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Abstract 

Firms aspire to take advantage of technical and business networks through inter-

organizational interactions in order to improve performance. Consequently, researchers 

are increasingly attracted by the dynamics and implications of network formation at 

both local and global levels.  

From another perspective, authors have abandoned a monotonic effect and 

simplistic approach to proximity, as it emerges as a complex and multidimensional 

notion.  

Using data from a foodstuffs cluster located in the Valencia region (Spain) and 

advanced econometric methods, this paper aims to shed light on the detrimental effects 

and complementarities that may arise among the proximity dimensions. After 

controlling for network endogenous forces and firm characteristics, our findings reveal 

the effect of proximity dimensions on the creation of linkages in advanced stages of the 

cluster life cycle, in addition to the interactions among them. 

 

Key words: clusters, networks, ERGM, Social capital, proximity 

. 
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1 Introduction 

 

Over the last decade a growing amount of attention has been paid to identifying 

key factors for the creation and development of successful collaborations between 

organizations. Such interest relies on the critical role played by these collaborative 

relationships in generating innovations, particularly through common learning and 

knowledge spillovers (e.g., Asheim and Gertler, 2007).  

 

inter-organizational relationships, the genesis and dynamics of network structures still 

demands much more additional work (Ahuja et al., 2012). Particularly, while 

endogenous mechanisms leading to network development have already received 

considerable attention (Rivera et al., 2010), studies accounting for the attributes of 

network units are not so common and still need to be addressed properly. Particularly, 

little is known about the development of relational architectures and how the 

characteristics of ties change over time.  

 

Studies on industrial clusters that adopt an evolutionary approach have 

proliferated over the last decade (Giuliani and Bell, 2005; Boschma and Ter Wal, 2007; 

Morrison and Rabellotti, 2009; among others). Industrial clusters can be considered 

networks, social in nature (Ter Wal and Boschma, 2009), comprising different 

stakeholders who interact, evolve and contribute to the performance of a specific 

geographical context. The particular nature of these networks makes them appropriate 

structures for a refined analysis of interactions at the firm level.  

 

The evolutionary approach elucidates the prerequisites required to develop 

successful collaborations, thereby overcoming the so-

traditionally emphasized the role played by co-

(Gertler, 2003). This view is mainly based on the seminal contribution by Boschma 

(2005) and focuses on five different types of proximity suggested by the author: 

cognitive, social, organizational, institutional, and geographical. These proximities are 

closely related (Boschma and Frenken, 2010; Mattes, 2012; Ben Lataifa and Rabeau, 

2013) and co-evolve over time (Broekel, 2012).  
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Some researchers have recently conciliated the influence of structural 

mechanisms and the relevance of node attributes in the evolution of relationships (Ter 

Wal, 2013; Balland et al., 2013, among others). However, many aspects related to the 

dynamics of network formation still remain largely unexplored.  

 

We aim to help cover the research gaps by exploring the contribution of the 

structural tendencies of networks and proximity dimensions to knowledge sharing and 

linkages. To do so, we use data from a sample of companies from a mature foodstuff 

cluster located in the Valencia region (Spain). To accomplish this task, an exponential 

random graph model (ERGM) was developed and tested using data from 36 nougat 

manufacturers and their suppliers obtained by means of a survey carried out in 2011.  

 

The remainder of the paper is structured as follows. Section 2 gives an overview 

of the theoretical framework and the hypotheses. Section 3 describes the main traits of 

the selected industrial cluster. Section 4 presents methodological aspects, econometrics, 

and results. Finally, Section 5 concludes the paper by highlighting key findings and 

suggesting implications. 

 

2. Theoretical Background 

 

2.1 The proximity approach 

Proximity is a fuzzy concept that demands a complex approach (Markussen, 

1999). Particularly, the contributions of the so-called French School (e.g. Torre  and 

Rallet , 2005) stressed the need for a multidimensional perspective to complete an 

accurate assessment of the effects of geographical proximity (Autant-Bernard et al., 

2007).  

