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Abstract

We report a systematic study of the spin relaxation anisotropy between single electron Zeeman
sublevels in three-dimensional cuboidal GaAs quantum dots (QDs). The QDs are subject to an in-
plane magnetic field. As the field orientation varies, the relaxation rate oscillates periodically, showing
‘magic’ angles where the relaxation rate is suppressed by several orders of magnitude. This behavior is
found in QDs with different shapes, heights, crystallographic orientations and external fields. The
origin of these angles can be traced back to the symmetries of the spin admixing terms of the
Hamiltonian. Our results evidence that cubic Dresselhaus terms play an important role in determining
the spin relaxation anisotropy, which can induce deviations of the ‘magic’ angles from the
crystallographic directions reported in recent experiments (P Scarlino et al 2014 Phys. Rev. Lett. 113
256802).

1. Introduction

The electron spin confined in semiconductor quatum dots (QDs) is a promising candidate for the realization of
quantum computing and the development of spin-based devices in spintronics [1, 2]. Using the spin of electrons
as qubits was first proposed by Loss and DiVincenzo [3] and, since then, alot of effort has been devoted to its
accomplishment [4]. QDs offer the possibility of isolating single electron spins which exhibit longer lifetimes
than in delocalized systems since quantum confinement suppresses the main bulk decoherence mechanisms [5].
Nevertheless, coupling between the electron spin and the surrounding environment cannot be avoided,
resulting in spin relaxation and decoherence. Therefore, a good understanding of the relaxation mechanisms in
QDs is needed for the development of spin-based applications.

The two main mechanisms of spin relaxation in ITI-V zinc-blende semiconductor QDs are the hyperfine
coupling with the nuclear spins of the lattice and the spin—orbit interaction (SOI) [4]. The hyperfine interaction
is generally important at relatively weak magnetic fields while for moderate and strong fields the phonon-
mediated relaxation due to SOI predominates. In semiconductors without inversion symmetry, e.g. GaAs, SOI
can be originated by the bulk inversion asymmetry of the material (Dresselhaus SOI) [6] and the structure
inversion asymmetry of the confining potential (Rashba SOI) [7]. The Hamiltonians describing both SOI have
different symmetries and exhibit an anisotropic behavior [8]. This anisotropy can be exploited to externally
control and manipulate the electron spin by changing the orientation of applied magnetic or electric fields [9—
11]. As a consequence, the anisotropy of the spin relaxation and its control via external means has been
intensively studied [12-20].

Most previous theoretical works have dealt with two-dimensional (2D) circular QDs grown along the [001]
crystal direction [4, 12—14, 21], where in-plane anisotropy arises from the interference between Rashba and
Dresselhaus SOI. However, QDs are prone to deviate from the circular symmetry and there is gathering evidence
that this has a primary influence on the spin relaxation anisotropy [15-18]. This fact has been confirmed in very
recent experiments by Scarlino and co-workers [22]. Relevantly, all the studies analyzing the influence of non-
circular confinement on the spin relaxation anisotropy of single QDs have so far missed the effect of cubic
Dresselhaus SOI terms and that of three-dimensionality (3D). Cubic terms are expected to become particularly

© 2015 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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Figure 1. Schematic representation of the cuboidal QD system. The orientation of the external electric and magnetic fields is indicated.

importantin tall QDs [23], which are increasingly available owing to recent progress in synthetic control
[24,25]. On the other hand, going beyond [001] grown QDs is also of interest, especially in view of the
convenience of [111] grown QDs for optical spin preparation [26]. The effect of the crystallographic orientation
on the spin dynamics has been well studied in quantum wells [27-29], but further work is needed in relation to
fully localized spins, where studies are limited [18].

In this article, we study the anisotropy of the electron spin relaxation between Zeeman sublevels in cuboidal
GaAs QDs. The anisotropy is monitored by varying the orientation of an externally applied in-plane magnetic
field (¢p5). We consider QDs grown along both [001] and [111] crystal directions, including all linear and cubic
terms of Rashba and Dresselhaus SOl in a fully 3D model. Different heights, base shapes, crystallographic
orientations, magnetic field intensities and external electric fields are considered. The numerical results,
together with perturbative interpretations, provide a wide overview on the effect of confinement asymmetry and
3D on the spin relaxation anisotropy.

