

long until one of the GPU-enabled servers is available even

though GPU utilization is usually low. Another concern is

that MPI accelerated applications will only be able to span

to as many nodes as GPU-enabled servers were acquired.

Given these concerns, a better approach would be to acquire

some amount of servers populated with GPUs and use rCUDA

to execute accelerated applications at any of the nodes in

the cluster while using the GPUs in the new servers. This

solution would not only increase overall GPU utilization with

respect to the use of CUDA in the previous scenario but would

also allow MPI applications to span to as many nodes as

required because MPI processes would be able to remotely

access GPUs thanks to rCUDA. In summary, the remote

GPU virtualization mechanism allows clusters which did not

initially include GPUs to be easily and cheaply updated for

using GPUs by attaching to them one or more computers

containing GPUs. In this way, the original nodes will make use

of the GPUs installed in the new nodes, which will become

GPU servers. Slurm would be used to schedule the use of the

GPUs in the new servers.

In order to analyze the performance of these two possible

solutions, we have substituted one of the nodes in the cluster

by a node containing four GPUs. This node is based on

the Supermicro SYS7047GR-TRF server, populated with four

NVIDIA Tesla K20 GPUs and one FDR InfiniBand network

adapter. Furthermore, in order to additionally consider the use

of parallel shared-memory applications in order to increase the

heterogeneity of the workloads, we have modified the work-

loads used in the previous experiments by modeling shared-

memory applications with two and four threads that require

two and four GPUs, respectively. To that end, two different

flavors of the LAMMPS and mCUDA-MEME applications

have been used, as shown in Table III: (1) “LAMMPS long 2p”

and “mCUDA-MEME long 2p” consist of two single-threaded

processes that are forced to be executed in the same node.

These instances of the applications will model the use of two-

thread shared-memory applications, (2) “LAMMPS long 4p”

and “mCUDA-MEME long 4p” consist of four single-threaded

processes that will be forced to execute in the same node. They

will model the use of four-thread shared-memory applications.

One additional flavor of these applications will model single-

thread shared-memory applications. This additional flavor is

composed by the “LAMMPS short” and “mCUDA-MEME

short” cases shown in Table III which make use of one single-

threaded process. Furthermore, small input data sets are used

for the “LAMMPS short” and “mCUDA-MEME short” cases

whereas the multi-threaded flavors use a large input data set

in order to lengthen their execution time.

4545



TABLE III: Composition of two additional workloads

Workload
Application WL 1 WL 2

GPU-Blast 41 48
LAMMPS short 39 46
LAMMPS long 2p 20 10
LAMMPS long 4p 20 10
mCUDA-MEME short 39 46
mCUDA-MEME long 2p 20 10
mCUDA-MEME long 4p 20 10
GROMACS 40 40
BarraCUDA 40 47
MUMmerGPU 41 47
GPU-LIBSVM 40 46
NAMD 40 40

Total 400 400

Figure 5 shows the performance results when a server with

four GPUs has been attached to a cluster without GPUs.

The original cluster is composed of 15 nodes (same node

configuration as in the previous subsections, but GPUs have

been removed). Results show that decoupling GPUs from

nodes with rCUDA allows applications to make a much more

flexible usage of the resources in the cluster and therefore

execution time is reduced as well as energy consumption.

Benefit 4: Virtual Machines Can Easily Access GPUs

Providing CUDA acceleration to virtual machines can be

accomplished by making use of the PCI passthrough tech-

nique [30]. This mechanism is based on the use of the

virtualization extensions widely available in current high per-

formance computing (HPC) servers, which allow assigning a

GPU, in an exclusive way, to one of the virtual machines

running at the host. Furthermore, when making use of this

mechanism, the performance attained by accelerators is very

close to that obtained when using the GPU in a native domain.

Unfortunately, as this approach assigns GPUs to virtual ma-

chines in an exclusive way, it does not allow simultaneously

sharing GPUs among the several virtual machines being con-

currently executed at the same host. This issue constrains the

use of GPUs in the cloud computing domain.

