
!"#$%#$%&%'()*'(#+,%-)($#.+/%01)&$)%2#,)%&$%3.11.4$5%%
%

!"##"$%&'$(&!)*(+*#,&-.*(&/$+0*#*1(2&3&%)4"#*&56*71&+*7."8*&9)7&"(0*:7$0*;&$88*++&0)&#$7:*&(6%4*7+&
)9&)(#"(*&+*%$(0"8&<*4&;$0$&+)678*+2&=)67($#&)9&!*4&-*%$(0"8+>&-8"*(8*,&-*7."8*+&$(;&3:*(0+&)(&0?*&
!)7#;&!";*&!*4,&')#6%*&@A,&BB2&CDEFA,&=$(6$71&GHIA&
&

%

A Mobile Query Service for Integrated Access to Large Numbers of Online 
Semantic Web Data Sources 

William Van Woensel (corresponding author)1 
1 Dalhousie University 

6050 University Avenue, Halifax NS B3H 4R2, Canada 
William.Van.Woensel@Dal.Ca 

From the Semantic Web’s inception, a number of 
concurrent initiatives have given rise to multiple 
segments: large semantic datasets, exposed by query 
endpoints; online Semantic Web documents, in the 
form of RDF files; and semantically annotated web 
content (e.g., using RDFa), semantic sources in their 
own right. In various mobile application scenarios, 
online semantic data has proven to be useful. While 
query endpoints are most commonly exploited, they 
are mainly useful to expose large semantic datasets. 
Alternatively, mobile RDF stores are utilized to query 
local semantic data, but this requires the design-time 
identification and replication of relevant data. 
Instead, we present a mobile query service that 
supports on-the-fly and integrated querying of 
semantic data, originating from a largely unused 
portion of the Semantic Web, comprising online RDF 
files and semantics embedded in annotated webpages. 
To that end, our solution performs dynamic 
identification, retrieval and caching of query-relevant 
semantic data. We explore several data identification 
and caching alternatives, and investigate the utility of 
source metadata in optimizing these tasks. Further, we 
introduce a novel cache replacement strategy, fine-
tuned to the described query dataset, and include 
explicit support for the Open World Assumption. An 
extensive experimental validation evaluates the query 
service and its alternative components. 

Keywords: mobile computing; data integration; data 
indexing; data caching; cache replacement; open 
world assumption 

1. Introduction 

The Semantic Web has grown with leaps and bounds 
over the last decade. Large data sources have been put 
online in semantic format, and made interoperable via 
initiatives such as Linked Data [1]  (e.g., DBPedia, 
LinkedGeoData). In addition, small online RDF files, 
for instance capturing item descriptions (e.g., using 
DCMI) or personal profiles (e.g., using FOAF), also 

constitute a large part of the Semantic Web. Sindice 
[2], a Semantic Web search engine, indexes ca. 708 
million of these online sources. In a parallel evolution, 

Sven Casteleyn2, 3 
2 Universidad Jaime I 

E-12006, Castellón de la Plana, Spain 
3 Vrije Universiteit Brussel 
B-1050, Brussels, Belgium 

Sven.Casteleyn@uji.es 

increased efforts are being made to make regular 
(HTML) web content machine-readable as well, 
catalyzed by the commitment of major search engines 
to leverage such annotations for improving search 
results [3]. This evolution has given rise to a new 
Semantic Web segment, comprising web content 
enhanced with semantic annotations (e.g., RDFa, 
microdata). Since most of this annotated content can 
be converted to RDF data (e.g., see [4]), such 
annotated websites are semantic sources in their own 
right. The Web Data Commons initiative [5]  (2013) 
found that ca. 26% of crawled webpages already 
contain semantic annotations.  