 

Cognitive proximity 

Knowledge spillovers are not inherent to closely located firms (Boschma and 

Iammarino, 2009). Interaction among units is necessarily the starting point for learning 

and knowledge sharing to take place. However, the existence of a common 

interpretative scheme determines the fruitfulness of these processes. Firms may reveal 

cognitive constraints that make it impossible for them to act in an optimal way. The 

cognitive dimension describes the initial ability of actors to communicate meaningfully 
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and generate new knowledge before the learning process started, which essentially 

implies sharing common and complementary skills and knowledge.  

 

Organizational proximity 

Organizational proximity is defined as the extent to which relations are shared in 

an organizational arrangement, and is based on the notions of autonomy and control. 

The more control and possibilities of regulating interactions there are, the higher 

organizational proximity is. Conversely, the more autonomy induced by the link, the 

less organizational proximity exists. Organizational closeness usually appears through 

group (Balland, 2012) or in long-term subcontracting relationships. Hierarchical 

interconnection between firms fosters knowledge sharing and common learning, since 

reduces uncertainty and limits the risk of opportunism. 

 

 

Social proximity 

Social embeddedness refers to the extent to which actors are connected to other 

alters via the linkages of a social network, or the extent to which human behavior takes 

place within a web of social attachments such as friendship, kinship, and past 

experiences. Following this path, social proximity represents strongly embedded social 

relations between actors at the micro-level involving trust (Boschma, 2005). The degree 

of social closeness is of crucial importance to explain economic outcomes (Granovetter, 

1985), because trust-based ties foster knowledge transfers and common learning 

practices.  

 

In a dynamic process over time Social links engender different levels of trust and 

moderate the risk of opportunistic behaviors and the appropriation of rents (Dettam and 

Brenner, 2010). In this vein, geographical propinquity fosters the strength of social ties 

through frequent meetings and building trust, but it is only a need in the initial stages 

(Dettman and Brenner, 2010) and thereafter is maintained by temporary geographical 

co-location (Torre, 2008; Ramirez-Pasillas, 2010).  
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Institutional proximity 

Following Edquist and Johnson (1997), institutions are constituted by sets of 

common habits, routines, recognized practices, rules and law that regulate human and 

inter-organizational interactions. Hard institutional factors (laws and rules) are thereby 

equally as important as soft ones (norms, values and routines). Therefore, institutional 

proximity is a complex combination of hard and soft macro-level factors (Xu and 

Shenkar, 2002) that provides a framework of stability and shapes cooperative behaviors. 

Boschma (2005) highlights the interconnection of both organizational and institutional 

forms of proximity, as the ways intra- and inter-organizational relations are governed 

are embedded in institutional settings. Additionally, he also points out the potential 

existence of an inverse relationship between the importance of geographical proximity 

and institutional proximity for successful learning and collaboration.  

 

Geographical proximity 

Given the widespread consensus about the localized nature of knowledge 

production and spillovers (Audretsch and Feldman, 1996), innovation activities appear 

to be an exception to the so-

adoption of modern ICT (Morgan, 2004). On the other hand, a number of authors have 

questioned the theoretical importance of the spatial or physical distance between actors 

for collaboration and knowledge exchange (Breschi and Lissoni, 2001; Gertler, 2003, 

Boschma, 2005). However, from an empirical viewpoint, evidence does not support the 

decline of the spatial proximity effect (Frenken et al., 2010). 

 

Despite the above-mentioned positive effects of geographical propinquity on 

learning, the most relevant value of geographical proximity is its role as a moderator, 

which it plays by strengthening other forms of proximity (Broekel and Boschma, 2011), 

probably through an indirect impact. In fact, geographical proximity promotes, among 

other things, the formation/evolution of institutions, embeddedness and trust, and/or 

cognitive closeness. Furthermore, under certain circumstances, these four proximity 

dimensions may also function as substitutes for physical proximity (Boschma, 2005). 

For instance, spatial proximity may help to overcome institutional (Ponds et al., 2007) 

or cognitive distance (Singh, 2005), and so on. 
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2.2 Dynamics of cluster 

 

Similarly to what happens to the industry life cycle, in the stages of the 

emergence of a cluster there are just a few firms, which is then followed by growth with 

an increasing number of firms and employees, and finally decline, where the number of 

firms and employees decreases. 