With the remote GPU virtualization mechanism it is pos-

sible to concurrently assign a given GPU to several virtual

machines, so that the applications being executed inside them

can share the GPU resources. Two different scenarios can be

considered: one where virtual machines access a GPU located

at the same host executing the virtual machines and another

one where the InfiniBand fabric is already present in the

cluster and therefore virtual machines access a GPU installed

in another cluster node. Figure 6(a) depicts the first scenario

whereas Figure 6(b) presents the second one.

In the first scenario, one of the virtual machines will have

exclusive access to the GPU by making use of the PCI

passthrough mechanism. This virtual machine will grant GPU

access to the other virtual machines by using the rCUDA

middleware: the rCUDA server will be executed in the virtual

machine owning the GPU whereas the other virtual machines

will use the rCUDA client to access the GPU across the

Xen virtual network. TCP/IP based communications will be

used in this scenario to communicate the rCUDA clients

with the rCUDA server. Accordingly, virtual machines running

the rCUDA client will have one or several virtual instances

(vGPU) of the real GPU, which is physically connected to

the virtual machine DomU1. Moreover, the virtual machine

DomU1 will be able to use either the real GPU or its virtual

instances. Notice that the rCUDA server can only be installed

in one of the DomUi virtual machines given that NVIDIA

does not provide support for the Xen Linux kernel used in the

Dom0 virtual machine.

Regarding the second scenario, shown in Figure 6(b), which

uses the InfiniBand fabric already present in the cluster to

access a GPU in another node, the firmware in the InfiniBand

adapter must be changed, according to the directions in

Mellanox User’s Guide [10], in order to provide several virtual

instances (virtual functions, VFs) of the InfiniBand adapter, in

addition to the real instance (physical function, PF). Each of

these virtual functions will be provided, in an exclusive way,

to a Xen virtual machine by using the PCI passthrough mecha-

nism. Moreover, given that an InfiniBand network is available,

communication between the rCUDA clients in the virtual

machines and the remote rCUDA server will be based on the

use of the high performance InfiniBand Verbs API. Notice that

in the later experiments involving the InfiniBand fabric, the

remote GPU server is executed in a remote computer which

has not been virtualized and also whose InfiniBand network

adapter makes use of the original firmware which does not

provide virtualization features. Similarly to the scenario shown

in Figure 6(a), virtual machines will have one or several virtual

instances of the real GPU, which is physically located in the

remote node. Finally, it is important to remark that, although

(a) Total execution time of the workloads. (b) Average GPU utilization. (c) Total energy consumed

Fig. 5: Performance results when a server with 4 GPUs is attached to a 15-node cluster without GPUs.
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(b) Testbed using InfiniBand to access a remote GPU.

Fig. 6: Testbeds used in the experiments presented in this subsection,
which make use of rCUDA to provide GPU access to virtual
machines. (a) In a single-node testbed, virtual machines employ the
virtual network to access the rCUDA server by means of the TCP/IP
protocol stack. (b) When an InfiniBand fabric is available, virtual
machines use such interconnect to access a remote rCUDA server.

in this analysis we only consider sharing a single GPU, the

rCUDA middleware also allows sharing multiple GPUs.
The testbed used in this subsection to explore the use of

the remote GPU virtualization inside Xen virtual machines

is composed of three 1027GR-TRF Supermicro nodes as the

ones mentioned before. One of them will host the Xen virtual

machines whereas the other two nodes will not make use of

virtual machines. In one of the native domains we will execute

the rCUDA server as shown in Figure 6(b) and the other

native domain will be used for several comparison purposes.

Regarding the software configuration, SUSE Linux Enterprise

Server 11 SP3 (x86 64) was used in the three servers, with

kernel version 3.0.76-0.11. Additionally, in the node hosting

the virtual machines, Xen version 4.2.2 was used. The same

kernel version was used in the Dom0 and all the DomU

domains, although for Dom0 the kernel was recompiled in

order to activate the Xen options. Finally, virtual machines

were configured to have 4 cores and 12 GB of RAM memory.