Via the Semantic Web, mobile clients gain access to a 
wealth of online, freely available knowledge. Various 
mobile computing domains currently leverage 
semantic data, including augmented reality [6, 7], 
recommender systems [8], location-aware [9, 10] and 
context-aware systems [11, 12], mobile tourism [13] 
and m-Health [14]. Typically, these systems access 
online semantic data via SPARQL query endpoints. 
Since they relieve mobile clients of computationally 
intensive query resolution, query endpoints represent 
an efficient option for mobile clients. On the other 
hand, client-server roundtrips cause delays, and a poor 
or unavailable network connection prevents query 
resolution. Furthermore, setup and maintenance incur 
costs, especially when scalability is desired, and 
requires technical expertise and effort. Therefore, they 
only present an acceptable cost-benefit ratio for large 
RDF datasets.  

Given recent improvements in mobile hardware, 
coupled with the development of mobile query 
engines, an alternative is the local querying of 
semantic web data [12, 15, 16]. However, local 
querying requires the manual, a priori replication of 



!"#$%#$%&%'()*'(#+,%-)($#.+/%01)&$)%2#,)%&$%3.11.4$5%%
%

!"##"$%&'$(&!)*(+*#,&-.*(&/$+0*#*1(2&3&%)4"#*&56*71&+*7."8*&9)7&"(0*:7$0*;&$88*++&0)&#$7:*&(6%4*7+&
)9&)(#"(*&+*%$(0"8&<*4&;$0$&+)678*+2&=)67($#&)9&!*4&-*%$(0"8+>&-8"*(8*,&-*7."8*+&$(;&3:*(0+&)(&0?*&
!)7#;&!";*&!*4,&')#6%*&@A,&BB2&CDEFA,&=$(6$71&GHIA&
&

%

relevant data, and gives rise to data freshness issues. 
Moreover, some domains do not allow establishing 
data relevance beforehand; e.g., in context-awareness, 
relevance is determined by the mobile user's current 
context, which is updated continuously and often in 
unforeseeable ways. Due to nearly ubiquitous wireless 
connectivity, opportunities currently exist to bypass 
these drawbacks and dynamically retrieve relevant 
semantic data. 

We present a client-side, general-purpose mobile 
query service, to study the performance and feasibility 
of on-the-fly querying of a mainly untapped portion of 
the Semantic Web, consisting of large amounts of 
RDF files and annotated websites. By supplying 
integrated query access over these sources, the query 
service can resolve distributed queries, referencing 
data from multiple sources. In particular, our solution 
relies on the dynamic identification, retrieval and 
caching of semantic data relevant to posed queries. 
For this purpose, the query service includes two key 
components; 1/ a source identification component, to 
identify query-relevant sources in the online semantic 
dataset, and 2/ a cache component, locally storing data 
for later re-use. The query service relies on an existing 
mobile query engine to locally query retrieved RDF 
data. To reconcile fine-grained data selection with 
reducing data processing overhead, these components 
exploit the semantics of RDF(S)/OWL data.  
Studying the efficiency and workability of such local, 
client-side data collection and query support is 
desirable for a variety of reasons. First, it is an 
infrastructure-less solution, where no single party 
needs to invest in highly scalable server infrastructure%
or cloud subscriptions. Secondly, keeping data and 
posed queries at client-side ensures privacy, e.g., 
especially in context-aware scenarios. Third, by 
collecting data locally, it ensures query capability for 
applications in conditions of poor or unreliable 
network connection. Even with sufficient Internet 
connectivity, local querying avoids client-server 
roundtrips, which potentially decrease performance at 
query time, which is most critical. Finally, it very well 
supports application scenarios where semantic data 
fragments are retrieved by other means than the 
Internet (e.g., via Bluetooth connection, from high 
capacity RFID tags). 

This article builds on earlier work [17], where we 
presented preliminary versions of the main query 
service components. In this article, we present an 

elaborated version of the query service, including 
extensions that tackle previously identified 
shortcomings. These include a novel cache removal 
strategy called Least-Popular-Sources (LPS), tailored 
to our particular situation where cached data originates 
from online data files. Secondly, in order to fully 
support integrated Semantic Web querying, we 
incorporated the Semantic Web Open World 
Assumption (OWA). Our experimental validation 
evaluates the query service using a larger, real-world 
dataset, focusing on the effects of these extensions on 
performance and completeness of query results; while 
at the same time studying boundaries of semantic web 
technology on current mobile devices. 
In the remainder of this article, we first discuss 
challenges and requirements that arise in our particular 
querying scenario, together with suitable solutions. 
Next, an overview of the query service is presented, 
and its general phases are discussed. We continue by 
detailing the major query service components, as well 
as the LPS strategy, and further discuss built-in 
support for the Semantic Web OWA. Subsequently, 
the query service is evaluated via an experimental 
validation. We proceed with a review of the state of 
the art and end with conclusions and future work. 

