
Abstract

The dynamic behaviour of short simply-supported railway bridges under convoy cir-
culations and, especially, the effect of soil structure interaction (SSI) in the maximum
expectable deck transverse response is the aim of this study. These structures due to
their usually light weight may experience excessively high acceleration levels under
resonant conditions. In order to approach this wave propagation problem, a coupled
three-dimensional Boundary Element-Finite Element model formulated in the time
domain is used to reproduce the soil and structural behaviour, respectively. As the
resonant phenomenon in this application is highly influenced by the free vibration re-
sponse of the deck, a sensitivity analysis is designed in order to first analyse how SSI
affects the free vibration response of beams under the circulation of a single moving
load in a wide range of velocities. A subset of beam bridges is defined considering
span lengths ranging from 12.5 to 25 m, and fundamental frequencies covering asso-
ciated typologies. A single soil layer is considered with shear wave velocities ranging
from 150 to 365 m/s. From the single load free vibration parametric analysis conclu-
sions are derived regarding the conditions of maximum free vibration and cancellation
of the response. These conclusions are used afterwards to justify how resonant am-
plitudes of the bridge under the circulation of railway convoys are affected by the soil
properties, leading to substantially amplified responses or to almost cancelled ones,
and numerical examples are included to show the aforementioned situations.

Keywords: railway bridges, soil-structure interaction, resonance, cancellation, mov-
ing loads, BEM-FEM coupled model.

1



1 Introduction

As modern railway transportation systems become faster and heavier, imposing more
and more demanding requirements on the infrastructures, it becomes essential to im-
prove the understanding and the capability to predict the dynamic response of bridges
under railway traffic, especially with the advent of High-Speed. In this context, the
dynamic response of beams under the circulation of moving loads has been a deeply
investigated topic during the last decades [1, 2, 3, 4, 5, 6]. Railway bridges have re-
ceived special attention in the structural dynamics context as the periodic nature of
axle loads may induce important vibration levels in the structures, particularly un-
der resonant conditions [7]. Especially critical in this regard are short-to-medium
span bridges composed by simply-supported (S-S) decks with usually low associated
masses (see Figure 1), which may experience high levels of transverse accelerations
in these situations. This problem aggravates for low structural damping levels, typical
in the aforementioned constructions [7]. Resonance in railway bridges may lead to
adverse consequences such as ballast destabilization, general degradation of the track
and a raise in the maintenance costs of the line.

Figure 1: Railway bridge in High Speed line composed by short simply supported
bays

Resonance in S-S bridges takes place when the excitation period of the axles, i.e.
the ratio between the characteristic distance, or distance causing resonance, and the
train speed, is a multiple of one of the structure’s natural periods. When this occurs,
the free vibration oscillations induced on the structure when each load abandons it
accumulate, and the transverse response of the bridge progressively increases if the
number of axles is sufficient. In short to medium span bridges with nowadays max-
imum train speeds, the characteristic distance associated with detrimental levels of
transverse accelerations due to resonance usually corresponds to the length of the pas-
sengers’ coaches. Therefore, the amplification of the transverse response of beams or
bridges at resonance depends both on the periodicity of the loads and on the amplitude
of the free vibrations left by every single load. Under ideal S-S conditions and in the
absence of damping, the amplification of the free vibrations left by the circulation of
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a single load depends on the ratio between the travelling speed and the structural fre-
quencies, as this governs the appearance of maximum free vibrations or cancellation
situations [8].

Studies on resonance and cancellation in beams under moving loads have been re-
ported in the past years. Pesterev et al. [9] predicted the travelling speeds leading to
minimum levels of free vibration in SS beams. Yang et al. [10] analysed the sup-
pression of the beam first resonance for certain span to car length ratios. Museros et
al. [8] predicted the maximum free vibration and cancellation conditions of S-S and
elastically-supported (E-S) beams under a single load, and explained on this basis the
maximum resonance and cancellation of resonance phenomena. Yang [11] analysed
the resonant and cancellation speeds of E-S beams and compared them with those of
the S-S case. He concluded that the resonant speed reduces with the flexibility of the
supports, but the cancellation velocity is not much affected. Other recent studies on
the resonance and cancellation mechanisms on simply and elastically supported beams
may be found in [12, 13, 14]. Generally speaking, the free vibration levels of beams
or bridges under moving loads, and their effect on the amplification or cancellation of
resonance have been evaluated in the past considering simple models for the bridge
structure: generally SS beams, ES beams, and SS or ES plates [15, 16], when the con-
tribution of three-dimensional deformation modes of the deck needs to be considered.
In all these studies, the soil-structure interaction (SSI) effect is neglected.