The applications used in this analysis are LAMMPS [2],

CUDA-MEME [16], CUDASW++ [9], and GPU-BLAST [27],

being all of them listed in the NVIDIA GPU-Accelerated

Applications Catalog [13].
Figure 7 shows the performance of these four applications

when executed in the following scenarios:

• Execution with CUDA with a local GPU in a native

domain. Results for this scenario are referred to as

“CUDA non-VM”.

• When CUDA is used in DomU1 by using the PCI

passthrough mechanism (rCUDA is not used), the label

“CUDA VM PT” is used. In this case, the Xen virtual

machine will access the GPU in the host by making use

of PCI passthrough.

• The label “rCUDA non-VM” refers to the performance

of the rCUDA middleware when used between native

domains (no Xen virtual machine involved) making use

of the InfiniBand network.

• When Xen virtual machines are involved in the tests, the

performance of applications using rCUDA in the scenario

depicted in Figure 6(a) is denoted by the label “rCUDA
VM Local”.

• When using rCUDA in the scenario shown in Fig-

ure 6(b), the performance of applications will be labeled

as “rCUDA VM IB”.

Every experiment has been performed 10 times, so that

Figure 7 shows the averaged results. In addition to execution

time, the plots in Figure 7 also include a breakdown of the

execution time, which is split into three different components:

(1) time required to transfer data to/from the GPU (“GPU
Data Transfer”), (2) time spent making computations in the

GPU (“GPU Computation”), and (3) time spent in tasks

not involving the GPU, such as CPU computations and I/O

(“Other”). Execution times presented in Figure 7 show that

the four applications have a similar behavior, spending a very

small portion of time for transferring data to the GPU, and

spending the rest of the time making computations either in

the CPU or in the GPU. More specifically, in the case of GPU-

BLAST and CUDA-MEME applications, they present periods

of time in which the GPU is not used. On the contrary, both

LAMMPS and CUDASW++ keep the GPU busy for almost

all the execution time.
Figure 7 also shows the average overhead with respect

to executions with CUDA in a native domain for the four

applications. It is shown that rCUDA overhead in LAMMPS,

CUDASW++ and GPU-BLAST applications is mainly due

to data transfers between main memory and GPU memory.

Additionally to the overhead of transfers, the CUDA-MEME

application also presents a performance decrease when using

a virtual machine that makes use of the PCI passthrough

technique. This additional overhead is not due to the increase

of GPU data transfer time, but to the time spent in other tasks

by the PCI passthrough technique.
In general, the fact that the overhead of rCUDA is mainly

due to data transfers between main memory and GPU memory

was expected because once data is in the GPU memory, GPU

computations require the same amount of time to be completed

as in a native environment. In average, in the experiments,

the overhead of running GPU-accelerated applications in a

Xen virtual machine with respect to a native domain is 2%,

2.8%, and 5.8% when using PCI passthrough, rCUDA over an

InfiniBand fabric, and rCUDA over the Xen virtual network,

respectively.
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(a) LAMMPS application. (b) CUDA-MEME application. (c) CUDASW++ application. (d) GPU-BLAST application.

Fig. 7: Execution time of several applications when executed in different local and remote scenarios. Execution time is broken down into
three components: GPU computation, GPU data transfer, and Other.

IV. CONCLUSIONS

In this paper it has been shown that the use of the re-

mote GPU virtualization technique provides several benefits to

computing facilities. For instance, the improvements attained

in execution time for a batch of jobs have been quantified.

The associated reduction in energy consumption has also been

presented. These features may be interesting in the context of

exascale computing facilities given that one of the walls in

this area is the hard power consumption limitation.

Notice, however, that the remote GPU virtualization mech-

anism can also be useful for migrating the GPU jobs from

one GPU server to another. It is quite complex to perform

this migration in an efficient way when this virtualization

mechanism is not being used, but on the contrary it is very

simple when the rCUDA technology is used due to the fact

that rCUDA intercepts all the CUDA calls and tracks the state

of the memory areas used by the application in the GPU.

Migrating GPU jobs would be an inexpensive and efficient way

of consolidating GPU servers, so that as many GPU jobs as

possible are packed together, switching off those GPU servers

not required. This would be a means of further reducing the

total energy consumed in exascale computing facilities.
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