2. Challenges and requirements 

The goal of our mobile query service is to provide 
transparent, integrated access to a currently untapped 
part of the Semantic Web, comprising online RDF 
files and annotated websites. In this mobile querying 
scenario, a number of issues and challenges arise, 
which we discuss below. 

1. Mobile device restrictions: although mobile devices 
are catching up with desktop and laptop computers, 
they still have limitations regarding processing and 
memory capacity (e.g., Android applies a maximum 
heap depending on the device; currently, for devices 
with 2 – 3 gigabyte of RAM, this limit is typically 
128-192MB per Android 5.1 app). Furthermore, 
battery power is limited, and restricts full and 
continuous utilization of hardware resources. 

2. Large query dataset: due to its scale, it is 
impossible to consider the entire Semantic Web as 
query dataset. Reflecting this, existing approaches to 
integrated querying only focus on a (configured) 
Semantic Web subset. However, our experiments (see 
Section 7) show that querying even moderately sized 
datasets is currently not feasible on mobile platforms 



!"#$%#$%&%'()*'(#+,%-)($#.+/%01)&$)%2#,)%&$%3.11.4$5%%
%

!"##"$%&'$(&!)*(+*#,&-.*(&/$+0*#*1(2&3&%)4"#*&56*71&+*7."8*&9)7&"(0*:7$0*;&$88*++&0)&#$7:*&(6%4*7+&
)9&)(#"(*&+*%$(0"8&<*4&;$0$&+)678*+2&=)67($#&)9&!*4&-*%$(0"8+>&-8"*(8*,&-*7."8*+&$(;&3:*(0+&)(&0?*&
!)7#;&!";*&!*4,&')#6%*&@A,&BB2&CDEFA,&=$(6$71&GHIA&
&

%

(e.g., the entire dataset needs to be kept in-memory for 
fast querying).  

3. Dynamic Semantic Web subset and volatile 
semantic sources: typically, mobile applications only 
require access to a specific Semantic Web subset; 
ruling out the need to consider the entire Semantic 
Web (see above). For instance, context-provisioning 
systems [17] require access to semantic context 
sources (e.g., place descriptions); while recommender 
systems [8] require semantic descriptions of items to 
be recommended. Often, these datasets are only 
known at runtime and subject to change, which 
necessitates allowing mobile apps to delineate and 
dynamically extend their relevant Semantic Web 
selection [18]. Furthermore, semantic sources 
themselves may change over time. Depending on the 
usage scenario, changes may be only occasional (e.g., 
product descriptions in e-commerce) or frequent (e.g., 
semantic Internet of Things). In any case, our query 
service needs to be able to cope with a dynamic set of 
potentially evolving sources. 

4. Data captured in online, third-party files: in our 
querying scenario, data items originate from third-
party online files. To gain access to their comprised 
relevant data, such files need to be fully downloaded, 
thus retrieving both relevant and irrelevant data. As 
such, data-retrieval overhead is significantly 
increased. We also note that connectivity 
interruptions, not uncommon in mobile scenarios, will 
result in the query dataset becoming inaccessible.  
Taking into account these observed challenges, we 
formulate the following requirements for efficiently 
querying large sets of online semantic sources: 