Only a few authors have investigated the dynamic response of beams or bridges
taking into account the radiation of the waves transmitted through the soil. According
to some authors in certain soil environments, an increase in the fundamental natural
period of moderately flexible structures due to SSI may have a detrimental effect on
the structural behaviour [17].

A concise review on the historical evolution of the soil-structure interaction field
may be found in [18]. For the application of railway bridge structures, which is the ob-
ject of this investigation, some authors [19, 20, 21] suggest that the resonant response
of a railway bridge could be considerably affected by the soil flexibility, leading to
a reduction of the resonant speeds and of the transverse response amplitudes at the
deck level due to the increase of damping. Ülker-Kaustell et al. [19] presented a
qualitative analysis of the dynamic SSI of a portal frame railway bridge based on dy-
namic stiffness functions. The authors studied train-bridge resonance of the bridge
model using a direct integration method. The authors concluded that the contribution
to the modal damping ratios of the coupled soil-bridge system was substantial, espe-
cially for the lower range of the soil elastic modulus, and this effect could resolve
the situation in which the designer cannot meet the requirements on deck vertical ac-
celeration according the design code. Romero et al. [20] also studied the dynamic
soil-bridge interaction in high speed railway lines. The analysis was conducted us-
ing a general and fully three-dimensional multi-body boundary element-finite element
(BEM-FEM) model formulated in the time domain. The authors concluded that SSI
affected the structure dynamic behaviour: the fundamental periods and damping ratios
of the response were higher when SSI was considered. Ju [21] developed a FE model
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including the effect of SSI to calculate railway bridge natural frequencies. The FE
model included bridge girders, piers, foundations, soil, and water. The calculated nat-
ural frequencies taking into account the fluid-structure interaction effect were always
lower than in the absence of it.

In the opinion of the authors of this contribution, there is a need to understand
how SSI effects affect the free vibration response of beams, and the maximum free
vibration and cancellation phenomena, which are the fundamental aspects governing
resonance. Moreover, this study should be carried out considering different bridge
lengths and deck typologies in order to be able to obtain general trends and conclu-
sions. The present contribution shows the main parameters that govern the SSI effects
in this regard and the fundamental trends in the evolution of the bridge resonant re-
sponse with them.

2 Formulation and approach adopted for the analysis

2.1 Approach of the investigation

The objective of the investigation is to evaluate the SSI effects on the transverse re-
sponse of beams traversed by moving loads at constant speeds. First the structure
response will be analysed under the circulation of a single load in a wide range of
velocities in order to determine the conditions for maximum response and cancella-
tion of the response during the free vibration phase (once the load has left the struc-
ture). This relates with the amplification of resonance and cancellation of resonance
that may occur when the beam is subjected to trains of equidistant loads at certain
speeds. Museros et al. [8] investigated this phenomenon solving the analytical condi-
tions for maximum free vibration response and cancellation in simply-supported and
elastically-supported beams (Figure 2) and stated that these conditions, when coin-
cide with resonant velocities, provoke very relevant resonant amplifications or almost
inexistent resonant situations.

In this study a numerical method based on a three dimensional (3D) boundary
element-finite element coupled formulation in time domain [22] is used to analyze the
importance of the free vibration amplitudes in the resonant response of beams and
bridges. The proposed model allows to study soil-structure interaction by domain de-
composition in two subdomains represented by the BEM and the FEM. Soil behaviour
is represented by the BEM, and the radiation condition is implicitly satisfied in the fun-
damental solution. This work uses the half-space Green’s functions, considering the
internal soil damping directly in the time domain formulation [23]. The structures are
modelled with the FEM. A discretization example of the coupled BEM-FEM model
used in this paper to analyse SSI effects is represented in Figure 3.

