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ABSTRACT
Projections from the nucleus incertus (NI) to the septum

have been implicated in the modulation of hippocampal

theta rhythm. In this study we describe a previously

uncharacterized projection from the septum to the NI,

which may provide feedback modulation of the ascend-

ing circuitry. Fluorogold injections into the NI resulted in

retrograde labeling in the septum that was concentrated

in the horizontal diagonal band and areas of the poste-

rior septum including the septofimbrial and triangular

septal nuclei. Double-immunofluorescent staining indi-

cated that the majority of NI-projecting septal neurons

were calretinin-positive and some were parvalbumin-, cal-

bindin-, or glutamic acid decarboxylase (GAD)267-posi-

tive. Choline acetyltransferase-positive neurons were

Fluorogold-negative. Injection of anterograde tracers into

medial septum, or triangular septal and septofimbrial

nuclei, revealed fibers descending to the supramammil-

lary nucleus, median raphe, and the NI. These antero-

gradely labeled varicosities displayed synaptophysin

immunoreactivity, indicating septal inputs form synapses

on NI neurons. Anterograde tracer also colocalized with

GAD-67-positive puncta in labeled fibers, which in some

cases made close synaptic contact with GAD-67-labeled

NI neurons. These data provide evidence for the exis-

tence of an inhibitory descending projection from medial

and posterior septum to the NI that provides a "feed-

back loop" to modulate the comparatively more dense

ascending NI projections to medial septum and hippo-

campus. Neural processes and associated behaviors acti-

vated or modulated by changes in hippocampal theta

rhythm may depend on reciprocal connections between

ascending and descending pathways rather than on uni-

directional regulation via the medial septum. J. Comp.

Neurol. 523:565–588, 2015.
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Arousal processes initiate adaptation to changes in

environmental conditions. Following research on the gen-

eral mechanisms of arousal that began with early studies

to identify an ascending system arising from the brain-

stem reticular formation (Moruzzi and Magoun, 1995), it

is generally accepted that widespread activation of telen-

cephalic centers drives awakening and awareness.

The septal area has been traditionally viewed as an

interface connecting the so-called "limbic telencephalon"

with the hypothalamus and brainstem. This concept

arose from the observation of a complementary pattern

of neural connections for the medial and lateral septum.

In a simplified view, while the medial septum/diagonal

band complex (MS/DB) receives ascending projections

from the diencephalon and brainstem, and this neural

information is generally relayed to the hippocampus, cor-

tex, and amygdala (Vertes and Kocsis, 1997), the lateral

septum receives inputs from the hippocampus, which

are relayed to the hypothalamus and brainstem (Risold

and Swanson, 1997a; Leranth and Vertes, 1999). As a

consequence of this view, physiological studies of the

MS/DB have centered on its role in driving hippocampal

activity, particularly theta rhythm, an oscillatory neural

activity believed to underlie mnemonic processing (e.g.,

Kesner et al., 1986; Cahill and Baxter, 2001; Dwyer

et al., 2007). Electrolytic lesions of the MS result in

impaired hippocampal theta rhythm (Petsche and

Stumpf, 1962; Winson, 1978; Sainsbury and Bland,

1981). Specific lesions of either GABAergic or cholinergic

septal neurons produce a decrease in theta power (Lee

et al., 1994; Apartis et al., 1998; Yoder and Pang, 2005)

and studies in freely moving rats demonstrate that the

integrity of the entire medial and lateral septum-

hippocampal network is critical for theta rhythmogenesis

(Nerad and McNaughton, 2006).

MS/DB neurons display differential actions in the

control of hippocampal activity. Slow-firing cholinergic

neurons appear to facilitate hippocampal activity (Sotty

et al., 2003), while fast-firing, parvalbumin (PV)-contain-

ing GABAergic neurons, innervate hippocampal inter-

neurons mediating disinhibition of pyramidal and

granule cells (Freund and Antal, 1988; Freund and

Gulyas, 1997; Toth et al., 1997; Hangya et al., 2009).

Slow-firing neurons are associated with transient

arousal and may function to promote hippocampal acti-

vation (Zhang et al., 2011). Thus, these facilitatory and

disinhibitory actions promote hippocampal synchrony at

theta frequency (Freund and Antal, 1988). Specific

lesions of GABAergic or cholinergic MS/DB neurons

reveal that both neural populations contribute to hippo-

campal theta (Yoder and Pang, 2005), and inhibitory

neurons within the hippocampus can induce rhythmic

firing of GABAergic septal neurons, which in turn gener-

ates hippocampal theta (Manseau et al., 2008).

The nucleus incertus (NI) in the midline tegmentum

sends an array of ascending projections to the septal

area (Goto et al., 2001; Olucha-Bordonau et al., 2003),

and we have shown that stimulation of the NI in

urethane-anesthetized rats increased theta and

decreased delta activity within the hippocampus (Nunez

et al., 2006). In contrast, electrolytic lesion of the NI

abolished hippocampal theta induced by stimulation of

the nucleus reticularis pontis oralis (RPO) (Nunez et al.,

2006), a key brainstem generator of hippocampal theta

rhythm (Vertes, 1981, 1982; Vertes et al., 1993). The

dorsal hippocampus receives only sparse inputs from

the NI (Goto et al., 2001; Olucha-Bordonau et al.,

2003), suggesting that the influence of the NI on hippo-

campal theta rhythm is more likely mediated by its

dense projections to the MS/DB. NI neurons are largely
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glutamic acid decarboxylase (GAD)267-positive (Olucha-

Bordonau et al., 2003), and relaxin-3 is thought to be

coreleased with GABA from NI neurons in the rat

(Tanaka et al., 2005; Ma et al., 2007), mouse (Smith

et al., 2010), and Macaca fascicularis (Ma et al., 2009b).

This peptide is considered a marker for NI, since the dis-

tribution of fibers containing relaxin-3 (Ma et al., 2007)

is generally consistent with that of NI projections (Goto

et al., 2001; Olucha-Bordonau et al., 2003), particularly

in the MS, which is one of the most highly innervated

telencephalic targets of this nucleus (Ma et al., 2009a;

Olucha-Bordonau et al., 2011). In a functional context,

infusion of a relaxin-3 receptor (RXFP3) agonist peptide

into the MS/DB increased hippocampal theta activity in

urethane-anesthetized and awake rats, an effect blocked

by prior infusion of an RXFP3 antagonist (Ma et al.,

2009b). Furthermore, RXFP3 antagonist injection into the

MS/DB significantly blunted RPO-stimulated hippocampal

theta activity in anesthetized rats and novelty-induced

hippocampal theta activity in awake, freely moving rats,

and resulted in dose-related impairment of spatial work-

ing memory (Ma et al., 2009b). These findings suggest

that relaxin-3 is a potentially important mediator of NI

influence on the septohippocampal system (Ryan et al.,

2011; Ma et al., 2013).

Although there have been earlier studies characteriz-

ing the ascending connections of the NI to the septo-

hippocampal system (e.g., Olucha-Bordonau et al.,

2012), little is known regarding the afferent inputs of

the NI, other than initial connectivity mapping in rat

brain (Goto et al., 2001). The MS/DB is known to have

both ascending connections to the hippocampus and

descending connections to different hypothalamic and

brainstem nuclei (Swanson and Cowan, 1979; Krayniak

et al., 1980; Wouterlood et al., 1988; Cornwall et al.,

1990). Thus, we hypothesized that a projection from

the MS/DB to the NI may complete the network sub-

serving the modulation of hippocampal theta rhythm.

