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Abstract—Nowadays, when the results of research in the field
of robotics are presented to the scientific community the same
question is asked repeatedly: are the results really reproducible?
Regarding benchmarking issues, some technological areas, where
complex mechatronic devices such as robots have a central
role are, in general, very far from other research areas like
physics or chemistry, to name but a few, where reproducibility
is always mandatory. Leaving aside mechatronic complexities,
the comparison between two different algorithms in the same
conditions is influenced by the experimental validation scenario.
In underwater environments, the difficulties for benchmarking
characterization increase substantially. This is especially true
when the testbed is the sea where uncertainty is really high. It is
the aim of this work to present a software tool which enables a
comparison between two different algorithms to be made when
these algorithms are being used to solve the same problem in
water tank conditions. This is a preliminary stage before the
final validation on the seabed. The evaluated algorithms fall into
the 3D image reconstruction context, as a prior step to their
autonomous manipulation. Performance results are presented for
both simulation and real water tank conditions.

Index Terms—benchmarking; underwater interventions; open
source simulator; 3D reconstruction.

I. INTRODUCTION

ONCERNING benchmarking in robotics, a lot of effort

has been made over the last few years. For instance, the
EURON (EURopean RObotics research Network) has been
very active in this context [1], and has recognized as a key
area, the interaction of a robotic manipulation system with its
environment. Indeed some recent European projects, like FP7-
BRICS (Best Practice in Robotics), significantly contributed
to this specific subject [2], promoting the interoperability of
hardware and software components and building a software
repository of best practice robotics algorithms [3]. Moreover,
following previous research in this field [4], it is clear that:
“In the domain of robotics research, it is extremely difficult
not only to compare results from different approaches, but
also to assess the quality of the research. This is especially
true if one wishes to evaluate the performance of intelligent
robot systems interacting with the real world.” There are many
definitions for the term “benchmark”, but we can use a very
simple one stated in the work mentioned above, that is defined
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as a standardized problem or test that serves as a basis for
evaluation or comparison.

It is the aim of this work to present a benchmarking tool,
in the underwater intervention context, so that a suitable com-
parison between different algorithms but with the same goals
can be made, in the same context and with the same robotic
platform. For a better understanding, a pair of algorithms will
be compared, highlighting the main facilities available through
this tool. Moreover, the same algorithms will be tested and
compared in simulation and in real water tank conditions.

The rest of this article is organized as follows: Section II
introduces the need for benchmarking in the context of un-
derwater intervention systems; Section III makes a review of
related benchmarking suites and toolkits; Section IV describes
the UWSim (UnderWater SIMulator) simulation tool and its
benchmarking capabilities; Section V explains both the bench-
marking module for UWSim and the physical benchmarking
platform used for the experiments; Section VI outlines the
experiments specification; Section VII analyses the results, and
finally, conclusions and further work are given in Section VIII.

II. BENCHMARKING FOR UNDERWATER
INTERVENTION SYSTEMS

The use of underwater robots is becoming evermore
widespread because technical advances make them increas-
ingly useful. Some examples can be found in the oil and gas in-
dustry (e.g. operating submerged infraestructures), search and
recovery missions (e.g. recovering a crashed airplane black-
box), deep water archeology or scientific missions. Usually, the
robots used in these missions are Remotely Operated Vehicles
(ROV), which are costly both in financial and logistic terms.
In addition, these robots use a master/slave architecture and
pats all the responsibility on the pilot, who in turn suffers
from cognitive fatigue and stress. The evolution of this kind of
robot to the new Intervention Autonomous Underwater Vehicle
(I-AUV), removes the human from the control loop (and
therefore, the problems related with the pilot) and increases the
intervention capabilities being able to increase robot precision
and intervention time by avoiding huge delays caused by the
difficulties in communication.

Experimentation with underwater robots is normally very
difficult due to the wide range of resources required. For
instance, a water tank deep enough for the systems to be
tested, is normally needed and this implies significant space
and maintenance costs. Another possibility is the access to
open environments such as lakes or the sea, but this normally
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involves high costs and requires special logistics. In addition,
the nature of the underwater environment makes it very
difficult for researchers (operating on the surface) to observe
the evolution of the running system. As a consequence, ex-
perimental validation of these systems is very laborious. In
order to facilitate the development of underwater robots, it is
of utmost importance to develop suitable simulators that make
it possible (i) to develop and benchmark the systems before
they are deployed, and (ii) supervise a real underwater task
where the developers do not have a direct view of the system.