1. Minimizing resource usage: a local query service 
should not strain mobile memory and processing 
capacities, nor overly drain the device’s battery 
(challenge 1). Since only a relatively limited amount 
of fast, volatile memory is available (challenge 1), any 
additional (volatile) memory requirements (e.g., to 
store supporting index structures) need to be minimal. 
Ideally, the additional data should fit in volatile 
memory to avoid frequent swapping with persistent 
storage, which unavoidably causes performance loss. 
Secondly, as mentioned, the query service should 
enable mobile applications to delineate and 
dynamically extend or update their relevant Semantic 
Web selection (challenge 3). This means any internal 
data structures need to be updateable in real-time and 
with minimal computational effort, while still 

supporting acceptable query performance. Finally, 
battery consumption should be kept within acceptable 
bounds. For instance, this means reducing battery-
intensive operations as much as possible, such as 
source downloads, which require WiFi or 3/4G radios, 
and large-scale persistent data retrieval.  

2. Minimizing query dataset: querying large datasets 
causes performance problems, especially on mobile 
platforms (challenge 2). Barring extraordinary mobile 
hardware improvements in the near future, this implies 
the query dataset should be kept as small as possible, 
while still allowing complete query results to be 
returned. Reducing the query dataset is also tackled in 
other related approaches, such as query distribution 
[19, 20] and context information systems [12, 21]. For 
instance, query distribution systems typically focus on 
ruling out datasets irrelevant to posed queries. 

3. Minimizing online data downloads: retrieving 
online query data is inherently expensive, both in time 
and battery use (challenge 1), and constrained by 
connectivity (challenge 4). Lack of control over online 
data files prevents more efficient solutions at the 
source side, such as selectively downloading only 
relevant parts, or only re-downloading updated parts 
in case of evolving data sources (challenge 3). As 
such, data retrieval should be avoided where possible. 
For instance, this can already be (partially) achieved 
by reducing the query dataset (req. 2) and thus the 
number of sources to (re-)download. 

In order to meet these requirements, two solutions 
present themselves: 

- Fine-grained identification of relevant sources: by 
identifying data relevant to application queries in a 
fine-grained way, the query dataset can be greatly 
reduced (req. 2), as well as the number of relevant 
sources to download (req. 3). Such identification may 
occur pro-actively, before any queries have been 
posed; or re-actively, for each individual posed query. 
For instance, domain-specific approaches exist [12, 
21] that pro-actively and dynamically locate useful 
Semantic Web data, in this case by correlating the 
information to the user’s context. Since pro-active 
data identification is not always possible (e.g., in case 
relevance is determined by user input), it is not a 
suitable choice for our general-purpose query service. 
Therefore, we choose a re-active approach, 
comparable to query distribution approaches [19, 20]. 
As an important advantage, this approach directly 
supports any scenario encapsulated by application 



!"#$%#$%&%'()*'(#+,%-)($#.+/%01)&$)%2#,)%&$%3.11.4$5%%
%

!"##"$%&'$(&!)*(+*#,&-.*(&/$+0*#*1(2&3&%)4"#*&56*71&+*7."8*&9)7&"(0*:7$0*;&$88*++&0)&#$7:*&(6%4*7+&
)9&)(#"(*&+*%$(0"8&<*4&;$0$&+)678*+2&=)67($#&)9&!*4&-*%$(0"8+>&-8"*(8*,&-*7."8*+&$(;&3:*(0+&)(&0?*&
!)7#;&!";*&!*4,&')#6%*&@A,&BB2&CDEFA,&=$(6$71&GHIA&
&

%

queries (e.g., context-awareness, recommendation). 
However, it also requires identification and source 
retrieval tasks to occur during query resolution, 
increasing total resolution times. In any case, efficient 
identification can be supported by indexing source 
data on-the-fly, as the mobile application delineates its 
relevant Semantic Web subset. As indicated by req. 3, 
download overhead can already be mitigated by fine-
grained data selection; as well as by applying the 
second solution, Locally caching data. 