We find that, in [001] grown QDs, the spin relaxation anisotropy is very different depending on the
dominating spin—orbit mechanism, Rashba or Dresselhaus SOI. By contrast, in [111] grown QDs the anisotropy
is the same for both terms. In all cases, the spin relaxation rate shows strong oscillations with ¢ ;. Interestingly,
cubic Dresselhaus terms are shown to be critical in determining such anisotropic behavior. This occurs not only
in tall QDs, but—contrary to common belief—also in quasi-2D QDs, provided the high symmetry directions of
the dot are not aligned with the main crystallographic axes. In both squared and rectangular QDs we observe
order-of-magnitude suppressions of the spin relaxation rate at certain ‘magic’ magnetic field angles ¢z, which
can be understood from symmetry considerations. A ‘magic’ angle around [110] has actually been very recently
reported in experiments with a single GaAs QD strongly elongated along one in-plane direction [22]. We
generalize this study considering less elongated structures. We show that cubic Dresselhaus terms help explain
the deviation from [110] observed in the experiment, and in less elongated structures they switch the ‘magic’
angle to [110] or [110].

The paper is organized as follows. Section 2 presents the model we use to compute the electron spin
relaxation, including the SOI Hamiltonians for QDs rotated with respect to the main crystallographic axes. In
section 3 we show and discuss the numerical results for the cases under study. Finally, conclusions are given in
section 4.

2. Theoretical model

We study the electron spin relaxation driven by SOI between Zeeman split sublevels of cuboidal GaAs QDs
subject to externally applied electric E and magnetic B fields (see figure 1). The isotropy of the conduction band
of III-V semiconductors leads to an isotropic kinetic energy term in the 3D one-electron Hamiltonian which
reads

pZ

2m

H=

+VC+EI'+H2+HSOI, (1)

*

where m* stands for the electron effective mass, V. is the confinement potential, E is an external electric field and
p = —i/2 V + A, where A is the vector potential. An in-plane magnetic field B = B (cos ¢p, sin ¢y, 0) rotated
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an angle ¢ with respect to the x axis of the dot is included. This field is described by the vector potential

A= (zB sin ¢y, —zB cos ¢y, 0). The Zeeman termis Hy = %g/,t gBo with g, u; and 6 standing for the electron
g-factor, Bohr magneton and Pauli spin matrices, respectively.
Thelast term in (1) corresponds to the SOI, [8] Hsor = Hg + Hp, with Hg being the Rashba SOI

HR" = a,6 (p X E), (2)
and Hp, the Dresselhaus SOI

B = pol o (0 = 2) + o (2~ 87) + on (02 - 7)) | 3)

Here, a, and 8, are material-dependent coefficients determining the strength of the SOI and the superscript
[001] indicates de growth direction of the QD.

Equations (2) and (3) correspond to QDs grown along the [001] crystal direction. In order to consider other
orientations of the QD with respect to the crystal host we maintain the confinement potential fixed in space and
perform a rotation of the crystalline structure. Since the confining potential as well as the externally applied fields
are kept while the crystalline structure is rotated, only the Hso; part of the Hamiltonian is affected. In particular,
the Hsop Hamiltonian corresponding to an axially applied electric field and a crystalline structure subject to an
in-plane rotation , around the z axis reads:

HP (6.) = a,B. (02, - oyp,), (4)

and
HE (0.) = p, cos zez[oxpx (b7 - £2) + oy, (67 = p2) + oo (02 - pj)]
+ By 5in 20, [pf (o2 + ) = 20:m + 5 (82 = 87) (o1, - aypx)]- (5)

Note that this particular case of an axially applied electric field yields a Rashba Hamiltonian (4) independent of
0..
We consider next QDs grown along the [111] direction. In particular, we consider the rotation
y = arccos(1/ J3)around the straightline y = —x, that corresponds to the Euler angles @ = arccos(1/ J3),
¢ = 45anda = —45. The rotated SOI Hamiltonians have the form

aE;

HE“]=W[GZ(Py_Px) —Gy(Px +PZ) +6x(Py +pz)]’ (6)
and

2

HJ = %[(Px +p; - 4p22)(pxay - pyax) +pz(px2 - pyz)(ox + oy)
+2p.p,p, (0 = 6,) — azpj(px + 3py) + o.p; (py + 3px)], (7)

where the electric field is aligned with the dot z axis.
The relaxation rate between the initial electron state | # ) and the final electron state | # ) is estimated by the
Fermi golden rule