Usually, experimental validation in underwater intervention
system takes place in the sea where there are many changing
parameters such as underwater currents, bad visibility... that
can be hardly modelled and replicated. These uncertainties are
the main issue when comparing and replicating results from
different studies. The use of an automated comparison system
in simulation and controlled environments helps to establish
an objective benchmarking methodology.

There are previous simulators for underwater applications,
which mainly have remained obsolete or are being used for
very specific purposes. In [5] and [6], a review of virtual
simulators for autonomous underwater vehicles (AUVs) can be
found. Nevertheless, the majority of the reviewed simulators
have not been designed as open source, which makes it difficult
to improve and enhance the capabilities of the simulator. Other
simulators, such as ROVSim, VMAX or DeepWorks, have
been designed to train ROV pilots, which is not the objective
of our research.

Underwater manipulation using I-AUV allows the design
of new applications such as the one studied at the FP7
TRIDENT project [7], where a black-box from the seabed was
autonomously recovered. To accomplish this, the use of the
UWSim Underwater Simulator [8], in continuous development
was crucial, for testing, integration and also benchmarking.

III. REVIEW OF RELATED BENCHMARKING
SUITES AND TOOLKITS

In recent years, several benchmarking suites have been
developed in the field of robotics. Many of them focus purely
on a specific sub-field of robotic research but, to the best of the
authors’ knowledge, none of them is focused on autonomous
underwater vehicles. In the grasping field, several suites have
been presented such as the OpenGrasp Benchmarking suite [9].
This suite is a software environment for comparative evalua-
tion of grasping and dexterous manipulation using the Open-
Grasp toolkit. It also provides a web-service that administers
available benchmarks scenarios, models and benchmarking
scores.

Another interesting benchmarking suite in the field of grasp-
ing is VisGrab [10] (a benchmark for Vision-Based Grasping),
which provides tools to evaluate vision-based grasp-generation
methods.

Motion planners, trajectory tracking and path planning have
been very active research fields around benchmark metrics and
benchmarking suites. In [11], authors describe a generic infras-
tructure for benchmarking motion planners. This infrastructure
makes it possible to compare different planners with a set of

measures. The key point of the contribution is the easy to
compare design due to ROS (Robot Operating System) [12]
Movelt! integration.

Rawseeds [13], is a project focused precisely on benchmark-
ing in robotics, although its global nature has been widely used
for SLAM, localization, and mapping. The Rawseeds project
aim is to build benchmarking tools for robotic systems through
the publication of a comprehensive, high-quality benchmark-
ing toolkit composed of datasets with associated ground truth,
benchmark problems based on datasets and benchmark solu-
tions for the problems. Unfortunately this project lacks of an
automated comparison system.

Finally, there have been proposals of web-based benchmark-
ing suites such as [14] where authors propose an interesting
test-bed internet-based architecture for benchmarking of visual
servoing techniques allowing users to upload their algorithms.

IV. UWSIM: A 3D SIMULATION TOOL FOR
BENCHMARKING AND HRI

UWSim' is an open source software tool for visualization
and simulation of underwater robotic missions that offers
benchmarking capabilities through a specific module. The
software is able to visualize underwater virtual scenarios that
can be configured using standard modeling software and can
be connected to external control programs by using ROS
interfaces. UWSim is currently used in different ongoing
projects funded by European Commission (MORPH? and
PANDORA?) in order to perform HIL (Hardware in the Loop)
experiments and to reproduce and supervise real missions from
the captured logs.

The main objectives in the simulator development are: it
can be easy to be integrated with existing architectures; to be
general, modular and easily extendible; support for underwater
manipulators; and as realistic as possible. From a technical
point of view, the simulator has been implemented in C++ and
makes use of the OpenSceneGraph (OSG), ROS and osgOcean
libraries.

The UWSim is divided into different modules (see Fig-
ure 1): there is a Core module in charge of loading the main
scene and its simulated robots; an Interfaces module that
provides communication with external architectures through
ROS; a Dynamics module that implements underwater vehicle
dynamics. This module has been designed as a generic dy-
namics module for underwater vehicles but users can replace
it with a more accurate one, if needed using ROS interfaces
or even use the real process as input; a Physics module that
manages the contacts between objects in the scene; osgOcean,
in charge of rendering the ocean surface and special effects;
the GUI module, that provides support for visualization and
windowing toolkits; and the UIAL and benchmarking modules
that will be explained later.