The goal of this study, therefore, was to characterize

septal afferent projections to the NI. Using retrograde

labeling, we identified that discrete populations of neu-

rons in the horizontal diagonal band (HDB) as well as tri-

angular septal and septofimbrial nuclei project to the NI;

these neurons are distinct from the choline acetyltrans-

ferase (ChAT)-positive septal neurons projecting to hippo-

campus and different from the GAD/PV neurons

projecting to hippocampus. We observed that the major-

ity of septo-NI neurons are calretinin-positive. In addition,

we used anterograde labeling from the septal area to

confirm the existence of these dispersed but consistently

observed septal to NI projections. Some of these antero-

gradely labeled fibers contained synaptophysin, suggest-

ing that fibers from the septal area form synapses within

NI. Also, some of these fibers were observed in close

contact with GAD-67-positive neurons. Thus, using a com-

bination of retrograde tracing from the NI and antero-

grade tracing from septum, we determined the existence

and nature of septal projections to the NI which poten-

tially modulate ascending NI projections to the septohip-

pocampal system. Demonstrating the existence of such

projections provides a new anatomical basis for determin-

ing the functional roles of septohippocampal and hippo-

camposeptal circuits in theta generation and modulation.

MATERIALS AND METHODS

Animals
Male Sprague–Dawley rats (300–400 g, n 5 28) were

used in this study. All protocols were approved by the

Animal Ethics Committee of the Universitat de València

(València, Spain). All procedures were in line with direc-

tive 86/609/EEC of the European Community on the

protection of animals used for experimental and other

scientific purposes. Details of the experimental proto-

cols employed are provided in Table 1.

Septal anatomy and terminology
We adopted the terminology used in the 7th Edition of

the Paxinos and Watson (2014) Atlas of Rat Brain in Ste-

reotaxic Coordinates. Three main divisions can be identi-

fied: the lateral, medial, and posterior septum. The lateral

septum (LS) can be subdivided into dorsal (LSD), interme-

diate (LSI), and ventral (LSV) nuclei. The medial division

can be subdivided into three nuclei that are arranged

from dorsal to ventromedial and from there to ventrolat-

eral: the medial septum nucleus (MS), vertical diagonal

band nucleus (VDB), and horizontal diagonal band nucleus

(HDB). A few small nuclei appear in the zone between the

medial and lateral divisions of the septum. These nuclei

comprise the lambdoid nucleus and the septohippocampal

nuclei dorsally, and the paradiagonal zone (PDZ), basal

division of the substantia innominata (SIB), and septohy-

pothalamic nucleus (SHy) ventrally. Finally, at caudal lev-

els corresponding to the area also known as the posterior

septum (Risold, 2004), the septofimbrial (SFi) nucleus

exists as a paired nucleus containing neurons arranged in

bands between the bundles of the septal fimbria, while

medially, the triangularis septalis (TS) is an unpaired struc-

ture occupying the central area of the posterior septum.

Tracer injections
Rats were anesthetized with ketamine (Imalgene

55 mg/kg intraperitoneally [i.p.]; Merial Laboratorios,

Barcelona, Spain) and xylacide (Xilagesic 20 mg/kg i.p.;

Lab Calier, Barcelona, Spain) and trephine holes were

drilled in the skull based on stereotaxic coordinates

Septal projections to nucleus incertus
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from the atlas of Paxinos and Watson (2014). Antero-

grade tracer injections of either 15% miniruby (mR, 10

kD biotinylated dextran amine rhodamine-labeled, Cat.

No. D-3312, Molecular Probes, Paisley, UK) or 10% kD

biotinylated dextran amine (BDA, Cat. No. D1956,

Molecular Probes, Eugene, OR) dissolved in 0.1 M phos-

phate buffer (PB), pH 7.6, were iontophoretically deliv-

ered via a 40 lm I.D. glass micropipette lowered into

the MS (AP 0.2 to 20.4 mm, ML 0.2 to 0.8 mm, DV 27

to 28 mm from bregma) or posterior septum (AP 0.2 to

20.5 mm, ML 0.4 to 0.8 mm, DV 24.4 to 26 mm from

bregma) by passing positive current of 1 lA, 2 seconds

on, 2 seconds off for 20 minutes. The micropipette was

left in place for an additional 10 minutes before with-

drawal. Injections of 4% Fluorogold retrograde tracer (FG,

5-hydroxystilbamidine, Cat. No 80014, Biotium, Hayward,

CA) dissolved in distilled water were made into the hip-

pocampus (AP 25.4 mm, ML 5 mm, DV 5 mm from

bregma), NI (AP 29.6 mm, ML 0 6 0.2 mm, DV 7.4 mm

from bregma). Volumes of 40–80 nl were injected using

a 40 lm I.D. glass micropipette attached to an IM-300

microinjector (Narishige, Tokyo, Japan) over 10 minutes.

The wound was sutured and rats were treated with

Buprex (0.05 mg/kg, i.p., Lab Esteve, Barcelona, Spain)

for analgesia and allowed to recover for at least 7 days.

Brain fixation and sectioning
For analysis of tracing studies, rats were deeply

anesthetized with Nembutal (150 mg/kg i.p., Eutha-

lender, Barcelona, Spain) and transcardially perfused

with saline (250 ml) followed by fixative (4% paraformal-

dehyde in 0.1 M PB, pH 7.4) for 30 minutes (�500 ml).

Brains were dissected and immersed in the same fixative

for 4 hours at 4�C. They were then incubated in 30%

sucrose in 0.01 M phosphate-buffered saline (PBS),

pH 7.4, for 48 hours at 4�C. The brains were blocked

coronally at the level of the cerebellar flocculi using a rat

brain methacrylate matrix (World Precision Instruments,

Sarasota, FL) to obtain reliable sections of equivalent ori-

entation from each rat. Free-floating coronal sections

(40 lm) through the rostral to caudal extent of the septum

were collected using a freezing slide microtome (Leica

SM2010R, Leica Microsystems, Heidelberg, Germany). For

each brain six series of sections were obtained.

Immunofluorescent detection of retrograde
tracing and neuronal markers in MS

For detection of FG and septal marker proteins, sec-

tions were rinsed 2 3 10 minutes and immersed in a

blocking media of Tris-buffered saline (TBS) containing

TABLE 1.

Neural Tracer Treatments of Rats and Immunohistochemistry Studies Analyzed

Case Tracer injection Immunohistochemistry analysis

CCH5
CCH11
RS31
RS29

Restricted FG injection in NI
FG tracer analysis and immunofluorescence

for ChAT, PV, GAD-67 and CB28K

CCH12
RS26
RS27

FG and reticular formation FG tracer analysis

CCH8
CCH10

FG in reticular formation.
No diffusion to NI FG tracer analysis

RS2
HAI4
HAI6
RS5
RS6
RS10
RS16

mR MS/DB
FG hippocampus

Confocal mR and FG tracer analysis

RS18
RS19
RS23
RS30

mR MS/DB
Confocal mR and GAD67 and

synaptophysin immunofluorescence

RS47 BDA HDB Anterograde labeling

LS62 BDA LSI Anterograde labeling

LS61
LS64 BDA SFi Anterograde labeling

LS63
LS65 BDA TS Anterograde labeling

RS15
RS7 mR LS Anterograde labeling from the LS

A.M. S�anchez-P�erez et al.
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4% normal donkey serum (NDS), 2% bovine serum albu-

min (BSA), and 0.1% Triton X-100 for 1 hour at room

temperature. Sections were then incubated in primary

antibody solution containing 1:3,000 rabbit anti-FG (Bio-

tium) and 1:2,500 mouse anti-parvalbumin (PV; Cat. No.