In a first approximation, a beam FEM is used to represent the deck flexural be-
haviour under moving loads, assuming therefore that the deck vertical response is
mainly governed by the contribution of longitudinal bending modes. The beam end
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Figure 2: Schematic representation of a simply supported and elastically supported
beam under travelling load

Figure 3: Discretization example of a coupled BEM-FEM for SSI analysis

sections are connected through kinematic constraints to two rigid plates representing
in a first approach and simple approximation the lower surface of the shallow founda-
tions at the abutments. These plates are coupled to the BEs simulating the interaction
with the soil. The described model is represented in 4.

The detailed geometry of the substructure has not been included in this investiga-
tion for the following reasons: (1) the main objective is to detect the fundamental pa-
rameters that affect the SSI effects on the bridge deck resonant response and evaluate
the main tendencies of these parameters; (2) an exhaustive parametric analysis is per-
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Figure 4: Schematic representation of the model under analysis

formed in what follows considering a wide range of circulating velocities, structural
and soil properties, entailing considerably high computational times; (3) the funda-
mental effects of SSI on the resonant response of bridge decks have not been analysed
before covering the proposed factors. As the investigation if focused on the super-
structure response, and not on the substructure, the authors have preferred to keep the
foundations geometry as simple as possible in order to isolate the essence of the wave
propagation problem and evaluate its influence on the bridge vibration response [24].

2.2 Mathematical model

The BEM is based on a time marching procedure to obtain the time variation of the
boundary unknowns; i.e. displacements and tractions. The k − th component for dis-
placements and tractions over the boundary are approximated from their nodal values
j at each time step m, umj

k and pmj
k , using the space interpolation functions φj(r) and

ψj(r). After interpolating the boundary variables, the integral representation of the
displacement u at a point i on the boundary becomes [25]:
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cilku
i
k(xi, t) =

n∑
m=1

Q∑
j=1

{[∫
Γj

Unm
lk ψj dΓ

]
pmj
k

−

[∫
Γj

P nm
lk dτφj dΓ

]
umj
k

} (1)

where Q is the total number of boundary nodes and Γj represents the elements to
which node j belongs. Time kernels Unm

lk and P nm
lk are respectively computed through

the fundamental solution for displacements and tractions due to a point load at xi act-
ing in the l direction. These kernels are analytically integrated by parts using constant
and linear piecewise time interpolation functions for tractions and displacements [23],
respectively. Equation (1) is written in a more compact form as:

cilku
ni
k =

n∑
m=1

Q∑
j=1

[
Gnmij

lk pmj
k − Ĥ

nmij
lk umj

k

]
(2)

Once the integral-free term cilk is included in the system matrix, the integral represen-
tation for point i at time t = n∆t becomes:

Hnnun = Gnnpn +
n−1∑
m=1

[Gnmpm −Hnmum] (3)

where Hnmij
lk collects for cilk when i = j and n = m.

The FEM equation at time step n is defined as [26]:

Mün + Cu̇n + Kun = fn (4)

where M, C y K are mass, damping, and stiffness matrices, respectively. un, u̇n y ün

represent nodal displacement, velocity, and acceleration vectors, respectively, and fn

is the load vector.
Equation 4 is solved using an implicit time integration GN22 Newmark method

[26, 27]. An equivalent dynamic stiffness matrix is defined:

Dun = fn + fn−1 (5)

Coupling of BEM and FEM (Equations 3 and 5) is carried out by imposing equi-
librium and compatibility conditions at the soil-structure interface. Both systems of
equations are assembled into a single global system, together with the equilibrium and
compatibility equations [28].

Under the assumption that plate foundations behave as rigid bodies, the BEM Equa-
tion (3) is expressed in terms of the kinematic constraint matrix L relating mid-point
plate displacement with any other point for each foundation:
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HnnLun = GnnLTpn +
n−1∑
m=1

[GnmLTpm −HnmLum] (6)

where equilibrium of forces at the interface Γ is fulfilled integrating nodal tractions
according to the element shape function N:

f =

∫
Γ

NTpN dΓ = Tp (7)

The time step ∆t for the analysis was set to properly represent the structure dynamic
behaviour and the load excitation. Both criterion defines the following constraint:

∆t = min

(
2π

ω1kω
,
Lp

vkv

)
(8)

where ω1 corresponds to the first resonant angular frequency of the structure, L is the
bridge length, and V is the load speed. Parameters kω and kv define time discretiza-
tions for the structure fundamental period and the load passage time, respectively, and
both take a value of 60 time steps.