! Available online: http://www.irs.uji.es/uwsim

2FP7-MORPH, “Marine Robotic System of Self-Organizing, Logically
Linked Physical Nodes (MORPH)” Available: http://morph-project.eu

3FP7-PANDORA, “Persistent Autonomy through learNing, aDapta-
tion, Observation and Re-plAnning (PANDORA)” Available: http://
persistentautonomy.com
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The scene is defined with a XML (eXtensible Markup
Language) file, which is loaded in a scene graph by OSG,
getting access to the nodes easily (i.e. visualization effects,
virtual cameras, etc.). UWSim includes, by default, some sce-
narios (the swimming pool facilities at CIRS* and a shipwreck
scenario), an I-AUV (the Girona 500 robot) and two different
underwater robotic arms (Light-weight ARMSE [15] and a
Mitsubishi PA10 Arm).

As mentioned before, robots and scenarios can be created
with any modeling software (e.g. Blender). Nowadays, some
sensors (e.g. simulated position, lasers, measure distances to
obstacles, etc.) and virtual cameras can be attached to the
robots. Dynamics using a state-space model and physics using
Bullet engine are supported. Other interesting features are
the widgets, which are small windows that can be placed
inside the scene to show specific data to the user and the
multi-resolution terrain compatibility, allowing the user to
load complex meshes with multi-resolution textures generated
externally from bathymetry and imagery.

The simulator is in continuous development. Some of the
recently added features consist of: new ROS versions and OSG
libraries compatibility; multibeam sensor simulation; texture
projector to simulate structured light; ROS TF publishing;
force sensor integration with the physics engine; Dantzig
physics solver to improve robotics and manipulation capabil-
ities; and visualization improvements (trajectory trails, point
clouds, etc).

The work in progress in the UIAL module can be divided
into different aspects: improving the information to be shown
to the user, reducing the data depending on the mission and
context; integration with an immersive system, where the user
would get the feeling of being inside the robot; adding a
natural gesture control interface to control robot, improving
traditional ways (e.g. leapmotion); and implementing an ab-
stract layer, which will manage all these improvements and
will make it possible to integrate every component within most
of the current architecture.

V. BENCHMARKING PLATFORM DESCRIPTION
A. The benchmarking module for UWSim

Recently, a benchmarking module for UWSim has been de-
veloped [16]. Like UWSim, this module uses ROS to interact
with other external software. The ROS interface permits users
to evaluate an external program which can communicate both
with the simulator (which can send commands to perform a
task) and with the benchmarking module (which can send the
results or data needed for evaluation). Detailed information
on how to configure and run a benchmark in UWSim can be
found online’.

For the development of the module, two important ob-
jectives were taken into account. The first one was to be
transparent to the user, in other words, that it does not require
major modifications to the algorithm to be evaluated. The other

4Underwater Robotics Research Center, Universitat de Girona, Spain
5The UWSim Benchmarks Workspace. Available online: http:/sites.google.
com/a/uji.es/uwsim-benchmarks.
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Fig. 1. UWSim modules diagram and its interconnections: Core, Interfaces,
Physics, Dynamics, osgOcean, Graphical User Interface (GUI), User Interface
Abstraction Layer (UIAL) and Benchmarks.
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Fig. 2. Benchmarking module flow diagram: a benchmark configuration is
loaded into the benchmark module, and a scene is loaded into the simulator.
Then, the benchmark module produces some results that can be logged for
posterior analysis.

objective of the module was that it must be adaptable to all
kinds of tasks in the underwater robotics field.

Benchmarks are defined in XML files. Each file will define
which measures are going to be used and how they will be
evaluated. This allows the creation of standard benchmarks
defined in a document to evaluate different aspects of underwa-
ter robotic algorithms, being able to compare algorithms from
different origins. Each of these benchmarks will be associated
with one or more UWSim scene configuration files, being
the results of the benchmark dependent on the predefined
scene. Consequently creating a new benchmark experiment is
as simple as editing a configuration file. The whole process is
depicted in Figure 2.