235, Swant, Bellinzona, Switzerland), 1:2,500 mouse

anti-calbindin (CB)-28kD (Cat. No. 300; Swant), 1:2,500

mouse anti-calretinin (Cat. No. 6B3; Swant); 1:500 goat

anti-choline acetyltransferase (ChAT; Cat. No. AB144P,

Chemicon, Temecula, CA), 1:1,000 mouse anti-GAD-67;

Cat. No. MAB5406, Chemicon), or 1:1,500 mouse anti-

synaptophysin (clone SVP-38, Cat. No. S5768, Sigma-

Aldrich, St Louis, MO) IgG diluted in TBS containing 2%

NDS, 2% BSA, and 0.2% Triton X-100 for 48 hours at

4�C. For further details see below and Table 2. Sections

were rinsed three times in TBS and incubated in 1:200

dilution of donkey antimouse conjugated Alexa-488 IgG

(Jackson ImmunoResearch, West Grove, PA) or 1:200

dilution of donkey antigoat conjugated Cy5 IgG (Cat. No.

705-175-003, Jackson ImmunoResearch) in TBS. Sec-

tions were then briefly rinsed in 0.01 M PBS and

mounted on chrome-alum gelatin-coated slides, air-dried,

dehydrated in graded ethanol, and coverslipped with

DPX mounting medium (Sigma-Aldrich).

Antibody characterization
A number of characterized antisera were used in

these studies (Table 2) (Olucha-Bordonau et al., 2012).

The specificity of the FG antibody was verified by the

presence or absence of labeling in rats injected or not

injected with FG, respectively.

The monoclonal PV antibody was produced by hybrid-

ization of mouse myeloma cells with spleen cells from

mice immunized with PV purified from carp muscles

(Celio et al., 1988). It recognizes a single 12 kD protein

(pI 4.9) on a 2D immunoblot of rat cerebellar tissue,

values identical to those expected for purified PV (Celio

et al., 1988). Furthermore, staining was abolished in

the brain of PV-knockout mice (Schwaller et al., 2004).

The monoclonal CB-28kD antibody was produced by

hybridization of mouse myeloma cells with spleen cells

from mice immunized with CB-28kD purified from

chicken gut (Celio et al., 1990). Staining was abolished

in the brain of CB-28kD-knockout mice (Airaksinen

et al., 1997).

The antibody against calretinin (Swant) was produced

in mice by immunization with recombinant human

calretinin-22k (Zimmermann and Schwaller, 2002).

Staining was abolished in the brain of calretinin-

knockout mice (Schurmans et al., 1997).

The goat polyclonal antiserum against ChAT has been

shown to stain a single band of 68–70 kD molecular

weight by western blot analysis of mouse brain lysate

(manufacturer’s technical data) and its antigen specific-

ity has been determined by preadsorption with purified

protein (Rico and Cavada, 1998).

The mouse antibody against GAD-67 has been shown

to react with the 67 kD isoform of GAD from rat,

mouse, and human (manufacturer’s technical data). It

displayed no detectable crossreactivity with GAD-65 on

western blots of rat brain lysate compared to antibody

AB1511 (Chemicon) that reacts with GAD-65 and GAD-

67 (Biancardi et al., 2010).

The monoclonal antibody against synaptophysin was

raised using rat retina synaptosomes and it stains syn-

aptophysin in neurons (Booettger et al., 2003).

Immunofluorescence analyses
FG immunostaining was imaged using a Nikon Eclipse

E600 microscope with a DMX2000 digital camera

TABLE 2.

Primary Antibodies Used in Immunoperoxidase and Immunofluorescence Staining

Antigen Immunogen (MW)

Manufacturer, Host species, Ig isotype,

Catalog number and RRIDs

Dilution used

in IHC/IF

Fluorogold Fluorogold (5-hydroxystabilamide) Chemicon, Temecula CA, rabbit, polyclonal,
AB-153, RRID: AB_90738

IHC: 1:3,000

ChAT choline acetyltransferase (70 kD) Chemicon, Temecula CA, goat, polyclonal, RRID:
AB_144

IF: 1:500

CB-28kD Chicken calbindin D-28k (28 kD) Swant, Bellinzona, Switzerland, mouse, monoclonal,
McAB300, RRID: AB_10000340

IF: 1:5,000

PV parvalbumin (12 kD) Swant, Bellinzona, Switzerland, mouse, monoclonal,
McAB235, RRID: AB_10000343

IF: 1:5,000

CR Calretinin Swant, Bellinzona, Switzerland, mouse, monoclonal,
6B3, RRID: AB_10000320

IF 1:2,500

GAD-67 recombinant GAD-67 (67 kD) Chemicon, Temecula, CA, mouse, monoclonal,
MAB-5406, RRID: AB_2278725

IF: 1:500

Synaptophysin rat retinal synaptosomes
antigen (38 kD)

Sigma, St. Louis, MO, mouse, monoclonal, S5768,
RRID: AB_477523

IF: 1:500

Research Resource Identifiers (RRID) are also indicated.

Septal projections to nucleus incertus
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(Nikon, Tokyo, Japan) and maps were constructed using

a camera lucida tube attached to a Zeiss Axioskop

microscope (Zeiss, Munich, Germany). Drawings were

made with 203 and 403 magnifications, scanned, and

reduced to their final size. Confocal immunofluores-

cence was imaged with a laser confocal scan unit TCS-

SP2 equipped with argon and helio-neon laser beams

attached to a Leica DMIRB inverted microscope (Leica

Microsystems). Wavelengths for FG excitation were

351 nm and 364 nm and for emission 382–487 nm;

mR excitation was 433 nm and for emission 560–

618 nm; Alexa488-labeled antibody excitation was

488 nm and for emission was 510–570 nm; Cy5-

labeled antibody excitation was 633 nm and for emis-

sion 644–719 nm. Serial 0.5-lm scans were obtained

in the Z-plane and a maximal projection of up to 10 lm

was generated with Leica confocal software (V2.61).

RESULTS

In these experiments a series of different neural

tracer injections were made into the septum, the NI

and related anatomical areas, and the data were ana-

lyzed based on the accuracy and extent of the injec-

tions and the resultant labeling (see Table 2). Following

FG injection into the NI of adult male rats (n 5 7; Fig.

1A–E), dense retrograde labeling was observed in the

septal area (n 5 7; Fig. 1F,G). Control cases for these

injections were used to confirm that FG-positive neu-

rons in septal areas were specifically observed in brains

with injection sites including the NI (n 5 2; Fig. 1C,D).

Conversely, anterograde labeling of dense fiber plex-

uses in the NI was observed following mR injections

into the septal area (n 5 12; Fig. 2A,B). Information

regarding tracer injection sites, areas of tracer diffu-

sion, and the analysis completed are summarized in

Table 1. In some rats, we combined retrograde tracer

injections in the hippocampus (Fig. 2C) with antero-

grade tracer injections in the MS/DB (Fig. 2E).

Retrograde tracer-positive neurons in
septum following FG injections into the NI

FG injections in the NI included four cases (CCH5,

CCH11, RS31, and RS29) in which the injection site

was centered in the NI with little or not diffusion to

surrounding areas (Fig. 1A–D). In one such case

(RS31), the injection site only covered a small area of

the NIc (Fig. 1E) and resulted in rare but consistent

cellular labeling in the medial septal division. Also, in

three cases (CCH12, RS26, RS27) the diffusion area

also spread to the pontine reticular formation. Finally,

in two cases (CCH8 and CCH10) the injections were

centered in the reticular formation without diffusion to

NI. No retrograde labeling was seen in the septal area

of these cases. The pattern of retrograde labeling in

the septal area was similar in all cases in which the

injection site included the NI. Representative camera

lucida drawings of case CCH5 are illustrated (Fig. 3).