‘}’,->‘26(Ef—Ei—Eq). (8)

1 2 .
?1 = %E‘Mi(q)r ‘ <le ‘e_lqr

Here, the sum is done over all possible decay channels and directions of the phonon wave vector q. M; (q)
denotes the scattering matrix element corresponding to the electron—phonon interaction including the
piezoelectric and deformation potentials [30]. The expressions for M, (q) are derived considering the three
phonon modes 4 of the bulk zinc-blende crystals, one longitudinal and two transversals, as producing strain and
this strain yielding piezoelectricity (see [31] for more details). We assume bulk phonons, which is an appropiate
model for embedded QDs. As a consequence, the scattering matrix elements M (q) does not depend on the QD
orientation. All calculations are carried out at zero temperature, thus only phonon emission processes are
possible, i.e. those inducing transitions from the first excited to the ground electronic state. The splitting energy
between Zeeman sublevels is small so that only acoustic phonons are important and the linear dispersion regime
applies E, = /ic;q, where c; is the velocity of the longitudinal or transversal phonon branch [32]. Note that
phonons cannot couple states with opposite spin and the spin admixture caused by SOl is essential for relaxation
to take place.
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Square base ——
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Figure 2. Electron spin relaxation rate as a function of the in-plane magnetic field orientation when only the Rashba SOI contribution
isincluded. QDs of 10 nm height with rectangular (dotted line) and square base (solid line) are considered.

The eigenvalue problem is solved numerically using a finite difference method on a 3D grid. Accounting for
SOl in the calculation of the energy spectra requires high numerical precision due to the small magnitude of this
coupling and the presence of third-order derivatives. Accuracy in the derivatives in the finite difference method
can be achieved by increasing the number of mesh nodes. However, the 3D character of the calculations is a
serious hindrance, since the number of nodes increases as, - n,, - n,, with n; the discretization along the axis i.
We can also improve accuracy by increasing the points of the discretization of derivatives. We have explored the
performance of 5, 7 and 15-point central difference schemes and, after a series of convergence tests, found thata
seven-point stencil central difference scheme and a number 0f 42875 mesh nodes discretizing the 3D system
guarantees an appropiate description at a reasonable computational cost. In order to preserve the accuracy we
model QDs as hard-wall cuboids fitting exact numbers of nodes, so that the potential energy term does not
introduce any additional inaccuracy. This idealized geometry has been shown to capture the basic features of the
spin—orbit anisotropy of realistic InAs/GaAs QDs [11], while enabling a simple interpretation in terms of
symmetries, which is the goal of this work.

We use GaAs material parameters, particularly electron effective massm* = 0.067, density p = 5310 kg m™>
, dielectric constante, = 12.9, piezoelectric constant i, = 1.45 x 10° V. m™}, g-factor ¢ = —0.44 and sound

velocities¢; = 4720 m s~'and ¢, = 3340m s~.. [33, 34] For the SOI constants, we take By = 27.58¢V A and

a, = 5.026e A’ [8] All simulations are carried out, unless otherwise stated, considering an axial electric field
E, = 10 kV cm ' and an in-plane magnetic field By = 1 T.

3. Results and discussion

3.1. Geometry dependence

We investigate first the relaxation rate anisotropy for different dot geometries when applying an in-plane
magnetic field at different orientations. The QDs considered have a base with square (L, = 80nm, L, = 80 nm)
or rectangular (L, = 70 nm, L, = 90 nm) shape and various heights ranging from L, = 10 nm to L, = 40 nm.

Figure 2 shows the spin relaxation rate when only Rashba SOl is present. . For QDs with square base the
relaxation rate is constant for any ¢. In contrast, in rectangular QDs it presents an anisotropic behavior, where
the maximum (minimum) corresponds to a magnetic field oriented along the direction of weaker (stronger)
confinement. In both cases, 1/7; is independent of the QD height and, for the sake of clarity, only results for
L, = 10nm are included in figure 2.