- Locally caching data: by locally caching online data, 
fewer sources need to be (re-)downloaded to serve a 
posed query (req. 3). Using caching, the query 
resolution time is decreased by avoiding source re-
downloads; thus reducing the drawbacks introduced 
by pro-active source selection (see first solution). By 
further allowing cached data to be retrieved with high-
selectivity, the query dataset can be further reduced 
(req. 2). When applying caching, storage footprints are 
kept in check by applying replacement policies (a.k.a. 
removal strategies). In mobile settings, the need for 
caching is reflected in related work [22, 23]. To avoid 
cache invalidity caused by evolving sources, a flexible 
cache validation strategy needs to be deployed, which 
accommodate datasets evolving at different rates and 
avoids unnecessary data (re-)downloads. 

Given our first requirement of minimizing resource 
usage (req. 1), our main goal is to find a good balance 
between the proposed fine-grained data retrieval, 
afforded by effective data indexing and local caching; 
and the memory and computational overhead this 
implies, e.g., resulting from supporting data structures. 
As only a well-balanced solution will provide good 
query resolution times, our research seeks to 
harmonize these counteracting concerns. 

3. General approach 

The query service implements the two proposed 
solutions, namely identifying relevant online sources 
and locally caching data, via two key components. 
Importantly, both components rely on source 
metadata, which includes found predicates and 
resource types, to achieve their task. The source 
identification component, called the Source Index 
Model (SIM), indexes online source metadata from 
online semantic sources, with the goal of enabling 
fine-grained source identification. The cache 
component locally caches downloaded source data and 
has two variant implementations, called Source 
Cache and Meta Cache. Each variant presents a 
different cache organization: Source Cache organizes 
cached data around origin source, while Meta Cache 
arranges the data based on shared source metadata. 
Multiple SIM variants were developed as well, each 
keeping increasing amounts of metadata. By 
developing multiple component variants, we aim to 
study the utility of the aforementioned metadata in 
achieving our goal; namely, reconciling fine-grained 
data retrieval with reduced memory and processing 
overhead (see Section 2). Below, we discuss the 
rationale behind our focus on source metadata.  

Source metadata, including predicates and resource 
types, can be easily and efficiently retrieved from 
semantic sources. Compared to instance-level 
information, as indexed by RDF stores or certain 
query-distribution approaches (see related work, 
Section 8), extracting this metadata is less processing- 
intensive; while much less data needs to be indexed as 
well, decreasing memory usage. At the same time, we 
hypothesize that source metadata still allows for fine-
grained data retrieval, which is confirmed by our 
experiments (see Section 7). 



!"#$%#$%&%'()*'(#+,%-)($#.+/%01)&$)%2#,)%&$%3.11.4$5%%
%

!"##"$%&'$(&!)*(+*#,&-.*(&/$+0*#*1(2&3&%)4"#*&56*71&+*7."8*&9)7&"(0*:7$0*;&$88*++&0)&#$7:*&(6%4*7+&
)9&)(#"(*&+*%$(0"8&<*4&;$0$&+)678*+2&=)67($#&)9&!*4&-*%$(0"8+>&-8"*(8*,&-*7."8*+&$(;&3:*(0+&)(&0?*&
!)7#;&!";*&!*4,&')#6%*&@A,&BB2&CDEFA,&=$(6$71&GHIA&
&

%

Clearly, before it can be utilized for source 
identification and caching, such source metadata needs 
to be present in 1/ online sources and 2/ posed queries. 
The real-world dataset gathered for our experimental 
evaluation, extracted from a range of existing online 
sources, confirms that online sources typically specify 
subject/object types to describe contained resources. 
Furthermore, semantic queries often specify concrete 
predicates and constrain subject/object types of query 
variables. Both these observations are reflected in the 
related domain of semantic query distribution, where 
approaches index RDF predicates [19, 24] and types 
[20] to identify query-relevant datasets.  

However, indexing any kind of RDF data inevitably 
raises problems resulting from the Semantic Web’s 
Open World Assumption (OWA) and its inherently 
distributed nature. Due to its lack of negation-as-
failure, the OWA implies that no single source is self-
contained or complete; other sources can thus specify 
additional information for each resource. In our case, 
this means multiple different resource types can be 
specified across different, distributed online sources, 
potentially leading to inconsistent indexed metadata. 
We elaborate on this issue in Section 6.  