The benchmark configuration options are basically made
up from three kinds of entities: measures, triggers and scene
updaters. These entities have been created in a modular way,
thus users can extend them and create new functionality easily.
Measures can be chosen from a wide variety of already imple-
mented measures such as position error, elapsed time, distance
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travelled, path following error, reconstruction 3D, etc. Some
of these measures are split in different parts that will be shown
in the final results, for instance position error is formed by X
error Y error and Z error. Setting this parameters will make
the benchmark to measure each of the configured option using
the ground truth from UWSim or external sources via ROS
depending on the availability and configuration options. In the
case of positioning errors, ground truth is taken from UWSim
and path following requires a path to follow configured via
ROS input.

These measures are activated or deactivated depending on
events configured through triggers. These events allow users
to measure results in an easier way, for instance start (or stop)
measuring when a vehicle reaches a position, a message is
received in ROS or the vehicle moves. A case where this
might be used is to measure collisions only when the vehicle
is navigating and stop when the manipulation starts, when the
hand should collide with the manipulated object but it is not
a bad result.

Finally, scene updaters modify the simulated environment
and restart the measurement being able to start a series of
experiments. Possible scene updaters are underwater current
updater, ambient light updater, camera noise updater, etc. This
feature is useful to create automated tests that can check the
influence of environmental parameters helping to create more
robust algorithms.

Once the benchmarking has finished, caused by a stop
trigger event, and all the scene configurations in the scene
updater have been tested, results are written into output files.
These output files are disaggregated for each scene configu-
ration containing results for each measure and global results
that can combine multiple measure results. For instance, a
travel efficiency benchmark could use two measures: distance
travelled and battery consumption and a global result of
distance/battery. Additionally, each measure can be con-
figured to log its result at regular intervals in order to see
its evolution over time and not only the final result for each
scene configuration. As a result, for each logged measure, the
benchmark will generate a different output file containing the
variation among the measured results.

B. The physical benchmarking system

In order to be able to evaluate the compared algorithms and
validate the simulated results in a real platform, a physical
benchmarking platform has been used (see Figure 3). It
consists of the following elements, taking into account the
main elements in the virtual scene used in UWSim:

« Water tank: dimensions 2.0 m (width) x 2.0 m (Iength) x
1.5 m (height).

e 4 D.O.F. ECA-CSIP Light-weight ARM 5E manipulator
[15].

o Floating structure (underwater vehicle prototype) to hold
the arm. In this work the floating structure has been fixed
to the water tank.

+ Bowtech DIVECAM-550C-AL COLOUR camera.

o Tritech SeaStripe Laser Line Projector (MKIII).

o Videre stereo camera.

Fig. 3. Physical benchmarking system: water tank, Light-weight ARMSE
manipulator, stereo camera, laser stripe projector and black-box mockup.

Fig. 4. Camera image with manually initialized corners and estimated box
pose (left). Ground truth box pose with the point cloud obtained with the
stereo camera (right).

o Black-box mockup size 140 mm (width) x 300 mm
(length) x 160 mm (height).

In order to obtain the object pose ground truth, a pose
estimation method has been used to compute the relative
position of the target object (black-box mock-up) with respect
to the camera, taking into account that the arm is firmly fixed
to the water tank. As dimensions of the object are well known,
the box corners can be used to estimate its pose. In the case
of using a different object, easily recognizable points could
be used instead of corners. While it is possible to detect them
automatically, it has been judged that the manual initialization
by the user is less error prone and best suited to get an accurate
ground truth for the benchmarking system.

First of all, the user clicks on the visible corners on the
box (in this approach six corners were visible). Then, after
matching the obtained 3D points with the real object using
the camera parameters, the object pose estimation is obtained
using the ViSP library. In this case the frame is placed in
the center of the top face of the box (see Figure 4). As there
are several methods that can be used to obtain the estimation,
all of them are used to estimate the pose and the one that
minimizes the estimation error is selected.

This ground truth, however, is not perfect as small errors
appear because of the limited camera resolution (actual pixel
size), user accuracy and camera calibration. Nevertheless, the
resulting error is small enough to allow the object position to
be considered as a suitable ground truth so that the metrics
described in this paper can be used. In fact, the camera
calibration accuracy affects rectification and undistortion in
these cameras, thus obviously introducing some shared error
in this ground truth position and at the same time in the
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Fig. 5. Stereo (left) and laser stripe (right) reconstructions comparison over-
layed on ground truth on simulated environment. Black points are filtered as
ground, blue are considered outliers and green points represent reconstructed
object

reconstruction processes.