In figure 3(a), we analyze the spin relaxation in the only presence of Dresselhaus SOI for QDs with square
base. The relaxation rate for short QDs (L, = 10 nm) is almost isotropic with the orientation of the magnetic
field. This is in sharp contrast with taller QDs, where strong quenchings are found at ¢; = 45 and ¢p; = 135.On
the other hand, when the QD base is rectangular, figure 3(b), only moderate modulations of 1/7T] are observed.
Again, the dependence on ¢, is different depending on the dot height. When Bj is oriented along the direction of
weaker confinement the relaxation is minimum for QDs with L, = 10 nm, but it changes into a maximum for
L, = 20, 30, 40 nm.

! The relaxation is slower than in previous studies (e.g. [ 14, 21]) because in our cuboidal QDs there is no potential gradient, so the only
source of inversion asymmetry contributing to equation (2) is the (relatively weak) external field E. The dependence on ¢, we describe
below is however largely independent of the strength of the field

4
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Figure 3. Calculated spin relaxation rate versus magnetic field orientation ¢, considering only Dresselhaus SOl in (a) square and (b)
rectangular base QDs. Different dot heights are studied: L, = 10 nm (solid black line), L, = 20 nm (blue dashed line), L, = 30 nm
(red dash-dotted line) and L, = 40 nm (green dotted line).

The preceding results reveal a strong sensitivity of the spin relaxation anisotropy to both the QD symmetry
(squared or rectangular) and the QD height. Both factors can induce major, qualitative changes in the
anisotropy. To understand such a behavior, we consider that the relaxation rate is proportional to the degree of
spin admixture of the initial and final states of the transition, ¥ and ¥ in (8) [32]. These states can be
approximated as:

%z%oo‘l) +C>i‘l’100| ) +C;II/010| 1)
ij“'/’ooo|T>+C:{’//100|l>+cyf'//o1o|l>’ 9)

where Wjji Tepresents the electron orbital in the absence of SOI, with ijk the number of nodes in x, y and z,
respectively, while| 1 ) (| | )) represents parallel (antiparallel) spin alignment along the direction of the
magnetic field. For the analysis we can focus on ¥ (analogous reasoning is valid for ¥;). ¥ is mostly a spin down
state, with alittle SOI induced spin admixture with excited levels. Notice thaty,,,| T ) does not contribute to the
spin admixture of ¥ because the parity symmetry in x and y prevents direct SOI coupling withyy,, | | ). Thus,
the degree of spin admixture is essentially captured by the coefficients c; and cﬁ,, which can be estimated
perturbatively as:

B (1 |<l//100‘ Hsor |V/ooo> 1)

€100 — €000}

Ci=

(10)

and

_ (1 |<l//010| Hsor ‘ll/o()o) 1)

€0101 — €000}

(11)

The energy separations Ae, = 1991 — €gooy and A&, = 9191 — g0y do not vary with ¢h,. Thus, the origin of the
anisotropy must be sought in the SOI matrix elements.

We consider first Rashba SOI, i.e. Hso; = I[QOOH (0). From (4) and parity considerations, it follows that, for
¢B = 0)
. Tloy| 4 ) (Wioo |2 | ¥ .
c;zarEz< gl >A<S e °°°>, ci=0 (12)
X
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while for ¢ = 90,

. . < Tlox| 4 ><V’010 b ll/ooo>
=0, c,=a, E, . (13)
Ae,

We see that depending on the orientation of the magnetic field the spin admixture is caused by the coupling
to a different excited state. For QDs with square base Ae, = Aey, and (w00l B, [Wo00) = Worol b, [Wooo )
Consequently, the degree of spin mixing does not change at¢p, = 0 and ¢ = 90, in agreement with the
isotropic1/T; observed in figure 2. Conversely, in rectangular QDs with stronger confinementin x, Ae, > Ae,.
Then, the admixture coefficients at o = 90 are larger than at¢p; = 0, which justifies the anisotropy observed in
figure 2.