 

We are particularly interested in the process of decline, especially in finding out 

what internal and external causes lie at the core of these processes. According to 

authors, cluster decline can be induced by too much embeddedness of the institutional 

context and lock-in into an ineffective systemic framework that may damage learning or 

creativity; or cognitive lock-in, which means that local firms share a common view 

which restricts understandings and novel responses to potential situations (Belussi, 

2006; Grabher, 1993, among others).  

 

Evidence from Lagnevik et al. (2003) suggested that the European food clusters 

had been in the advanced stages of the life cycle (mature-decline or renaissance) since 

the beginning of the last decade, when the industry faced the surge of the new 

technologies, many products became obsolete and new actors invaded the competitive 

landscape. We expect development of the cluster life cycle to be, at least partially, 

explained by the evolution of some of the dimensions of proximity.  

 
 
Hypotheses 
 

Cognitive proximity entails both opportunities and threats in the process of 

learning. Firms need to share common and complementary skills and a knowledge base 

to be able to interact with each other successfully. Therefore, cognitive proximity eases 

collaboration as it facilitates valuable outcomes thanks to continuous communication 

and absorption. However, lengthy cooperation in stable networks in the maturity stage 

may reduce diversity of inter-firm knowledge exchanges, and progressively diminishes 

the opportunities for learning (Wuyts et al., 2005). Consequently, as networking takes 

time and efforts, partners avoid or dissolve redundant linkages that appear unlikely to 

produce benefits. Organizations which are cognitively very close can be expected to feel 
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discouraged to engage new links with them and with other actors. Consequently, it can 

be hypothesized:  

 

H1: Cognitive proximity is negatively related to the creation of linkages in advanced 
stages of the cluster life cycle.  
 

Institutions consist of both informal constraints, customs, traditions or codes of 

conduct, and formal rules, constitutions, laws or rights (North, 1991). Institutions are 

stable designs for a chronically repeated activity, bearing the characteristic of path 

dependency and cumulative causation. As a cluster grows, a set of rules and norms that 

legitimate and standardize behaviors and govern transactions emerge endogenously. 

While institutions initially stimulate the development of the agglomeration, they may 

turn out to foster inertia that obstructs awareness and the appearance of different 

opportunities during the maturity (decline) stage of long-established systems (Grabher, 

1993).  

 

individual organi

competence of institutions to manipulate the relationships between actors so to achieve 

successful interactions. It also includes the vested interests that emerge in the formation 

process of institutional setup, which might oppose necessary changes that undermine 

the position of local firms (Boschma, 2005). In line with our previous hypotheses, it can 

be expected that: 

 
H2: Institutional proximity is negatively related to the creation of linkages in advanced 
stages of the cluster life cycle.  
 
 

Firms tend to form or reactivate ties in order to solve problems of network 

redundancy. Local embedding that is too long-lasting derives into an excess of cognitive 

proximity and redundancies, but it also generates familiarity and trust (Gulati, 1995). 

Trust raises cooperative behavior, facilitates knowledge exchange and makes 

knowledge transfers more effective (Singh, 2005). For instance, relationships become 

more frequent and valued when the actors involved eventually trust one another. This 

trusting atmosphere emerges as the result of face-to-face interactions that are inherent to 

geographical proximity and leads to knowledge sharing and cooperative behavior 
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(Asheim and Gertler, 2007). Recent research highlights how both social and 

geographical proximities follow a similar path as the network matures (Ter Wal, 2013).  

 
H3: Both geographical and social proximity favor the creation of linkages in advanced 
stages of the cluster life cycle. 
 

 

Institutional and organizational proximities are related. Institutional thickness is 

based on a set of common representations, models and rules at the macro-level. 

Following Talbot (2007), organizational proximity may be considered a form of 

institutional proximity. Organizations (like firms or even formal partnerships) create a 

common space with their own operational rules and routines, as well as their own 

governance structure observable to all members (Bazzoli and Dutraive, 2002). Ben 

Lataifa and Rabeau (2013) study this relatedness by focusing on close linkages between 

organizational and institutional forms of proximity. 