Most FG-positive neurons observed were concentrated

in the MS/DB, although dispersed neurons were

observed in the lateral septal area. We analyzed five

rostrocaudal levels of the septum in the coronal plane

(250 lm apart; Fig. 3A–E).

Level 1 (�bregma 11.80 mm) is the most anterior

and corresponds to a coronal plane at which the MS/

DB of the right and left hemispheres is separated by

the ependyma (Fig. 3A). At this level, a column of ret-

rogradely labeled neurons in the MS and dispersed

neurons in the LSI were observed, but no retrograde

labeling was observed in the LSD. Level 2 (�bregma

11.28 mm) corresponds to the coronal plane where

the MS/DB consists of two clearly defined segments—

"vertical" containing MS and VDB and "horizontal"

containing the HDB (Fig. 3B). At this level, some dis-

persed retrogradely labeled neurons appeared in the

medial aspects of the lateral septum corresponding to

the LSI, but the majority of retrograde labeling was

concentrated in the MS/DB. Within the MS and the

VDB, retrogradely labeled neurons were present in a

strip in a middle zone of the MS (Fig. 3B). Level 3

(�bregma 10.60 mm) is where the fiber tracts of the

fornix (f) become evident (Figs. 3C, 4A). Retrograde

labeling occurred between the bundles of the fornix,

which we interpret as the rostral extension of the sep-

tofimbrial (SFi) nucleus (Fig. 4C). At this point, little

or no retrograde labeling was observed in the LS,

whereas the MS/DB displayed dispersed labeling in

the MS and VDB and concentrated in a band in the

HDB (Figs. 3C, 4D). A region with no labeling

appeared between the superficial surface of the brain

and FG-positive cells cluster in the HDB (arrows in

Fig. 3C). Level 4 (�bregma 20.20 mm) is where the

SFi is clearly distinguished (Fig. 3D). A cluster of

labeled neurons were present in the ventral division

of the LSV. At this level, a few retrogradely labeled

neurons were observed between the fornix bundles of

the SFi nucleus. Some other labeled neurons also

occurred in the central area of the septum occupied

by the TS (Fig. 4E). Notably, a significant number of

labeled neurons were observed in the HDB. There

was a clear difference between the dense labeling

in the HDB compared to the more dispersed labeling

in the SFI and TS. Also, some neurons were observed

in the lateral preoptic nucleus (LPO) in the hypothala-

mus that seemed to be in continuity with the septal

retrograde labeling. Few retrogradely labeled neurons
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were observed in the LSD and bed nucleus of the

stria terminalis (ST; Fig. 3D). Finally, Level 5

(�bregma 20.70 mm) contains caudal levels of HDB

(Fig. 3E). At this level, dispersed retrogradely labeled

neurons were observed in the lateral caudal levels of

the HDB, with little to no labeling between the bun-

dles of the fornix and hippocampal commissure

(Fig. 3E).

Figure 1. Fluorogold (FG) injection sites in nucleus incertus (NI) and surrounding regions. Camera lucida drawings illustrating the injection

sites for the retrograde tracer, FG, in the NI. FG injections were centered in the NI in cases CCH5 (A), RS29 (B), CCH11 (C), and RS31

(D). FG injections in NI and adjacent reticular formation were observed in cases RS26 (B), CCH12 (C), and RS27 (D). Injection sites out-

side the NI, in the reticular formation, were used as controls, cases CCH10 (B) and CCH8 (D). Location of a very restricted injection, case

RS31 (E). Retrograde labeling in the MSDB at rostral level, case CCH5 (F). Retrograde labeling in a cluster of HDB at the caudal level 4,

CCH5 case (G). For abbreviations, see list. Scale bars 5 1 mm for A–D; 200 lm for E,F; 100 lm for G. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]
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Characterization of septal neurons
projecting to NI

Septal neurons projecting to the NI were further charac-

terized using immunofluorescent labeling for specific neuro-

nal markers. Notably, no colocalization of FG with ChAT

was observed in any case and in some regions, these

markers appeared to differentiate septal divisions (Fig. 5A–

I). In the MS and VDB, FG-labeled neurons were detected

close to the midline (Fig. 5A,C), whereas ChAT-positive neu-

rons were generally observed in lateral aspects (Fig. 5B,C).

Figure 2. Miniruby (mR) and BDA injection sites in the septal area and Fluorogold (FG) injection site in hippocampus. Camera lucida draw-

ings illustrating all the injection sites for the anterograde tracers in the septal area. Analysis was based on seven injections centered in

the HDB and MS/VDB (cases RS2, RS5, RS6, RS18, RS23 RS30, mR and RS47, BDA); five injections that included parts of MS and LS

(cases RS7, RS16 and RS19, mR; A,B), and two injections (RS15, mR and LS62, BDA) restricted to lateral septum (A,B) and four injections

into the posterior septum (C), which included the triangular septum (LS63 and LS65, BDA) and the septofimbrial nucleus (LS61 and LS64,

BDA). In case RS10, mR, an FG injection into the hippocampus (D), which resulted in retrograde labeling in the MS/VDB (see E), was

combined with an mR injection in LS (F). The injection site of case RS10 is not drawn in A–D. For abbreviations, see list. Scale

bars 5 1 mm in A–C; 500 lm in D–F. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Figure 3. Distribution of FG retrograde labeling in the septal area (case CCH5). Camera lucida drawings illustrating the different levels of the

septum analyzed. As an anatomical reference, the location of ChAT-positive neurons is illustrated by the gray-shaded area. (A) Level 1

(�bregma 11.8 mm): the two septal areas (medial and lateral) appear physically separated. Most FG-positive neurons were detected in MS

and VDB with some dispersed labeling in LSI. (B) Level 2 (�bregma 11.28 mm): continuity exists between HDB and VDB. FG-positive neurons

were concentrated in the MS/DB and sparse in LSI. (C) Level 3 (�bregma 10.60 mm): a clear division is observed between HDB and VDB

and the fornix becomes evident in the dorsal tip of the MS. FG-positive neurons were concentrated in the HDB. (D) Level 4 (�bregma

20.12 mm): the anterior commissure is interposed between the HDB and the posterior septal area, composed of the triangular septal area

(nucleus) (TS), the septofimbrial nucleus (SFi), and LSD. FG-positive cells were observed in HDB and LSv and dispersed neurons were observed

within the SFi. (E) Level 5 (�bregma 20.70 mm): most caudally, the posterior septum is composed of the triangular septal and the septofimb-

rial nuclei and only HDB is visible. The distribution of FG-positive neurons was generally sparse, but neurons were concentrated in the HDB.

For abbreviations, see list. Scale bar 5 500 lm. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Even in areas where these two neuronal populations "over-

lapped," no colocalization of the markers was observed

(see higher-magnification images; Fig. 5D–F). In addition,

FG-labeled neurons were observed in a long strip within the

HDB (Fig. 5G,I), while ChAT-positive neurons were concen-

trated in a superficial band (Fig. 5H,I). Interestingly, a band

of unlabeled neurons/tissue was present between the

ChAT and FG-positive neurons (Fig. 5I).