The chosen time step determines the spatial boundary element discretization ac-
cording with the stability parameter β = cs∆t/∆l, where l is the distance between
two nodes of a boundary element, and cs is the shear wave propagation velocity in the
soil. In this work, a stability parameter equals β = 0.5 has been considered.

The finite element representation is determined by the bridge bending wavelength
discretization. Minimum wavelength is defined by the maximum frequency range
and the phase bending wave propagation velocity cB = 4

√
ω2

1EI/mb, where EI is the
bridge bending stiffness, mb is the bridge mass per unit length, and ω1 is the first mode
angular frequency. This paper considers 20 element for the minimum wavelength.

This work uses the SSIFiBo toolbox for MATLAB previously developed by Galvı́n
and Romero [22, 25, 29]. The FEM module of the toolbox does not include any pre-
processor. Instead, a gateway for commercial software allows importing directly the
structure model.

2.3 Definition of the sensitivity analysis

In order to be able to derive general conclusions applicable to different bridge lengths,
deck typologies, soil properties and circulating velocities, an extensive parametric
numerical study is designed. Beams of lengths ranging from 12.5 to 25 m in incre-
ments of length of 2.5 m are considered. For each length, three theoretical funda-
mental frequencies, covering the Eurocode 1 frequency range for dynamic simpli-
fied analysis [30] of simply-supported railway bridges are selected (see Figure 5).
In what follows f1,000, f1,100 and f1,050 stand for the Eurocode 1 fundamental fre-
quency lower limit, upper limit and mean value for each length considered. Beam
masses have been assigned in order to represent realistic deck typologies found in
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conventional and High-Speed lines structures, after the studies from [31]. In partic-
ular linear deck masses of mb = L(m) · 1000 kg/m2 are considered for each length.
Regarding the soil properties, four single layer soil types are defined with flexibilities
covering the AASHTO classification [32], in particular with s and p-wave velocities
of cs = {365, 220, 150, 80} m/s and cp = 2cs. Soil density has been set equal to
1800 kg/m3. Regarding structural damping, in a first approach the study is performed
without structural damping. No material damping is assigned to the soil either. Elimi-
nating damping permits a better comparison of cancellation conditions with the analyt-
ical solution of the elastically-supported beam. In the numerical examples presented
in section 4, Rayleigh damping is assigned to the bridge structure.

Two types of analyses are performed and presented in this section for all the bridge-
soil combinations under study: (i) identification of fundamental frequencies and (ii)
dynamic time-history analysis under the circulation of single axle load travelling at
constant speed. The circulating velocities of the load are included in the following
interval, expressed in terms of the non-dimensional speed parameter K1 associated to
the fundamental mode:

K1 =
V π

Lω1

∈ [0.1, 0.5] (9)

where ω1 is the fundamental frequency of the beam. The 0.5 limit is above the
highest speeds that can be reached nowadays with existing rolling stock and railway
infrastructures.
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Figure 5: Eurocode 1 [30] lower and upper frequency limits for simplified dynamic
analysis. Circles: reference bridges under study

3 Sensitivity analysis results

3.1 Modal identification of the bridges under study

First the fundamental natural frequencies of 72 bridges (6 lengths · 3 frequencies · 4
soil types) under study considering SSI have been identified from the response under
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impulse loading. Figure 6 shows the evolution of the frequencies with the soil flex-
ibility. In the vertical axis the fundamental frequency computed considering SSI has
been divided by that of the infinitely rigid soil (S-S case). In the plot, three lengths are
included (12.5, 17.5 and 25 m) for the sake of clarity, as intermediate lengths show a
comparable evolution.
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Figure 6: Evolution of the bridge fundamental frequencies with soil flexibility