The anisotropy of Dresselhaus SOI induced spin relaxation, shown in figure 3, can be understood in similar

terms. We split equation (3) as HY!) = H, + H,,, where H, = ﬁdpzz (pyay - pxax) and

Hy, =H.+ H,=f, [ px2 ( po:—p, ay) + py2 ( .0 — D,0; ) ] Calculations using these Hamiltonians

independently show that H, dominates for L, = 10 nm, in agreement with the usual practice of approximating
the Dresselhaus SOI by H,, in quasi-2D systems. If we perform a similar analysis for H, as the one carried out for
Rashba SOI, we find that coupling to y;,, and y; ., dominates at ¢, = 0 and ¢z = 90, respectively. This is exactly
the opposite as for the Rashba SOI case, explaining the results obtained for L, = 10 nm QDs (see figure 3(b)). As
the QD height is increased, however, H,, soon dominates over H.. Indeed, for L, = 20 nm it is already
dominant. Considering individually H, and H, it can be shown that they present opposite behaviors with ¢ . H,
produces a maximum (minimum) relaxation for ¢, = 90 (¢ = 0) and H, for ¢p; = 0 (¢ = 90). This
dependence does not change with the base shape and a stronger confinement in one direction only determines
which term, H, or H,, prevails. In the rectangular dot of figure 3(b), L < L, so H, is more important and we
observe its angular dependence. Instead, when the dot base is squared H, and H, cancel each other out at

¢ = 45and ¢, = 135, thus giving rise to the pronounced minima of1/7; observed in figure 3(a).

To summarize this section, the spin relaxation anisotropy of [001] grown GaAs QDs is determined by the
spin admixture induced by SOL. This is qualitatively different in systems where Rashba or Dresselhaus SOI terms
dominate. In the latter case, the anisotropy reflects whether H, or H,, prevails. It turns out that H, is already
dominant for L, = 20 nm (height-to-base aspect ratio of 1:4), which points out at the early relevance of cubic
Dresselhaus terms in structures where 3D starts becoming important. In this case, the use of QDs with
symmetric x—y confinement enables strong suppressions of the relaxation at certain magnetic field orientations.

3.1.1. The influence of strong magnetic fields

We study next the spin relaxation angular dependence in square QDs under strong magnetic fields. In such a
case, the orbital effects of the magnetic field are expected to play an important role, especially in tall systems. We
emphasize the need of a true 3D calculation to account for this effect, since it cannot be properly described using
2D models [14]. We calculate the relaxation rate for different values of the magnetic field up to By = 10T in QDs
withL, = L, = 80 nmand L, = 20 nm.

The impact of the magnetic field strength on the angular dependence through the Rashba SO1 is negligible
and not shown. We enclose in figure 4 the spin relaxation yielded by the Dresselhaus SOI term only. Figure 4
shows that the minima of1/7; at ¢y = 45 and ¢p; = 135 is gradually removed for strong magnetic fields. This
behavior can be understood in terms of the differential contribution of H,,, and H,, as pointed out previously.
For QDswith L, = 20 nm and By = 1T, H,,,dominates and we observe two pronounced minima (see inset in
figure 4). When By increases, H, rises up and it becomes dominant at By = 10T, this being responsible for the
suppression of the minima. It is noteworthy to mention that an increase in the height of the dot enhances the
effects of the magnetic field but also diminishes the contribution of H, to the Hamiltonian. As a consequence, in
taller QDs a balance of these two contributions will determine which term, H,, or H,, dominates and, therefore,
the angular dependence of the spin relaxation.

3.2.In-plane confinement potential orientation
In this section, we investigate the impact of the QD orientation with respect to the crystal host on the spin
relaxation. The rotation angle 6, is defined as the angle between the [001] crystal direction and the x axis of the
dot, see inset of figure 5(a) for a schematic representation. All calculations are carried out with the magnetic field
By = 1T oriented along the x axis of the QD and an axial electric field E, = 10 kV ecm™.

In figure 5(a), we plot the relaxation rate in the presence of Rashba SOI only for QDs with L, = 10 nm
(results for L, = 20 nm are identical and are omitted for clarity). We find that1/T, is not affected by changes in
the dot orientation. This result is as expected since (4) does not depend on 6.

6
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Figure 4. Spin dynamics of a square QD of L, = 20 nm as a function of ¢, for different magnetic field intensities: By = 1T (black solid
line), By = 2T (blue dashedline), By = 5T (red dash-dotted line) and Bj = 10T (green dotted line). Only the presence of Dresselhaus
SOl s considered. The inset shows the spin relaxation for By = 1T when considering the full Dresselhaus Hamiltonian

Hp = Hy, + H, (solidline), and also the partial contributions of H,, (dashed line) and H, (dotted line).