In contrast to the lack of colocalization of FG in cho-

linergic neurons, we observed some colocalization of FG

and calcium-binding proteins in neurons in the HDB. CB-

28k-positive cells were not abundant within the MS, but

we observed clear colocalization with FG (Fig. 6A–C). In

contrast, only a few of the more abundant PV-positive

neurons contained FG (Fig. 6D–F,G–I). Similarly, we

observed only a few neurons containing FG and GAD-67

in these same areas within the HDB (Fig. 6J–L,M–O).

Staining for FG and calretinin (CR) in the MS/DB

revealed a large number of CR-positive retrogradely

labeled neurons in both MS (Fig. 7A–C) and HDB (Fig.

7D–F). In contrast, in the triangular septal and septofimb-

rial nuclei of the posterior septum, areas containing a

considerable number of CR-positive neurons, little FG

staining was observed. Moreover, the few FG-positive neu-

rons observed in these areas did not contain CR staining

(Fig. 7G–I). These observations suggest the existence of

specific CR-containing projections from the MS to the NI.

There was some variability in the number of retro-

gradely labeled septal neurons after FG injections in the

NI. Therefore, a reliable quantitative assessment of the

Figure 4. Retrograde labeling in the septal area after FG injections centered in the NI. (A) Diagram illustrating the septal level 3 containing

two areas with retrograde labeling illustrated in images in C and D which corresponds to level bregma 20.6, as it appears in Fig. 3C. (B) Dia-

gram illustrating the septal level 4, corresponding to bregma 20.12 as it appears in Fig. 3D, containing the area with retrograde labeling illus-

trated in image E. (C) Retrograde labeling in the SFi nucleus after FG injection in the NI in case RS30 (inset). Despite the small injection

consistent retrograde labeling was seen in the SFi nucleus (arrow). (D) Retrograde labeling in the MS nucleus after a large FG injection into

the NI with some spread to the ventrally located reticular formation including the raphe pontis nucleus in case RS26 (inset). Some retrograde

labeling (arrow) was detected in the MS after large injections. (E) Retrograde labeling in the TS and SFi nuclei of the posterior septum after

FG injection in the NI in case RS29 (inset). Some dispersed retrograde labeling (arrow) occurred in both nuclei. Scale bars 5 250 lm in A,B;

100 lm in C,E; 50 lm in D. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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proportion of labeled neurons that express each of the

septal neuron markers was not possible. However, we

made a semiquantitative evaluation of the percentage of

FG-labeled neurons that express each of the markers. As

mentioned, none of the FG-labeled cells expressed ChAT.

Some 2% of the FG-labeled cells expressed PV, while a

slightly higher percentage of FG-positive cells contained

CB-28kD. In contrast, more than 50% of the FG-positive

MS/DB neurons contained CR. Finally, only a low propor-

tion of FG-positive neurons expressed GAD-67 immuno-

reactivity, which, despite possible technical issues

regarding the detection limits of the different markers,

left a significant proportion of FG-positive MS/DB neu-

rons uncategorized. This finding also suggests that a sub-

stantial proportion of NI projecting CR-positive neurons

are not GAD-67-positive (i.e., not GABAergic).

Anterograde fibers in the NI following mR
injection in the MS

In studies to confirm that neurons of the MS/DB

send projections to the NI, the anterograde tracer, mR,

was injected into different septal areas (Figs. 2A,B,F,

8G, 9A,E, 10A,E). In eight cases (HAI4, HAI 6, RS5,

RS6, RS18, RS23, RS30, and RS47), the injection was

restricted to an area of 150–250 lm within the HDB

Figure 5. ChAT-positive neurons in MS and HDB do not send descending projections to NI (case CCH5). Double immunofluorescence

staining for ChAT and FG in MS and HDB in case CCH5. A differential distribution of the population of cholinergic and NI-projecting neu-

rons was observed. (A–C). In the MS, FG-positive neurons were located medially (A), whereas ChAT positive neurons were detected typi-

cally in the outer part of the MS (B), with a small degree of overlap between the two cell groups at the intersection between the major

areas (C). (D–F) High-magnification images of the overlapping areas reveal the absence of any colocalization of the fluorescent signals.

(G–I) In the HDB, FG-positive neurons occupied an inner or deeper layer, adjacent to the nucleus accumbens (Acc) (G), whereas ChAT-

positive neurons were located more superficially (H) and no overlap was observed between the areas occupied by the two markers (I). For

abbreviations, see list. Scale bars 5 50 lm. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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and another case (RS2) had a restricted injection in the

VDB (Fig. 2A,B). In cases LS62 and RS15, the injection

site was located in the LSI (Fig. 2A). In cases LS61 and

LS64, the injection site was centered in the TS and in the

cases LS63 and LS65 the injection site targeted the sep-

tofimbrial nucleus (Fig. 2C). Finally, in four cases (RS7,

RS10, RS16, RS19) the injection occupied parts of the

MS and LS (Fig. 2A,B). However, no anterograde labeling

was observed within the NI when the injection site did

not occupy either HDB or posterior septum. Following

large injections such as cases RS7 and RS19 centered in

the MS, VDB, and LS, scarce anterograde labeling was

seen in NI. Although not abundant, anterogradely labeled

fibers from septal injections were consistently present in

Figure 6. Characterization of the neurochemical nature of septal neurons projecting to NI. Double immunofluorescence staining of FG-

labeled neurons and the calcium-binding proteins—calbindin (CB-28kD) and parvalbumin (PV)—and GAD-67 in case CCH11. (A–C) Some

FG-positive neurons were positive for CB-28kD (colocalization indicated by arrow). (D–I) Although FG-positive and PV-positive neurons

occupy the same area within the HDB, no significant colocalization was observed (D–F), although sparse double-labeled neurons were

identified (G–I, colocalization indicated by arrow). Some FG-positive neurons (J) containing GAD-67 were observed (K–L, colocalization indi-

cated by arrow). For abbreviations, see list. Scale bars 5 50 lm in A–C,G–I,M–O; 100 lm in D–F,J–L.
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the NI after all injections that occupied either the HDB,

TS, or SFi; while trace or no anterograde labeling was

detected when injections affected the MS, VDB or any of

the LS nuclei (Fig. 9E–H, case LS62).

In all cases containing anterograde labeling in the NI,

descending fibers from the injection site coursed pri-

marily through the LPO area and dispersed through the

perifornical area. More caudally, labeled fibers coursed

through the dorsal and ventral premammillary nuclei

and the lateral supramammillary nucleus. Some labeled

fibers were also observed in the posterior hypothalamic

nucleus. In the midbrain, some labeled fibers were dis-

persed within the ventral tegmental area and median

and paramedian raphe nuclei. Finally, labeled fibers

coursed via the pontine raphe nucleus to reach the NI

located more dorsally. Overall, only a moderate propor-

tion of the descending fibers reached the NI.

In the analysis of the distribution of the anterograde

labeling within the NI, we identified three coronal levels.

In the rostral most level (�bregma 29.60 mm) (Fig.

8A), the NI continued ventrally with the pontine raphe

nucleus. At the second level (�bregma 29.72 mm)

(Fig. 8B) the sulcus of the fourth ventricle (IV) is already

present, but there is still a ventral communication with

the pontine raphe nucleus. Finally, at the third level

(�bregma 29.84 mm), a few labeled fibers appeared in

the ipsilateral NI and some of them entered the dorso-

lateral tegmentum; also, some labeling was found in the

contralateral NI. At the three levels, the medial longitu-

dinal fascicle enclosed the NI ventrally.