As cs increases, and therefore the soil becomes stiffer, the fundamental frequency
of the beams tends to that of the SS case. The structures that are less affected by
the soil flexibility are those with lower natural frequency for all the lengths (f1,000

stands for the lower frequency limit in Figure 5). These beams fundamental frequency
is reduced around 20% for the most flexible soils and the longest spans. Bridges
with highest natural frequencies (f1,100, upper limit in Figure 5) are most affected by
the SSI effects, experiencing maximum reductions in the fundamental frequency that
reach 50% in the softer soils. It must be clarified that cs = 80 m/s, most flexible
soil under consideration in the modal identification, is a considerably soft soil, but it
has been included in this section in order to point out the interaction effect. These
results are consistent with the frequency evolution included in [8] for the ES beam. In
this contribution it was shown that natural frequencies were more affected as the ratio
between the supports flexibility and the structure flexural flexibility increased. As all
the beams with the same length present the same mass, lower frequencies entail more
flexible structures as well.

3.2 Maximum free vibration response under a single moving load

In this section the maximum response of the beams in the free vibration phase left
by the circulation of a single load is evaluated. In Figures 7 and 8 the maximum
transverse displacement at mid-span, non-dimensionalized by the static deflection, R,
computed in the free vibration phase (once the load has left the beam) is represented
for bridges with the lowest natural frequencies (those marked as f1,000 in Figure 5) in
terms of the circulating velocity. Figures 7a and 8a show the analytical solution for
the ES beam (Figure 2), included in [8]. In particular R1 stands for the maximum
transverse response associated to the fundamental mode of the E-S beam divided by
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the static solution; and κ is the ratio between the supports vertical flexibility and the
beam flexural flexibility (κ=0 corresponds to the S-S case). In figures 7b to 7d and 8b
to 8d the dynamic response of the BEM-FEM bridge model has been represented for
values of L = 12.5, 15 and 17.5 m and L = 20, 22.5 and 25 m, respectively. Both the
analytical ES response and the numerical one have been computed in the absence of
damping, in order to be able to visualize more clearly the evolution of the cancellation
conditions.

From the analysis of figures 7 and 8 several aspects should be pointed out: (i) when
the SSI is taken into account velocities leading to maximum free vibration response
and to cancellation sequentially take place, in the same way that occurs for the E-S
beam; (ii) as cs and cp decrease, going from stiffer to softer soils, the cancellation
non-dimensional velocities increase as in the E-S case. This is related with the alter-
ation in the beams natural frequencies only due to the soil effect. In fact cancellation
linear velocities remain unmodified with the flexibility of the soil (this phenomenon is
consistent with the works of [8]); (iii) in the plot, depending on the non-dimensional
speed interval, the maximum free vibration response may be associated to stiffer or
softer soils; (iv) even though for the SSI problem the response is obtained with the
full model, and it is not limited to the fundamental modal response as in 7a and 8a,
cancellation takes place at certain speeds and the response in free vibration practically
vanishes; (v) when the beam transverse response is represented as a nondimensional
magnitude (R) in terms of the nondimensional velocity (K1), the maximum free vi-
bration and cancellation conditions are practically not affected by the beam length.

The practical application of these results is that conclusions regarding the type of
resonant response to be expected when the same structure is subjected to the circu-
lation of a train of loads (instead of a single axle) may be drawn. In particular if a
resonant velocity is close to a cancellation speed the resonant amplitude will drasti-
cally reduce and may practically be imperceptible. On the other hand, if the resonant
velocity takes place close to a maximum free vibration condition the amplification
should be substantial. In the following section a few cases of particular bridges sub-
jected to resonance are presented to show the aforementioned situations.

11



0

0.5

1

1.5

Elastically supported beam

a)

κ = 0.0
κ = 0.1
κ = 0.2

R
1

0

0.5

1

1.5

L = 12.5 m

b)

cs = inf
cs = 365 m/s

cs = 220 m/s
cs = 150 m/s

R

0

0.5

1

1.5

L = 15 m

c)

cs = inf
cs = 365 m/s

cs = 220 m/s
cs = 150 m/s

R

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.5

1

1.5

L = 17.5 m

d)

cs = inf
cs = 365 m/s

cs = 220 m/s
cs = 150 m/s

K1

R

3rd
ca

nc
el

la
tio

n

2nd
ca

nc
el

la
tio

n

1st
ca

nc
el

la
tio

n

Figure 7: Maximum free vibration displacement response of (a) elastically-supported
beam; and (b)-(d) BEM-FEM model with L = 12.5−17.5 m and f1,000 under constant
moving force including SSI (ζb = 0, ζs = 0)
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Figure 8: Maximum free vibration displacement response of (a) elastically-supported
beam; and (b)-(d) BEM-FEM model with L = 20 − 25 m and f1,000 under constant
moving force including SSI (ζb = 0, ζs = 0)
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4 Case studies