 

On the other hand, advanced stages of the cluster life-cycle may not only present 

an unsuitable institutional framework for network formation, but also an excess of 

cognitive proximity causing overlaps and unplanned spillovers when firms compete in 

the same market with similar products (Vicente et al., 2007). Under these 

circumstances, firms will avoid these knowledge losses and harmful behaviors through 

a self-designed governance framework favored by cognitive commonalities. When 

norms and rules do not work at the macro level, firms tend to create an institutional 

context at the micro level. When collaborators develop a similar view of the business or 

the way to do things, then it is very easy to become organizationally close, thus 

avoiding the need to foster new ties in the network. Finally, an excess of institutional 

proximity and an excess of cognitive proximity favor organizational proximity and 

consequently boost the creation of new relationships in the network. 

 

H4: In advanced stages of the cluster life-cycle, high institutional and cognitive 
proximities favor organizational proximity, enhancing its role in network formation. 
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3. The empirical context  

This research has drawn on a sample of the firms belonging to the Spanish 

chocolate and confectionery industry. Particularly, the production of Spanish traditional 

nougats and other Christmas candies in Xixona (Valencia region) represents a 

paradigmatic case.  

 

Recently, the ISTAT methodology allowed Boix and Galletto (2006) to identify 

this geographical area as an industrial one. However controversy exists about different 

systemic aspects. March et al. (2007) specifically highlighted not only those related to 

cohesion and cooperation dynamics, which should be particularly mentioned, but also 

the prevalence of heterogeneous behaviors on key strategic outlines delineating a 

fragmented business community in terms of strategic and competitive advantages 

(especially large corporations vis-à-vis SMEs). Consistently, it seems that nougat 

manufacturers benefit from location, but some deficits hamper the achievement of many 

technical and commercial synergies. 

 

4. The study setting 
 
4.1 The questionnaire 

Data for this research was collected in Xixona during the second half of 2011. In 

a preliminary stage, face-to-face interviews with key manufacturers and local 

supporting organizations were carried out to gather primary data about multiple aspects 

of the industry and the cluster. Using insights from the interviews and the literature, we 

innovation practices, inter-organizational relationships, and performance. Once it had 

been pre-tested, we submitted our tool to the universe of manufacturers located inside 

the cluster boundaries. 

 

4.2 Data collection 
All 36 local manufacturers and suppliers obtained from TDC (the local nougat 

trade association) and the Regulatory Council were surveyed, thus enabling them to 

provide information about their local relationships. Peer debriefing confirmed that just a 

few artisans (usually self-employed) were missing and all relevant actors were 

considered. In the end, 24 nougat and Christmas candy manufacturers and 12 suppliers 
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cooperated, yielding an appropriate response rate for a whole-network approach 

(Wasserman and Faust, 1994).  

 

To collect network data, we presented respondents with a roster of the names of 

all 36 firms, and asked them to indicate from which of firms on the list did you 

regularly ask for technical information over the last three years. Answers rated from 0 to 

-

method reduces selectivity bias in the answers due to memory effects. 

 

<Insert Table 1 about here> 

 

Table 1 presents descriptive statistics on firm level characteristics, such as size, 

decade of creation, legal structure or international operations. Additionally, membership 

and main business activities are also reported. 

 

4.3 Variables  

 

Dependent variable 

Relational data allowed the creation of a directed square network matrix, which 

served as the dependent variable. Each column i and each row j represents a firm, and 

the cell entries are the value that firm i perceives about its relationship with firm j. Note 

that this matrix is not symmetric as the value perceived by firm i is not necessarily the 

same as the value perceived by firm j. 

 

Due to our estimating procedure and software, the dependent variable must be in 

binary form. Therefore, we collapse the perceived value into a dummy variable, coded 1 

for rates 2 and 3, and 0 otherwise. By doing so, we ensure the existence of relevant 

interactions, as the actual threshold at which a firm is considered to interact relevantly 

may vary greatly. 

 

Explanatory variables 

The proximity insights lead us to expect that closeness between firms would 

affect network dynamics. To measure this effect, we include five dyadic covariates. 

Each dyadic covariate is a symmetric matrix with size 36x36 that takes a specific value 
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for every pair of firms. In the geographical proximity covariate, values in the matrix 

reflect the physical distance between the two firms. NACE codes allow the creation of 

the cognitive proximity covariate. We assign value 1 if the firms share the same four 

NACE digits, and give value 0 otherwise. The third dyadic covariate captures 

institutional proximity based on firm's legal status. Cells in this matrix get value 1 when 

firms have the same legal status, and value 0 otherwise. In order to account for 

organizational proximity, we build a new matrix which measures whether firms belong 

to the same group.  We code 1 if firms belong to the same group, and code 0 otherwise. 