When using mR as an anterograde tracer, the injec-

tion site was generally more restricted, and although

consistent in all cases the amount of anterograde label-

ing was quite low. Therefore, we also used BDA, which

Figure 7. A majority of septal neurons projecting to NI contain calretinin. Double immunofluorescence staining of FG-labeled neurons and

calretinin-positive neurons in the septum of case RS26. (A–C) In this case, with an FG injection within the NI and the adjacent pontine

reticular formation, a majority of FG-positive neurons were observed in the VDB and the HDB (D–F) and were positive for calretinin (black

arrows), while other calretinin-positive neurons were not FG-labeled (white arrowheads). (G–I) FG-labeled neurons in the triangular septal

nucleus were calretinin-positive (black arrow), also another FG-positive is CR-negative (black arrowhead) and others were calretinin-

negative (white arrowheads). For abbreviations, see list. Scale bar 5 50 lm.
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provided larger injections and stronger anterograde

labeling. In case RS47 with a prominent BDA injection

in the HDB (Fig. 8B–H) bilateral anterograde labeling

was seen at the three NI levels analyzed. Although ret-

rograde labeling was also present, it was restricted to

areas ipsilateral to the unilateral injection site. Restricted

injections of mR in the HDB produced a low level of

anterograde labeling, mainly observed on the ipsilateral

side (Fig. 9A–D, case RS30). In contrast, anterograde

labeling was not observed in the dorsal tegmental nuclei

Figure 8. Anterograde labeling in NI after a restricted injection of BDA into the HDB (case RS47). Three coronal hindbrain levels that

include parts of the NI were analyzed, corresponding to (A) 29.2 mm, (B) 29.6 mm and (C) 29.8 mm from bregma. (D–F) The boxed

areas indicated in A–C are illustrated in camera lucida drawings for case RS47 of a BDA injection in the HDB. (G) Injection site. (H) A

brightfield micrograph of the area between the NIc and NId, illustrating retrogradely labeled neurons (open arrows) and anterograde label-

ing (arrows). For abbreviations, see list. Scale bars 5 1 mm in A–C; 250 lm in D–F; 500 lm in G; 100 lm in H. [Color figure can be

viewed in the online issue, which is available at wileyonlinelibrary.com.]
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or in the more ventral reticular formation. When the

injection site was located in the lateral septum (either

dorsal [LSD] or intermediate [LSI]) (Fig. 9E, case LS62),

only dispersed fibers were seen in the NI (Fig. 9F–H).

BDA injections into the posterior septum produced

more dense anterograde labeling in the NI than MS/DB

injections. Some labeled fibers also entered the dorsal

tegmental (DTg), the posterodorsal tegmental (PDTg),

Figure 9. Anterograde labeling in NI after a restricted injection of mR into the HDB (case RS30) and an injection of BDA into the LSI

(case LS62). (A) Injection site for mR in case RS30. (B–D) Anterograde labeling in the NI was mainly present ipsilaterally at the three ros-

trocaudal levels illustrated in Fig. 7A–C. No fibers were observed in surrounding nuclei/areas. (E) Injection site for BDA in case LS62,

which was restricted to the LSI nucleus. (F–H) Anterograde labeling was only present in sparse fibers at the three rostrocaudal levels. For

abbreviations, see list. Scale bars 5 500 lm. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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and the laterodorsal tegmental (LDTg) nuclei; although

in these nuclei the density of labeled fibers was lower

than in the NI. After TS injections (Figs. 2C, Fig. 10A–D,

case LS61) fibers entering the NI formed a plexus in the

pontine raphe, then spread into the two sides of the NI

surrounding the DTg and the PDTg (Fig. 11A,B). Antero-

grade fibers made a plexus in the pars dissipata of the

NI and then in the LDTg and some of these fibers were

Figure 10. Anterograde labeling in NI after restricted injections of BDA into the TS (case LS61) and SFi (case LS63). (A) Injection site for

BDA into TS (and the LSD) in case LS61. (B–D) Anterograde labeling in the NI transversed the pontine raphe nucleus and spread

across both sides of the NI, at the three rostrocaudal levels illustrated in Fig. 7A–C. Anterograde labeling also extended laterally into the

LDTg. (E) Restricted injection site for BDA into SFi in case LS63. (F–H) Anterograde labeling was distributed along all rostrocaudal levels

and on both sides of the NI. Labeled fibers were also observed in the LDTg and within the PDTg. For abbreviations, see list. Scale

bars 5 500 lm. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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detected in Barrington’s nucleus. The PDTg was largely

devoid of fibers (Fig. 11F–H).

Finally, injections in the SFi (Fig. 10E, case LS63)

resulted in anterograde labeling in the pontine raphe

nucleus with fibers ascending between the medial lon-

gitudinal fascicle to the NI to give rise to a moderate

plexus in both subdivisions (NIc and NId) of both sides

(Fig. 10F–H). Some fibers were also seen coursing

between the two sides of the NI (Fig. 11C,D). Some

labeling was also observed in the LDTg, but unlike the sit-

uation following triangular septal injections, some fibers

were also seen within the PDTg nucleus (Fig. 11D).

Chemical characterization of anterograde
labeling in the NI

In studies to determine whether these projections

from the septal area to the NI made synapses in the

area, we stained some anterograde tracer positive

sections for synaptophysin. Using confocal microscopy,

we observed mR anterogradely labeled fibers colocalized

with synaptophysin immunoreactivity (Fig. 12A–C,D–F).

In complementary studies to confirm that MS sends

GABAergic projections to the NI, as suggested by the

retrograde tracer studies (Fig. 6), we examined the

colocalization of GAD67 immunoreactivity and mR

anterogradely labeled fibers. As predicted, mR-labeled

fibers were positive for GAD67 (Fig. 12G–L, white

arrowheads). In this material, we also observed close

contacts between mR-labeled fibers and GAD67-

positive soma in the NI (Fig. 12G–L).

DISCUSSION

In the current study we identified and characterized

in detail descending projections from the MS/DB and

Figure 11. Illustrative example of anterograde labeling in NI observed after restricted BDA injections into the TS (case LS61) and SFi

(case LS63). (A) A low-magnification image of the NI reveals the boundaries between NI and PDTg and anterogradely labeled fibers are

present in the NI on the ipsilateral and some on the contralateral side (arrow) in case LS61. (B) A higher-magnification image (boxed area)

illustrates the pattern of anterogradely labeled fibers (arrows) within the NId of case LS61. Notably there is an absence of anterograde

labeling in the PDTg. (C,D) In case LS63, anterogradely labeled neurons were observed in the NI on both sides and some fibers crossed to the

contralateral side from the injection (arrows). Some fibers were also observed in the PDTg (open arrows). For abbreviations, see list. Scale

bars 5 100 lm in A,D; 40 lm in B; 200 lm in C. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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posterior septum to the NI in the prepontine tegmen-

tum of the rat. We demonstrated that some, but not all,

of these projections, which, based on both anterograde-

and retrograde-tract tracing, arise mainly from the HDB,

and the septofimbrial and triangular septal nuclei, are

GABAergic. In addition, we demonstrated that the

descending septal projections make contact with

GABAergic neurons in the NI, and that most MS/DB

neurons providing descending connections to the NI are

calretinin-positive. These connections provide an ana-

tomical basis for a feedback loop between the septal

area and the NI, and a circuit between septum, NI, and

hippocampus, which may function as an autoregulatory

system modulating hippocampal activity during theta

synchronization (Ma et al., 2013). However, the

descending septal to NI projection is not as dense as

Figure 12. Colocalization of mR-labeled efferent septal fibers with synaptophysin and GAD-67 in NI. (A–F) Confocal images illustrating the

colocalization of anterogradely labeled fibers with synaptophysin and GAD-67. Images of mR and synaptophysin immunostaining corre-

spond to two single consecutive sections 0.5 lm apart, illustrating putative synaptic colocalization of mR and synaptophysin (small

arrows). (G–L) Colocalization of mR with GAD-67 was observed in fibers (arrows) and cells (stars). For abbreviations, see list. Scale

bars 5 2 lm. Supporting Fig. 12 is a magenta-green version.
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its ascending counterpart and this asymmetry should

be considered when addressing the "balance" within

this putative functional loop. In the following, we will

review our data in the light of earlier anatomical studies

of septal connections, in relation to pathways thought

to be involved in the regulation of hippocampal theta

rhythm, and with respect to the functional implications

for activity in these septal-NI-hippocampal networks.