107
ot 1Y [100]
—_ L,=10nm — X
2 L,=20nm ----
N
o
-

T, (s

Figure 5. Spin relaxation rate as a function of the dot orientation 6, for square base QDs with L, = 10 nm (black solid curve) and

L, = 20 nm (blue dotted curve). Results are shown for (a) pure Rashba SOl and (b) pure Dresselhaus SOI. The in-plane magnetic field
By = 1T is oriented along the dot x axis (¢ = 0). The inset in (a) illustrates a representation of the system and the definition of the
rotation angle. The inset in (b) shows the relaxation due to H,,,and H,in the L, = 10 nm dot.

For the Dresselhaus SOI case instead, figure 5(b) shows a strong dependence of1/7; on the confinement
potential rotation. In particular, one can see some specific rotation angles, 8, = 0, 45, 90, where the spin
relaxation is reduced by 4-5 orders of magnitude as compared to others. This behavior can be understood from
the form of the Hamiltonian in (5). The Dresselhaus SOI presents a 26, dependence, with half of the terms
multiplied bysin 26, and the other half by cos 26,. Therefore, the first part of (5) cancels for 6, = 45 and the
second part for 6§, = 0 and 6§, = 90. This suppresses some of the SOI coupling channels, giving rise to slower
relaxation rates than for intermediate angles.

Itis noteworthy to mention that the dependence on 6, originates in H,,,
figure 5(b) inset. This highlights the important role of the cubic terms of the Dresselhaus SOI Hamiltonian in
GaAs QDs. As a matter of fact, the inset shows that even in the shortest QDs (L, = 10 nm), save for the vicinity of

with H, remaining isotropic, see
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15 30 45 60 75 90

Figure 6. ‘Magic’ angle as a function of the dot orientation @, fora QD with L, = 10 nm, L, = 80 nmand various L,: L, = 80 nm
(black solid line), L, = 90 nm (blue dashed line), L, = 110 nm (red dash-dotted line) and L, = 150 nm (green dotted line). The grey
dashed lines correspond to ¢, pointing along[110],[110] and[110] direction for each .

the ‘magic’ rotation angles (6, = 0, 45, 90) the main contribution to the relaxation rate does not come from H,
but from H,,.

These results are robust against changes in the QD geometry, such as height and base shape, which do not
modify the qualitative trend. In particular, the minimum at 6, = 45 remains unaltered while the minima at
6, = 0and @, = 90 are only slightly shifted in rectangular QDs.

Recent experiments by Scarlino and co-workers have also explored spin relaxation anisotropy of GaAs QDs.
[22] For their specific QD, they observed a periodicity of 180 degrees in ¢, with a ‘magic’ angle near [110]. Both
the periodicity and the relaxation suppression were explained assuming Rashba and Dresselhaus SOI terms had
roughly the same weight and the QD was strongly elongated in one direction. It was shown that the deviation
from the [110] direction could arise from the values of 8, and the Rashba to Dresselhaus SOI strength ratio,
which are unknown for their sample. Here we generalize this study by considering QDs with different in-plane
shape, from square (L=L,) to strongly elongated (L, < L, ), and include the cubic Dresselhaus terms which are
missing in their analysis. We set Rashba SOI to be as strong as the linear (H,) Dresselhaus term by setting
ar = pz2 ) / E,. The results are shown in figure 6.
min

B
magnetic field points approximately along[110] (¢ 1;‘““ ~ 45 — ;). This is consistent with the estimates of
Scarlino et al (figure 4(a) in [22]). The small deviations from[110] (dashed grey line in figure 6) are atributed to
the influence of the cubic Dresselhaus terms. As the QD elongation is reduced, the anisotropy evolves towards a

completely different limit, which is reached for the square QD, L, = 80nm. In this case, the magic angle remains
at[110]for @, = 0, 45, 90, but it rapidly deviates for any other 8,. For0 < @, < 45 it switches to[110]

(g{)l;“i“ ~ 135 — 6,), whilefor45 < 6, < 90 it switches to[110] (q,';é“i" ~ —45 — 6,). The origin of this distinct
behavior is the same discussed in figure 5(b) inset. Namely, when the x axis of the dot does not coincide with
[100], [110] or [010], Dresselhaus H,, terms take over H, ones. This breaks the balance between Rashbaand H,
Dresselhaus SOI described in [22]. Because statistically QDs are likely to be tilted from &, = 0, 45, 90, it follows
that cubic Dresselhaus terms can induce severe deviations from the spin—orbit anisotropy described in the

experiment if the QDs are not strongly elongated.