Information from TDC allows us to configure a social proximity covariate based on the 

relationships exist, and take value 0 otherwise. 

 

We also applied indicators to test whether firm characteristics influence the 

creation of ties. To this end, the following individual covariates or attributes are added: 

size (square root of total sales), age (square root of years since creation), absorptive 

capacity (code 0 when the firm does not employ workers holding a university degree, 

code 1 otherwise) and supplier (code 0 when the firm is a nougat or candy 

manufacturer, code 1 otherwise). For different values of each individual characteristic, 

we test whether the firm is more likely to seek advice (ego) or if it is more prone to be 

asked for counsel (alter), and the influence of the absolute difference on a particular 

attribute. 

 

Finally, we control for a number of variables that will tap into the knowledge 

interactions occur more or less often than expected by chance. Following well-known 

specifications (Hunter, 2007), we selected the  mutual  parameter  that  evaluates  

reciprocity,  or  the  inclination  to  give  back  in  a  cooperative  manner  (e.g.  tendency  to  A-­

>B  given  that  B-­>A).  The  cyclic  closure  term  (CTriple)  that  reflects  a  tendency  towards  

generalized  reciprocity  amongst  organizations  (e.g.  triangle  A-­>B,  B-­>C  and  C-­>A).  

Additionally,  we  use  the  geometrically  weighted  parameter  for  the  distributions  of  

indegree  (GWIDegree)  and  another  for  outdegree  (GWODegree).  The  first  indicates  the  

distribution  of  tie  frequency  reported  to  firms  in  the  network,  while  the  second  reflects  

the  distribution  of  outgoing  ties  reported  by  respondents.  Finally,  geometrically  

weighted  edge-­wise  shared  partnerships  (GWESP)  evaluates  the  transitivity  in  the  
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network  and  is  considered  an  indicator  of  cohesion.    Essentially,  transitivity  refers  to  the  

fulfil

firms  share  a  common  network  partner,  they  tend  to  become  partners  (e.g.  A-­>C  and  B-­

>C,  then  A-­>B  or  B-­>A).    

 

4.4 Statistical analysis and results 

To test the hypotheses established, we applied a Exponential Random Graph 

Model approach (ERGM). These are probability models that represent the generative 

process of tie formation and investigate the structure within a complete social network. 

In our case, we look at inter-organizational linkages within a technical network, where a 

link represents one firm asking technical advice to another firm. These network 

relations do not just form randomly but have a certain underlying pattern. With ERGM 

it is possible to examine and empirically test these structural patterns, and ask for 

example whether changes in partners are consequence of firm's position within the 

network. 

 

The rationale underlying our model is that the observed technical network is just 

one realization out of all potential realizations, and might be observed simply by 

chance. To see to what extent the observed technical network diverges from a network 

obtained by chance, a number of random networks are generated through Markov chain 

Monte Carlo maximum likelihood estimation. The simulated network is compared to 

the observed network in terms of parameters. This procedure is repeated until the 

simulated network provides a good representation of the real network. 

As recommended for ERGM, we add variables in consecutive blocks to test their 

relative contributions. The baseline model includes the individual covariates or firm-

level attributes. The intermediate model incorporates the dyadic covariates, while the 

endogenous forces join the model in the final stage. As Goodreau (2007) indicates, this 

procedure also allows for an accurate assessment of the role of the network forces above 

and beyond what firm characteristics and relational attributes explain. Following Hunter 

et al. (2008), statistical measures of model fit were discarded due to data 

interdependency. Instead, goodness-of-fit (GOF) plots comparing the observed network 

with a set of simulated networks based on certain features were checked.  

 

<Insert Table 2 about here> 
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As per the final model in Table 2, results are in line with our expectations. Both 

cognitive and institutional proximities exercise a negative significant effect on the 

creation of linkages, at the p- -value<0.10 respectively. Therefore, H1 

and H2 are supported. Conversely, the geographical and social dimensions enhance 

linkages. The significant sign obtained at p-value 0.01 and 0.1 respectively, endorse H3. 

In the same vein, organizational proximity also fosters common learning and knowledge 

sharing within cluster boundaries (p- 1). 