Descending projections from the MS/DB
Descending connections from the MS/DB to the mid-

brain were described in early studies by Swanson and

Cowan (1979), in which autoradiographic labeling in

raphe nuclei and the ventral tegmental area (VTA) was

detected after tritiated-amino acid injections into the MS.

In other studies, retrograde tracer injections into the

median and paramedian raphe revealed descending con-

nections arising from the MS (Behzadi et al., 1990).

Descending projections to histamine neurons of the pos-

terior hypothalamus have also been documented after

injection of the anterograde tracer, Phaseolus vulgaris leu-

coagglutinin (PHA-L), into the MS and double immunolab-

eling with histamine decarboxylase (Wouterlood et al.,

1988). Furthermore, the supramammillary nucleus has

been identified as the target of CR neurons in the MS

(Borhegyi and Freund, 1998); and descending projections

from the MS/DB to tegmental pontine nuclei were

described after retrograde tracer injections into the LDTg

(Cornwall et al., 1990). In contrast, our data indicate that

the MS/DB projects to the NI, but does not innervate

the LDTg. Descending projections from the MS/DB

region to pontine central gray have also been docu-

mented in mouse, following injection of adeno-associated

virus (AAV) expressing green-fluorescent protein into the

medial septal area (see Allen Brain Atlas, http://connec-

tivity.brain-map.org/projection/experiment/100141597).

More recently, in in vivo electrophysiological studies

of NI neurons in anesthetized rats, we observed both

orthodromically and antidromically evoked neuronal fir-

ing of relaxin-3 and non-relaxin-3 neurons in response

to electrical stimulation in the MS/DB (Ma et al.,

2013), which further supports a bidirectional, functional

connection between these regions. In this case, how-

ever, the orthodromic responses of NI neurons were

more often excitatory than inhibitory, suggesting that

MS stimulation resulted in glutamate and/or excitatory

transmitter release in the target area. The occurrence

of FG labeling in many CR-positive neurons does not

exclude the possibility that a proportion of these neu-

rons are glutamatergic.

In our material, most FG-labeled neurons were also

CR-positive, but only a few were also GAD-67-positive.

Although most CR-positive MS neurons projecting to the

supramammillary nucleus are reportedly GABAergic,

entorhinal projections to the MS/DB arise from CR-

positive neurons that are characterized as aspartate/glu-

tamate-positive (Leranth et al., 1999). Supramammillary

neurons projecting to the MS/DB are calretinin and

aspartate/glutamate-positive (Leranth and Kiss, 1996).

Interestingly, the CR-containing neurons of the triangular

septal nucleus send projections to the medial habenula

and their terminals are characterized as displaying round

vesicles and asymmetric contacts that are associated

with excitatory transmission (Sperlagh et al., 1998).

Parcellation of the MS and neurons
projecting to the NI

The MS/DB consists of distinct neuronal groups in

subregions of the MS, VDB, and HDB and in a recent

study we observed that neurons at the border between

the medial and lateral septal areas project to the hypo-

thalamus (Olucha-Bordonau et al., 2012). In the current

study, we observed that neurons within the VDB and

MS that project to the NI are dispersed within these

regions. In contrast, neurons in the HDB that project to

the NI are ChAT-negative and reside in a deeper region

near adjacent to cholinergic neurons that are located

more superficially and presumably project to the hippo-

campus, amygdala, and cortex (Senut et al., 1989).

Wouterlood et al. (1988) observed that MS/DB projec-

tions to hypothalamic histaminergic neuron populations

are arranged in a similar pattern, whereby anterograde

tracer injections progressively targeting the midline of

the septum resulted in decreased labeling of fibers and

varicosities on histaminergic neurons. Accordingly, a

strip-like organization of the MS/DB has also been

recently documented (Tsurusaki and Gallagher, 2006),

where noncholinergic, midline MS neurons display a dis-

tinct electrophysiological activity to that of more laterally

located MS neurons. Interestingly, projections from a lat-

eral strip of the MS innervate a hypothalamic region

underlying aggressive behavior (Roeling et al., 1994).

Together, these findings further confirm the complexity

of the heterogeneous MS/DB anatomical connectivity

(Peterson, 1994; Kiss et al., 1997) and provide a better

structural basis on which to explore its functional roles.

Posterior septal projections to NI
The present data regarding posterior septal projec-

tions to NI highlight the likely role of the septo-

habenula-interpeduncular axis in modulating NI func-

tion. Currently, there are only a few reports focused on

the efferent projections of the posterior septum, but

there is a consensus that the posterior septum is the

origin of the stria medullaris projection to the habenula,
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which, in turn, projects to the interpeduncular nuclei

through the fasciculus retroflexus. All these structures

are targeted by projections from the NI (Goto et al.,

2001; Olucha-Bordonau et al., 2003) and all display ret-

rograde labeling after retrograde tracer injections into

the NI (Goto et al., 2001). The triangular septal nucleus

is a major source of the purinergic innervation of the

habenula (Sperlagh et al., 1998). In addition, tracer

injections in the septofimbrial nucleus also resulted in

anterograde labeling in the MS/DB and supramammil-

lary nucleus (Risold and Swanson, 1997), two compo-

nents of the well-known ascending system controlling

theta rhythm (McNaughton et al., 1995; Pan and

McNaughton, 1997; Vertes and Kocsis, 1997).

The posterior septum also moderates processes in

which the NI plays an important role through neural

structures that are also targeted by the NI. In this

respect, it has recently been shown that triangular sep-

tal projections to the medial habenula and from there

to the interpeduncular nuclei are involved in modulation

of anxiety processes (Yamaguchi et al., 2013). All these

structures are innervated by the NI (Goto et al., 2001;

Olucha-Bordonau et al., 2003). Moreover, central

administration of a relaxin-3 agonist, a neuropeptide

produced by NI neurons, induces anxiolytic and antide-

pressive behaviors in the plus maze and forced swim

tests (Ryan et al., 2013).

It is also important to consider the putative projec-

tion from the posterior septum to surrounding areas of

the NI. We observed anterograde labeling in the PDTg,

LDTg, and Barrington’s nucleus after anterograde tracer

injections into the posterior septum. These projections

seem to be parallel to the projections arising from the

mammillary complex. The dorsal tegmental nuclei have

bidirectional projections with the lateral mammillary

nucleus (Hayakawa and Zyo, 1989, 1990), which are

related to head orientation movements (Blair et al.,

1997). Notably, in the context of NI function and its

role in theta rhythm regulation, there is a close relation-

ship between theta rhythm and head movements (Bran-

don et al., 2013).