One can see that for the strongly elongated QD, L, = 150nm, the ‘magic’ angle ¢p,™" takes place when the

3.3. Effect of an additional in-plane electric field
We next explore the influence of applying an in-plane electric field on the spin relaxation anisotropy. We
consider the squared QD of section 3.1 with By = 1T and E, = 10 kV cm™!, but now we add an additional

electric field component E; = 10kV ¢m™!. Calculations are performed rotating the in-plane electric field for
some fixed magnetic field orientations.

In figures 7(a) and (b), we present the relaxation rate obtained for pure Rashba and pure Dresselhaus SOI,
respectively, at four different ¢ values. The most remarkable finding is that1/7 is increased by several orders of
magnitude in comparison with the case with only axial electric field (figures 2 and 3), although strong
suppressions show up at some specific combinations of ¢ and ¢p;. For Rashba SOI the combination is
¢ — ¢ = 90, 270 and for Dresselhaus SOl ¢, + ¢, = 0, 180. Changes in the QD geometry do not modify
significantly the qualitative results shown in figure 7. Only small displacements of the cancellation angles and the
moderation of some minima occur.

The influence of the in-plane electric field can be explained from the fact that E} breaks the parity symmetry
in the direction ¢b;. This enables the otherwise forbidden SOI coupling between the Zeeman sublevels y,, | 1 )
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Figure 7. Electron spin relaxation as a function of the in-plane electric field orientation ¢, considering (a) only Rashba SOI and (b)
only Dresselhaus SOI. The QDs studied have square base and L, = 10 nm. Calculations with the magnetic field oriented at some fixed
angles are presented: ¢, = 0 (black solid line), ¢p; = 30 (blue dashed line), ¢ = 45 (red dash-dotted line) and ¢p; = 90 (green dotted
line).

andyg,| | )in'%¥ and ¥ (recall section 3.1). Since these states are very close in energy, the ensuing spin
admixture is important, which justifies the large enhancement of1/7;. In order to understand the minima we
carry out a similar perturbative analysis to that of section 3.1 but now focusing on the coupling between the two
Wooo Sublevels. Let us consider first the Dresselhaus SOI term. Assuming H"'! ~ H, (as is the case for quasi-2D

QDsand§, = 0), the oy = 0 matrix element is:
<‘l’000< 1 |Hz ll’ooo‘ ) > Zﬂd< 1 |°'y‘ ) ><‘l’ooo

The integral of the orbital partin (14) vanishes when ¢, = 0 because of the odd parity along y, but other
orientations of the electric field break the parity symmetry in the y direction and then 1/7T] increases, as seen in
figure 7(b) (black line). Similar reasoning shows that for ¢p; = 90 the parity-induced minimum occurs at
¢ = 90. For intermediate magnetic field angles, however, the minimum no longer takes place when E;; || B.
Indeed, for ¢p; = 45, the minimum is found at ¢y, = 135 (E; LB). To explain this, it is convenient to rotate the
coordinate system 45 degrees from (x,y) into (x’, ') so that the x” axis is aligned with the direction of B. As
inferred from (5), the resulting SOl term is H,> = f,p’ (6, p. + oy py/ ) and the matrix element becomes:

<’//000< T ’/’ooo‘ | > =ﬂd< \ |°’y’| T ><‘/’ooo

This integral vanishes due to the odd parity in x when Ej is parallel to the y axis, i.e. when ¢, = 135 in the initial
coordinate frame, in agreement with figure 5(b).

The minima in the presence of Rashba SOI can be explained in similar terms, but because H®!! has
rotational symmetry, see equation (4), it does not change when rotating the coordinate system. Then, the
minima always take place for B L B.

To summarize this section, the presence of in-plane electric fields greatly enhances spin relaxation due to the
lowered orbital symmetry, but the anisotropy of both Rashba and Dresselhaus SOI makes it possible to find
relative angles between Ej and B such that the relaxation is severely reduced.