VI. EXPERIMENTS SPECIFICATION

To test the benchmarking platform, two reconstruction al-
gorithms are presented: stereo reconstruction using a stereo
camera (see Figure 5 (left)) and laser stripe segmentation (see
Figure 5 (right)). These approaches are used to obtain a point
cloud from the scene, as a consequence, the object can then
be processed. Both algorithms are exactly the same whether
used in a simulation or in a real setup.

A. Stereo Reconstruction description

The aim of the stereo reconstruction is to obtain 3D recon-
struction in the form of a dense point cloud, where each image
pixel is used in order to obtain a 3D point instead of computing
them for certain features only (sparse reconstruction). A good
reconstruction can be obtained only if the camera parameters
are properly estimated. The parameters are computed with
camera calibration tools and a calibration checkerboard.

In runtime, images from left and right side are undistorted
and rectified using the aforementioned camera parameters, so
that their scanlines align for fast stereo processing. Once the
images are aligned, a local dense stereo correspondence algo-
rithm can be applied. In this case, OpenCV block matching
algorithm [17] implemented in a ROS package is fast enough
for most robotic applications, while only needing previous
parameter tuning. With the chosen algorithm, both disparity
images and dense point clouds can be obtained. This method
estimates the corresponding pixel on the right image for every
pixel on the left image, thus comparing each pixel to a block
on the other image. The displacement between the two pixel
is used to determine the 3D point coordinates based on the
camera geometry computed in the calibration step.

B. Laser Reconstruction description

Before the system (see Figure 3) is able to perform a
reconstruction, it is necessary to calibrate it. So, with the aid
of a marker placed in the gripper of the arm, the transfor-
mation between the camera and the end-effector (°M,), is
calculated [18]. Then, using the Direct Kinematics of the arm,
the relationship between the base of the arm and the end-
effector is obtained ("M,). Thus, using these two matrixes the
transformation between the base of the arm and the camera is
easy to calculate: “M, = °M,, * ("M,)~!

The next parameter that has to be obtained is the relationship
between the laser and the end-effector (*M,). The camera
installed in the vehicle is a stereo camera so, even though
just one lens is used for the laser reconstruction, for this
step of the calibration the two lenses are used. Using the
stereo camera, the 3D position of the pixels projected by the
laser are obtained by triangulation. With those 3D points, The
RANSAC algorithm is used to determine the planar parameters
of the laser plane [19] (°M;). These parameters are referenced
to the stereo camera using the previously obtained transfor-
mation between the camera and the end-effector (“M,), it
is possible to reference the plane of the laser respect to it:
M, = (°“M;)~! x M,

Concerning the reconstruction, the floor is scanned by
moving the elbow joint of the manipulator at a constant
velocity between two predefined joint positions. At the same
time, the camera captures images of the scene with the laser
projected on it. For each image, a laser peak detector algorithm
is used to segment the laser stripe from the rest of the image.
This algorithm discards the pixels that are out of a predefined
threshold of huge, saturation and value. Then, thanks to the
laser pattern is a straight line and the camera is placed parallel
to that line, there is only a point illuminated by the centroid of
the laser at each column of the image. As a consequence, for
each column of the image, the pixel with the highest intensity
is selected and the center of masses algorithm is applied to this
pixel and the five pixels above and below it to obtain, with
subpixel accuracy, the position illuminated by the centroid of
the laser.

Finally, the segmented laser stripe is triangulated to obtain
its 3D position [20]. In order to triangulate each selected pixel,
it is necessary to know the relationship between the camera
and the laser (‘M) when the image is captured. So, when each
image is taken, the values of the joints in this moment are also
read. Using these values and the Direct Kinematics of the arm,
the transformation between the end-effector and the base of
the arm (°M.) is calculated. Finally, using this relation and
the ones obtained in the calibration, the desired transformation
can be easily calculated: “M; = “M}, % bM, (lMe)*1