 

Control variables provide interesting insights into the selective nature of the 

network formation process. While age fosters the creation of linkages at p-

the absolute difference between partners generates the opposite effect (p- 0.01). 

This evidence indicates that the advice dynamics is shaped by the status effect. Well-

known firms have more linkages, but connections are less likely to occur between older 

and recently created units. In addition, just the out-effect of the absorptive capacity 

attribute achieves a negative significant effect (p-

showing strong knowledge bases are more selective and less prone to ask for advice. 

 

The sensitivity diagnosis corroborates the robustness of our results. The auto-

correlation coefficients among various intervals are close to 0, with the exception of the 

initial one, which always takes the value of 1. Moreover, Gewerke statistics, which are 

relatively comparable to a Z statistic, give no significant return for a p-

Despite the improvement in measures of model fit such as the AIC and BIC, commonly 

used to compare nested statistical models like these, we discard them as these measures 

rely on independent data (Hunter et al., 2008). Instead, parameter traces and goodness-

of-fit plots comparing observed network characteristics with those of simulated 

networks based on each model were used. Generally speaking the model is not only 

stable and converges, but is also characterized by reasonable horizontal traces. Although 

detailed observation of the different plots of network parameters reveals some 

disparities, note that our main interest lies in testing the hypotheses related to actor 

traits. 

 

Further statistical analysis was conducted to test to what extent cognitive and 

institutional proximity may favour the emergence of organisational proximity in 
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advanced stages of the cluster life cycle. The quadratic assignment procedure, a non-

parametric technique frequently applied to relational data, permits the regression of a 

dependent matrix on one or more independent matrices. The dependent variable is the 

organisational proximity, while the independent variables are the other proximity 

dimensions and a matrix reflecting age difference of the firms. Correlations between 

independent variables ranged from 0.01 to 0.05, indicating no problems of 

multicollinearity. 

 

<Insert Table 3 about here> 

 

Table 3 displays QAP regression results for our knowledge network. Goodness 

of fit values reveal that the model offers a good explanation for the phenomenon 

analyzed. Results obtained confirm our expectations on the reinforcing role of 

institutional and cognitive proximities on the organizational proximity. Both forms of 

proximity are found to enhance the organizational dimension. Therefore, taking into 

consideration the outcome from the ERGM, which revealed the positive effect exercised 

by organizational proximity on the likelihood of being linked to other firms, we can 

confirm H4. 

 

5. Discussion and conclusion 
 

The present study focuses on the dynamics of network formation in mature and 

declining clusters, using ERGM and data collected in a foodstuff cluster in Spain. The 

baseline model explored the propensity of firms to establish and receive ties based on 

firm-level attributes, whereas the intermediate model also controlled for the influence of 

dyadic covariates (proximity dimensions). 

 

As expected, empirical findings confirm the idea that proximity dimensions 

interrelate and influence the dynamics of the technological knowledge network. 

Obviously this endorses the idea that firms benefit from sharing information, as it may 

allow joint problem-solving and common innovation practices. Moreover, the 

potentially negative effects of an excess of proximity are another important factor. In 

the network studied here, too much cognitive and institutional proximity degrades the 

formation of intra-cluster linkages. Firms are aware of the high cost of networking, and 
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hence are careful when choosing their technological partners, namely those whose 

cognitive maps are complementary rather than redundant. On the other hand, the lack of 

suitable norms and rules undermines the genesis of new linkages and fosters the 

dissolution of former partnerships. An obsolete institutional framework generates 

dysfunctions in business relationships, hindering cooperation and knowledge transfers. 

 

From another perspective, two or more forms of proximity seem necessary to 

sustain network formation. In view of our findings, social, organizational and 

geographical closeness may take over from other forms of proximity that were formerly 

crucial for building relationships but,  have now become barriers for cooperation. 

Additionally, what seems to be outstandingly interesting is how excess of proximity in 

lengthy interactions may exert not just a negative influence in the creation of linkages, 

but also foster the impact of related proximity dimensions. The fine combination of our 

models evidences that both institutional and cognitive proximity may contribute to the 

emergence of organizational proximity. 