In this section a bridge of 12.5 m span length is analysed under the circulation of trains
of constant loads in order to provide some examples of the main conclusions extracted
after the sensitivity analyses.

Two types of train models are considered: the HSLM-A model from Eurocode
1 [30], which is a train composed by equidistant pairs of loads, and a hypothetical
equidistant load train. Both models are shown in Figure 9. In Table 1 the particular
parameters that define the four trains that are used in the following examples are in-
cluded, where N stand for the number of passenger coaches, d for the characteristic
distance of the train (or distance causing resonance) and P for the load value per axle.

Figure 9: HSLM-A and equidistant train load schemes

Train name Type name N a (m) b (m) d (m) P (kN)
A5 HSLM-A 14 3.525 2 22 170
A7 HSLM-A 13 3.525 3 24 190

A30 Equidistant 49 — — 16.675 170
A31 Equidistant 49 — — 16.200 170

Table 1: Train load models definition

4.1 Cancellation of resonance considering SSI

In the following example the 12.5 m length bridge with the lowest natural frequency,
f1,000, is considered in the S-S case (neglecting SSI effects) and including SSI with
cs = 220 m/s. In both cases a second resonance of the bridge fundamental mode is
forced in two scenarios: (a) the resonant velocity coincides with a cancellation con-
dition; and (b) the second resonance does not coincide with a cancellation condition.
A suitable train is selected to force these two situations. The condition for a second
resonance to be cancelled occurs when:
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V2nd,res =
df1

2
=
Ki

1,cancLω1

π
→ d = 4K1,cancL (10)

where i is the cancellation order. The first cancellation for the second resonance
of this particular structure takes place for when cs = 220 m/s and for infinitely rigid
soil (see Figure 7b). For these values the characteristic distances of the trains leading
to cancellation of the beam second resonance are computed, along with the resonant
velocity (same in both cases due to the alteration in both the cancellation condition
and the bridge natural frequency considering the soil effect). In Table 2 these values
are included.

cs (m/s) f1 (Hz) d (m)canc R2 Train V2nd res (km/h) K1 Canc. R2
220 6.3328 16.675 A30 190.1 0.3335 Yes
inf 6.5247 16.200 A31 190.1 0.3240 Yes
220 6.3328 22.000 HSLM-A5 250.78 0.44 No
inf 6.5247 22.000 HSLM-A5 258.37 0.44 No

Table 2: Cancellation of second resonance of 12.5 m f1,000 case for cs = inf and
cs = 220 m/s

In Figure 10 the maximum acceleration at mid-span is represented in terms of the
quotient V/d for circulating velocities in the interval 144 − 360 km/h. Figure 10
shows that the cancellation of the second resonance indeed takes place for this bridge
when the SSI effects are included, in the same way that it happens for rigid boundary
conditions.

In the same Figure 10, the response of the bridge has been obtained for a second
resonance caused by a different train such that the resonant velocity is not close to a
cancellation condition and, therefore should not be cancelled. That is the case of the
HSLM-A5 train with characteristic distance d = 22 m. This train excites a second res-
onance of the bridge fundamental mode when travelling close to 70 m/s (252 km/h)
(see Table 2). This corresponds with a non-dimensional velocity of K1 = 0.44 which
is far from the first cancellation situation (as it can be observed in Figure 7b). More-
over, the resonant amplitude reached in the absence of soil is considerably higher than
when SSI is included. As the soil has not been assigned any damping this should
be related with (i) the radiation capacity of the soil and (ii) the higher level of free
vibrations associated to the SS model for a K1 = 0.44 value.