C. Benchmarking metrics

These methods are compared in a simulated and a real
environment, using the proposed benchmarking architecture,
and taking into account 4 metrics measured using a high
fidelity model of the object to be reconstructed as ground truth.
Benchmarking module takes this object model as ground truth
and a configuration file to get the position of the object with
which the results can then be calculated. These four metrics
have been introduced in [21], a work about reconstruction
metrics, as quality measures of 3D models in order to find:

e Mean error: Average distance from every 3D reconstruc-
tion inlier point to the nearest point in the object surface.

o Standard deviation: Standard deviation for the previous
error. A high value in this deviation means misalignment
in the reconstruction, due to bad calibration.

o Coverage: Surface percentage that is nearer than a pre-
cision threshold to a 3D reconstruction point. It mea-
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sures the percentage of the target that is correctly re-
constructed. The threshold should be chosen depending
on the experimental setup. It is not an inlier measure,
instead of measuring the percentage of points near the
target measures the percentage of the target that has a
reconstructed point nearer than a threshold. For instance
a perfect reconstruction of 3 faces of a box would return
50% instead of 100% that would get an inlier metric.

o Outliers: The percentage of the reconstruction that it is
further than a threshold from the target.

In order to measure the object reconstruction only, recon-
struction points that are part of the ground, such as the object
that is lying on it, and outliers are filtered and do not count
for the previous described measures.

Besides mathematical results, in this case, the benchmarking
module is able to overlay the 3D reconstructed point cloud on
the simulated 3D scene to get a visual result of the reconstruc-
tion using UWSim as visualization engine. Furthermore, 3D
points are colored to show outliers, filtered ground points and
object points. This is of great value not only to show results
but to debug reconstruction algorithms.s

VII. RESULTS

The following subsections describe and analyze the results
of the benchmarking process. The evaluation of the proposed
algorithms has been performed in both, simulation and real
environments, using the aforementioned measures. This results
are easily replicable because the software used, including
simulator, benchmarking platform and algorithms are open
source. Furthermore metrics, the ground truth acquisition and
experimental setup have been described with enough details to
allow other studies to be compared with the following results.

A. Simulated results

In the simulation experimentation, benchmarking capabili-
ties have been exploited to test both reconstruction techniques
under different conditions of light and noise. These conditions
try to simulate the complex and adverse conditions in the
underwater environment. Theoretically, a laser should not be
affected by low illumination conditions as it produces its own
light, but it may be more difficult to detect on brighter scenes.
The presence of noise should cause a poorer performance on
both methods.

The algorithms have been tested in conditions where the
amount of light varies, ranging from O to 1.0 ratios where
0 means total darkness and 1.0 is the correct illumination
(default values in UWSim), as can be seen on Figure 6.
Besides that, gaussian noise has been added to the camera
output from 0.00% standard deviation to 0.10% in an additive
manner on RGB channels through the UWSim configuration.
Noise effect can be appreciated on Figure 7.

Coverage results for laser reconstruction and stereo vision
can be seen on Figure 8. As expected, stereo vision reconstruc-
tion needs some light to achieve a good reconstruction while
laser is nearly immune to light variation and even decreases its
performance in conditions where the light is bright. Regarding
noise, stereo vision is again more sensitive to noise, especially

Fig. 6. From left to right, top to bottom increasing light conditions on virtual
camera.

Fig. 7. From left to right, top to bottom increasing noise conditions on virtual
camera.

in lower visibility conditions, and laser shows no noticeable
differences between different noises on coverage. In absolute
terms, the laser is able to reconstruct 50% of the object in
almost every situation and stereo vision reconstructs 40% of
the object in good light conditions. So it can be concluded
that laser is clearly better for the tested environment.

About the mean error and standard deviation, both algo-
rithms show similar results. In the case of mean error, due to
the similar setup, both algorithms achieve 0.004 meters, which
is a good value given the experimental setup. As the alignment
is perfect on simulation, the standard deviation is negligible.

Finally, the outliers results are depicted on Figure 9 for
both, the laser and stereo vision cases. As results show, stereo
vision generates more outliers in the absence of light, while the
laser reconstruction produces higher number of outliers in the
presence of light. In both cases higher gaussian noise means a
higher number of outliers. In the case of stereo vision, noise
and the absence of light makes it more difficult to match the
pixels on both cameras, and a large number of outliers appear.
On the other hand, in strong light conditions it is more difficult
to find the laser light on the camera, and mistaken detections
cause a high number of outliers. It is also remarkable that
there is a non-negligible number of outliers in the stereo vision
results for 0.00% standard deviation noise. These outliers are
caused by small floating particles simulated in UWSim, which
are correctly detected by the system although they are not part
of the object. The 3D stereo reconstruction is not able to find
these outliers when the noise is higher and its impact decreases
as more parts of the object are correctly reconstructed.
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Laser reconstruction coverage % on varying light conditions.
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Fig. 8. Coverage results on varying light conditions for different gaussian noise on camera for Laser (left) and Stereo camera (right).