PZZ Py|‘//ooo>- (14)

45
Hz

PZ2 Py,|‘l’ooo>- (15)

3.4.[111] Grown QDs

In figure 8 we plot the spin relaxation rate for the squared QD studied in section 3.1, but now considering the dot
is grown along the [111] crystal direction. In general, faster relaxation rates are obtained for this orientation as
compared to the [001] grown QDs. Interestingly, we observe the same angular dependence for both Rashba SOI
(figure 8(a)) and Dresselhaus SOI (figure 8(b)). Both mechanisms show strong suppressions at ¢y, = 135 and

¢ = 315. However, when increasing L, Rashba and Dresselhaus SOI mechanisms show opposite behaviors and
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Figure 8. Electron spin dynamics of square QDs grown along the [111] crystallographic direction as a function of the magnetic field
orientation. Simulations considering (a) the Rashba SOI and (b) the Dresselhaus SOI are included for three QD heights: L, = 10 nmn
(black solid curve), L, = 20 nm (blue dashed curve) and L, = 30 nm (red dotted curve).

1/7T; increases and decreases, respectively. Therefore, the dot height determines which of the coupling
mechanisms dominates.

The cancellation angles of the relaxation in figure 8 can be justified noting that the canonical momenta
p. = —izd/d, + zB sin ¢y andpy = —iﬁd/d), — 2B cos ¢ have exactly the same form for ¢, = 135and
¢p = 315since L, = L,. Asaresult, the first term in (6) and several terms in (7) cancel out, yielding two sharp
minima in the scattering rate curve.

The identical anisotropy of Rashba and Dresselhaus SOI induced spin relaxation in [111] QDs revealed by
figure 8, which is a consequence of the formal equivalences between Hy''') and HHY, [35], facilitates in practice
the simultaneous quenching of both mechanisms. For magnetic fields where hyperfine interaction is negligible
and square dots, this should lead to spin lifetimes in the range of seconds. We have further checked that changes
in the QD base shape do not modify the qualitative behavior reported above, the minima being only slightly
shifted for rectangular dots under Dresselhaus SOI.

4, Conclusions

We have investigated systematically the electron spin scattering anisotropy in 3D cuboidal GaAs QDs grown
alongthe [001] and [111] directions. We have shown that the relaxation rate can be controlled by several orders
of magnitude by varying the in-plane orientation of external magnetic and electric fields.

In [001] grown QDs under an axial electric field, the spin relaxation in-plane anisotropy is strongly
dependent on the QD geometry and the nature of the dominating SOI term. For Rashba SOI, the relaxation is
isotropic or anisotropic when the base is squared and rectangular, respectively, and it is not affected by changes
in the QD height. On the other hand, for Dresselhaus SOI, the relaxation presents a different behavior depending
not only on the base shape, but also on the QD height. In fact, short and tall dots can even show contrary angular
dependence, evidencing the important role of QD 3D. In addition, we have demonstrated that the isotropic/
anisotropic behavior can be controlled by changing the magnetic field strength.

We have also shown that rotating the confinement potential in-plane with respect to the crystal structure
causes an important modulation of the spin relaxation, that is severely suppressed when the high symmetry
directions of the QD confinement match the main crystallographic axes. This modulation arises from the cubic
Dresselhaus terms, which are important even for small heights. Such terms can explain the deviation of the slow
spin relaxation direction of the magnetic field away from [110], as measured in very recent experiments [22], for
strongly elongated QDs. For less elongated structures they can even switch it to[110] or[110].
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An additional in-plane electric field component causes a strong increase in the relaxation rate, but certain
combinations of ¢; and ¢ lead to enhanced spin lifetimes. We find that these combinations are different for
Rashba, ¢y — ¢ = 90, 270, and Dresselhaus SOL ¢ + ¢ = 0, 180.

We have further studied QDs grown along the [111] direction. We have found that Rashba and Dresselhaus
SOI present the same angular dependence with ¢, with pronounced minima at certain magnetic field
orientations. This enables simultaneous suppression of Rashba and Dresselhaus SOI induced spin relaxation,
which is an advantadge as compared to more conventional [001] grown QDs.
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