In Figure 11 the acceleration time history at the bridge mid-span under the HSLM-
A5 circulating at 253.44 km/h train has been represented for infinitely rigid soil con-
ditions and including SSI for the particular soil with cs = 220 m/s. From the figure
it can be detected how the bridge experiences two cycles of oscillation between the
passage of two pair of axles leading to a progressive increase of the resonant response.
When SSI is included in the model resonance still takes place reaching lower ampli-
tudes.
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Figure 11: Acceleration time-history at beam mid-span section for HSLM-A5 at
253.44 km/h without SSI case and including SSI for cs = 220 m/s (L = 12.5 m
and f1,000). Second resonance of bridge fundamental mode

In Figure 12 the acceleration time history at the bridge mid-span under the equidis-
tant trains A30 and A31 circulating at 190 km/h has been represented again for in-
finitely rigid soil conditions and including SSI. This velocity corresponds to the ve-
locity for cancellation of this second resonance and that explains the considerably low
levels of vibration experienced by the structure.
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4.2 Influence of SSI on the bridge maximum response

Finally the effect of different soil properties is shown on the resonant amplitude of
the bridge. In Figure 13 the maximum acceleration at mid-span is represented vs. the
ratio V/d for the same bridge under study (L = 12.5 m and f1,000) subjected to the
circulation of the HSLM-A7 train with characteristic distance d = 24 m. This train
excites on the structure a second resonance when travelling at 282 km/h (condition
for second resonance in the absence of SSI). As the flexibility of the soil increases,
the critical velocity slightly reduces along with the structure fundamental frequency.
This velocity corresponds to a value of K1 ≈ 0.48, associated with considerably high
levels of free vibration. From Figure 7b it should be expected that the model leading to
the maximum resonant response would be the one without SSI, and that the maximum
acceleration response would reduce with the soil flexibility. Figure 13 shows that the
bridge response aligns with this prediction and the resonant amplitude monotonically
reduces with the soil flexibility.
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Figure 13: amax vs. V/d at beam mid-span section for case L = 12.5 m f1,000. Second
resonant amplitude for different soil conditions
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5 Conclusions

In the present contribution, the dynamic response of beams travelled by moving loads
is analyzed taking into account soil-structure interaction effects using a 3D BEM-
FEM coupled numerical model integrated in the time domain. The main practical ap-
plication of the study is the analysis of the transverse vibrations of simply-supported
railway bridges considering short to medium span lengths. In a first approach, the fun-
damental frequencies of all the bridges under study are identified from the response
under impulse loading. Secondly, the maximum response of the beams is obtained in
the free vibration phase right after a single travelling load has crossed the structure.
A wide range of circulating velocities is defined and envelopes of maximum response
are obtained and analysed. From the preliminary results it is concluded that the funda-
mental frequency of the structures tends to the S-S one as the soil stiffness increases.
The structures that are most affected by the soil flexibility are those with highest nat-
ural frequency for all the lengths. These results are consistent with the frequency
evolution included in [8] for the elastically supported beam. Regarding the analysis of
maximum free vibration under the circulation of single loads, it is concluded that:

• When the SSI is taken into account velocities leading to maximum free vibration
response and to cancellation sequentially take place, in the same way that occurs
for the E-S beam analytical case.

• As cs and cp decrease, going from stiffer to softer soils, the cancellation non-
dimensional velocities increase as in the E-S case. This is related with the al-
teration in the beams natural frequencies due to the soil effect, and cancellation
linear velocities remain unmodified with the flexibility of the soil.

• Depending on the non-dimensional speed interval, the maximum free vibration
response may be associated to stiffer or softer soils.

• Cancellation takes place at certain speeds and the response in free vibration
practically vanishes.

• When the beam transverse response is represented as a nondimensional magni-
tude (R) in terms of the nondimensional velocity (K1), the maximum free vibra-
tion and cancellation conditions are practically unaffected by the beam length.

Finally the response of the bridges under study is evaluated under trains of several
moving loads exciting resonant situations of the structure fundamental frequency.
Through a few case studies it is shown that when resonant velocities take place close
to cancellation conditions, the structural response drastically reduces and the resonant
peak responses become almost imperceptible. In the same way, the amplitude of the
structure at resonance varies with the soil properties following the trends observed in
the free vibration analysis.
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