Laser reconstruction outliers % on varying light conditions.
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B. Real results

In the experiment conducted under real conditions, both
systems have been tested under three different light conditions
shown on Figure 11, in order to replicate the simulation
results. As the illumination of the environment is a key
characteristic in this experiment, a lux meter was used to
assure the replicability of the experiment. The lux meter was
placed in a flat surface as near as possible to the black box.
The values obtained for the testing scenarios were 12, 147 and
207 lumens.

The system has been calibrated in such a way so that the
benchmarking module for UWSim can be used to measure
real results in the same way as it is used to measure simulated
results. In order to do this, the input data must be configured
to be taken from the real world instead of a virtual scene and
use the calibration method mentioned above in order to acquire
the ground truth.

The 3D point clouds reconstructed are then evaluated by the
benchmarking platform as can be seen in Figure 12, where real
point clouds are displayed on UWSim while being processed.
In the images, black dots are filtered as ground points, green
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Fig. 11. From left to right: low, medium and high light conditions. From top
to bottom: external view and camera view.

Fig. 12. From left to right: low, medium and high light conditions. From top
to bottom: real laser point cloud reconstruction and real stereo point cloud
reconstruction overlayed on UWSim.

points are considered object points and blue points are labeled
as outliers. As happened in simulation, laser reconstruction
works better in low light environments while stereo needs
some light to work properly.

A further analysis of the visual results shows that although
laser reconstructions looks better, there is a misalignment on
the pointcloud. 3D laser reconstructions are slightly rotated
with respect to the ground truth target due to small errors
on camera to laser projector calibration. In the case of stereo
reconstruction the ground reconstruction was very poor due to
the absence of texture on it.

Results for coverage are depicted on Figure 10 (left). Laser
results are slightly worse than simulated ones. In this case,
laser achieves around 32%-38% while in simulation it reached
50%. Although laser works better in dark situations, it is
highly resistant to light changes. On the other hand, stereo
reconstruction is completely dependent on light conditions,
achieving a 38% of coverage in good light environments.
These results support the ones obtained in simulation where
both algorithms behave in a similar way.

Regarding mean errors, laser and stereo have similar mean
errors, around 0.008 meters. This result is much greater than in
simulation due to the added ground truth estimation error. The
standard deviation, though, is greater than the one obtained in
simulation, around 0.005 meters in stereo and 0.008 meters
in the case of laser reconstructions, it is small enough to
conclude that the tested algorithms reached a good alignment

and the ground truth estimation was fairly good. This shows
the same small misalignment as visual output in the case of
laser reconstruction.

The outliers results depicted on Figure 10 (right) show
that both algorithms increase the number of outliers as light
increases. In this case, stereo reconstruction shows a 0% on
outliers in the absence of light because is not able to obtain
any points. Although in the visual output laser reconstructions
seemed to show a higher number of outliers in terms of percent
it is compensated to the higher amount of reconstruction points
that means they could be filtered easily.

VIII. CONCLUSION

In this work, a benchmarking process is presented to allow
easy objective comparison and replication of the results of
two 3D object reconstruction algorithms as a prior step to
manipulation in simulated and real scenarios. This process
involves a benchmarking platform developed to evaluate soft-
ware using a simulator as ground truth for the evaluation.
The presented results show the potential of the benchmarking
techniques making it possible to obtain measurable results
in simulated scenarios, just as in real situations, helping to
decide which approach is better in each situation so that
the design of the system can be improved at an early stage.
Results replicability is assured as the simulator, benchmarking
platform and the algorithms used to test it, are offered as open
source. Furthermore key parameters such as light conditions
have been measured in order to provide sufficient information
for the experiment to be replicable. As a work in progress, an
online benchmarking platform is being actively developed, to
avoid software installation and make algorithm evaluation and
comparison faster and more user friendly.
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