Hippocampal theta rhythmogenesis via
bidirectional pathways

Extensive research has revealed a central role for

ascending subcortico-hippocampal projections in driving

hippocampal theta rhythm (see Vertes and Kocsis,

1997, for review). Importantly, brainstem-elicited theta

activity stemming from the nucleus RPO is mediated by

a series of ascending projections principally involving

the median raphe nucleus, supramammillary nucleus,

and MS/DB (Peterson, 1994), whereby each node is

thought to primarily regulate a specific aspect of hippo-

campal theta rhythm (Nunez et al., 1991; Vertes et al.,

1993). The median raphe is involved in the desynchroni-

zation of theta activity (Kinney et al., 1994, 1995;

Vertes et al., 1994; Kocsis and Vertes, 1996; Viana Di

Prisco et al., 2002); the supramammillary nucleus mod-

ulates theta frequency (McNaughton et al., 1995; Koc-

sis and Vertes, 1997; Pan and McNaughton, 1997); and

the MS is considered the pacemaker of theta activity

(Nerad and McNaughton, 2006; Varga et al., 2008;

Hangya et al., 2009).

Other research has challenged this view, particularly

the latter role of MS as pacemaker of theta activity, as

Nerad and McNaughton (2006) observed a number of

discrepancies in the synchrony between these various

nuclei in studies of freely moving rats and postulated

that the hippocampal theta "pacemaker" is more likely

"a set of functionally differentiated components rather

than a single homogenous unit." In agreement with this

hypothesis, the findings of the present study reveal a

novel pathway involving descending projections from

the MS/DB to the NI which may be functionally linked

to the hippocampus septal projection. Previous studies

also revealed that MS CR neurons provide descending

projections to the supramammillary nucleus (Borhegyi

and Freund, 1998). Notably, septal CR-containing neu-

rons also receive descending projections from the ento-

rhinal cortex (Leranth et al., 1999). The CR-positive

MS/DB to NI pathway described shares this important

feature with the septum to supramammillary connection

(Borhegyi and Freund, 1998; Leranth et al., 1999).

Future studies will investigate whether descending pro-

jections from the MS/DB to the supramammillary

nucleus and NI arise from different populations of neu-

rons or are collaterals of the same neurons.

The proposed circuitry suggests a high degree of com-

plexity in the generation and modulation of theta, and,

therefore, we postulate that this newly identified circuitry

provides a means for fine-tuning hippocampal rhythms

and that the reciprocal ascending-descending pathways

may provide a system for "auto-adjustment," which is

the basis for the high coherence between the firing of NI

neurons, in particular those containing relaxin-3, and hip-

pocampal theta rhythm (Ma et al., 2013).

Implications of bidirectional NI-septum
connections for behavioral control

The neural projections from MS/DB and posterior

septum to NI target GABAergic neurons in NI and repre-

sent a newly identified influence on telencephalic cen-

ters. The MS/DB participates in modulation of a range

of functions anatomically and functionally associated
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with other brain centers. For example, lesions or revers-

ible inactivation of the MS/DB in rats has been shown

to be anxiolytic, since it decreased activity in the

shock-probe burying test (Menard and Treit, 1996) and

increased open arm exploration in the elevated plus

maze (Lamprea et al., 2010). Therefore, the NI, which

can influence activity within the MS and the overall activ-

ity of the septohippocampal system (Nunez et al., 2006;

Ma et al., 2009b) may have a role in modulating circuits

that control anxiety-related behaviors. Similarly, the pres-

ent data suggest that the MS/DB and posterior septum

to NI projection may contribute to the overall NI effect

on the major telencephalic centers controlling anxiety

(Ryan et al., 2011). Alterations in NI activity by MS or

posterior septum descending projections may then affect

activity of other telencephalic centers innervated by NI,

such as the prefrontal cortex (Farooq et al., 2013).

McNaughton and Gray (2000) proposed that the sep-

tohippocampal pathway is the core component of the

"behavioral inhibition system." This theory proposes

that the "behavioral inhibition system" compares actual

events occurring with those expected, and when there

is a mismatch between them, this system/circuit pro-

duces an output to halt the current motor program and

possibly reduce the activity in the future. In line with

this view, the septohippocampal pathway, acting as a

behavioral inhibition system, would respond to unex-

pected external signals that could potentially be a

threat. In such a scenario, the actions of the septohip-

pocampal pathway could lead to anxiety.

However, significant evidence confirms a role of the

MS/DB and septohippocampal interactions in exploration,

spatial navigation, and object recognition (Poucet, 1989;

Poucet and Buhot, 1994; Okada and Okaichi, 2010). The

occurrence of descending projections from the MS/DB

to the NI and the ascending connections from the NI to

the hippocampus represents a neural loop that may act

as a whole to generate a cognitive internal and external

map. Specific disruption of relaxin-3 projections from the

NI to the MS, by local septal infusion of RXFP3 antago-

nist, resulted in impairment of spatial working memory in

the spontaneous alternation test (Ma et al., 2009b). In

light of the present results, these data could be inter-

preted not only as a disruption of the septohippocampal

pathway, but the disruption of the septo-incertus-

hippocampus pathway, or more likely both networks. The

autoregulatory effect between the MS and the NI may

also impinge on other inter-telencephalic connections. It

has been reported that NI stimulation results in inhibition

of firing in the prefrontal cortex, and stimulation of the NI

or local corticotropin-releasing hormone (CRH) infusion,

block long-term potentiation induced by tetanus stimula-

tion in ventral hippocampus (Farooq et al., 2013).

It is also important to note the different roles that

descending projections from MS/DB may play in regulat-

ing NI activity, as MS/VDB mainly projects to the hippo-

campus and HDB projects mainly to the amygdala (Woolf

and Butcher, 1982). Thus, a pathway may exist from the

HDB to the NI, which also controls the amygdala, and in

turn the NI projects to the ventral hippocampus. In this

case, the ventral hippocampus is more closely related to

emotional aspects of cognition such as the extinction of

fear memory (Hobin et al., 2006; Ji and Maren, 2007;

Sierra-Mercado et al., 2011; Kheirbek et al., 2013) and

this process is context-dependent and related to ventral

hippocampus connections to the prefrontal cortex and

amygdala (Ishikawa and Nakamura, 2006).

CONCLUSION

This study describes descending projections from the

MS/DB and posterior septum to the NI, which may rep-

resent the neural substrate for feedback to the ascend-

ing NI projections to the MS/DB and hippocampus that

regulate hippocampal theta rhythm (Fig. 13). Evidence

from tracing their neural connections demonstrates that

all components of the ascending projections to the hip-

pocampus are bidirectionally connected, some of them

by inhibitory systems, which raises the possibility of an

autoregulatory system that adjusts firing patterns as a

Figure 13. Schematic model of the putative hippocampus-

septum-nucleus incertus circuit. This model incorporates the well-

characterized ascending projections from the NI to the septum

and hippocampus and the newly identified descending projection

from the septum to the hypothalamus, median raphe, and NI,

which represent a reciprocal neural loop. Essentially, the septum

provides descending projections/inputs to hypothalamic nuclei,

brainstem, and the NI; all these areas, in turn, provide ascending

innervations/inputs to the hippocampus. As the septum receives

projections from all these nuclei, our data suggest an anatomical

basis for a neural feedback to regulate septal function. [Color fig-

ure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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result of overlapping projections at each node of the net-

work. This system may be associated with the observed

phase-locking between the hippocampal field potential

and NI neural firing (Ma et al., 2013), but additional

experiments are now required to understand the role of

the descending septum-NI pathway in modulating hippo-

campal and other telencephalic areas targeted by wide-

spread NI GABAergic/peptidergic projections.
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