 

Another conclusion suggested by our results refers to the interactions between 

the dimensions of proximity. Findings showed that two or more forms of proximity may 

complement each other. In fact, other dimensions of proximity offset the detrimental 

effects caused by certain forms of proximity. 

 

These findings are not free from certain limitations. Foremost, they derive from 

informants' perceptions and self-reports of previous behaviors. As is common in similar 

procedures, memory errors and omissions may exist. Undoubtedly, we make decisions 

to mitigate these potential deficiencies, but relationships that neither party reported or 

over/under evaluation of past experiences can occur. Nonetheless, relying on 

intra-cluster networks, assuming a trade-off between robustness and completeness. 
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Table 1. Descriptive statistics of the sample 
Characteristics Number of firms 

(%) 

Employees 
10 

10<X 25 
25<X 50 
50<X 100 
100< 

 
10(27.8) 

7(19.4) 
10(27.8) 

6(16.7) 
3 (8.3) 

Sales (thousands euros) 
1.000 

1.000<X 3.000 
3.000<X 6.000 
6.000< 

 
10(27.9) 
12(33.3) 

7(19.4) 
7(19.4) 

Year of creation 
Up to 1970s 
1980s 
1990s 
2000s 

 
15(41.7) 

4(11.1) 
10(27.8) 

7(19.4) 
International operations 

Exporters 
Importers 
Exporters/Importers 

 
16 (44.4) 
19 (52.8) 

84.2 
Business activities 

Manufacturers 
Suppliers 

 
26 (72.2) 
10 (27.8) 

Legal structure 
Corporation 
Limited liability 
Others 

 
17 (47.2) 
15 (41.7) 

4 (11.1) 
Local organizations membership 

POD (denomination of origin) 
TDC (business association) 

 
22 (66.1) 
24 (66.7) 

City 
Xixona 

 
36 (100) 

 
Table 2. ERGM Technical Network 

 Baseline model Intermediate model Final model 
 B (p-value) B (p-value) B (p-value) 
Mutual 
Age 
Age (abs.diff) 
Absorptive capacity (in) 
Absorptive capacity (out) 
Supplier 

***0.91 
***-0.04 
***-0.22 
***0.43 

***-0.82 
0.13 

***1.15 
**0.05 

***-0.16 
**0.39 

***-1.02 
*0.16 

***1.58 
*0.03 

***-0.11 
0.12 

***-0.44 
0.10 

Geographical proximity 
Cognitive proximity 
Institutional proximity 
Organizational proximity 
Social proximity 

 **-0.74 
***-0.77 

*-0.22 
***1.25 

*0.60 

***-1.62 
***-.57 
*-0.23 

***1.30 
*0.61 

GWESP (2.5) 
CTriple 
GWINDegree (0.7) 
GWOUTDegree (0.7) 

  ***0.21 
***-0.33 

4.90 
***-2.49 

AIC 
BIC 

1488 
1519 

1420 
1476 

1339 
1416 

Significance codes: '***' 0.01 '**' 0.05 '*' 0.1 
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Table 3. QAP logit regression results 
 Estimate Exp(b) Pr(<=b) Pr(>=b) Pr(>=|b|) 
Intercept 
Institutional proximity 
Social proximity 
Cognitive proximity 
Geographical proximity 
Age (abs. Diff) 

-20.13 
1.60 

-14.67 
1.73 

14.18 
0.01 

1.81e-09 
4.94e+00 
4.28e-07 
5.61e+00 
1.44e+06 
9.88e-01 

0.401 
0.96 
0.32 
0.96 
0.54 
0.29 

0.59 
**0.04 

0.68 
**0.04 

0.46 
0.71 

0.42 
*0.09 
0.32 

*0.09 
0.47 
0.38 

Goodness of Fit Statistics 
Null deviance: 1746.73 on 1260 degrees of freedom 
Residual deviance: 150.7278 on 1254 degrees of freedom 
Chi-Squared test of fit improvement: 
  1596.003 on 6 degrees of freedom, p-value 0  
AIC: 162.7278  BIC: 193.561  
Pseudo-R^2 Measures: 
 (Dn-Dr)/(Dn-Dr+dfn): 0.56  
 (Dn-Dr)/Dn: 0.91 
Total Fraction Correct: 0.99 

Significance codes: '***' 0.01 '**' 0.05 '*' 0.1 
 