Figure 1 shows an overview of the mobile query 
service components and phases. The query service 
relies on an existing mobile query engine (e.g., 
AndroJena [25], RDF On The Go [26]) to locally 
query the downloaded semantic data. Below, we 
discuss each phase in more detail. 

The Source Indexing phase is triggered when the 
client (i.e., mobile app utilizing the query service) 
passes the location of an a priori known or newly 
discovered online source (a.1), allowing the app to 
outline its relevant portion of the Semantic Web. For 
applications where the required dataset is known 
beforehand, this may occur in bulk [8] whereby 
updates may be issued later on; in other cases, this will 
happen gradually and in real-time [17]. In our 
experimental evaluation (see Section 7), the SCOUT 
mobile context-provisioning framework [11] acts as 
client, passing online sources describing the user’s 
physical environment as they are discovered. Other 
client apps can also be envisioned, including any type 
of context- or environment-aware application (e.g., 
mobile tourism applications, such as restaurant 
finders, museum guides, city tour apps, etc.; m-
commerce application, such as geo-fenced coupon 
apps, shopping comparison apps, real-estate apps, 

 

Figure 1. Overview of the components and phases of the mobile query service. 



!"#$%#$%&%'()*'(#+,%-)($#.+/%01)&$)%2#,)%&$%3.11.4$5%%
%

!"##"$%&'$(&!)*(+*#,&-.*(&/$+0*#*1(2&3&%)4"#*&56*71&+*7."8*&9)7&"(0*:7$0*;&$88*++&0)&#$7:*&(6%4*7+&
)9&)(#"(*&+*%$(0"8&<*4&;$0$&+)678*+2&=)67($#&)9&!*4&-*%$(0"8+>&-8"*(8*,&-*7."8*+&$(;&3:*(0+&)(&0?*&
!)7#;&!";*&!*4,&')#6%*&@A,&BB2&CDEFA,&=$(6$71&GHIA&
&

%

etc.), and other applications scenarios (e.g., mobile 
recommender systems, such as music or movie 
recommenders; aggregator apps, such as news or 
search aggregators; or social-networking-based 
applications, such as dating or travel apps). Depending 
on the concrete scenario, the delineation and dynamic 
expansion of the relevant dataset may also come in 
different forms: discoverable (i.e., in context-aware 
scenarios), computable (i.e., as a result of an on the fly 
crawling process), or previously known. 

Upon receiving an online source reference (a.1), the 
Source Handler contacts the Source Downloader to 
retrieve the source data (a.2). In addition to online 
RDF files, the Source Downloader also supports 
semantically annotated websites, automatically 
extracting their annotations as RDF triples (currently, 
RDFa is supported). The retrieved source data is then 
passed to the Source Analyzer (a.3), which extracts 
the required source metadata, including predicates and 
resource types. The Source Analyzer can optionally 
employ the Ontology Manager to infer additional 
metadata, based on axioms from well-known 
ontologies (a.4). After extraction, the source metadata 
is passed to the Source Index Model (SIM) for 
indexing (a.5), and the downloaded source data is 
passed to the cache component for storage (a.6). 

The Data Query phase commences when the client 
poses a query (b.1). The given query is first analyzed 
by the Query Analyzer (b.2), which extracts query 
metadata as search constraints. This query metadata 
reflects the extracted source metadata, and comprises 
concrete predicates and type constraints. As before, 
the Query Analyzer may utilize the Ontology Manager 
to infer additional query metadata (b.3). The Query 
Handler then passes the extracted search constraints to 
the SIM, which returns references to online sources 
containing relevant data (b.4). Given the identified 
source references (and extracted search constraints1), 
the cache component is contacted (b.5), returning 
query-relevant source data locally available in the 
cache. Any sources not found in the cache, due to 
applied removal strategies (in case storage was full), 
are re-downloaded by the Source Downloader (b.6).  

Afterwards, an existing mobile query engine executes 
the query (b.7) over the collected query dataset, after 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1 Meta Cache relies on the search constraints for retrieving 
cached data (see Section 5.1.2). 
%

which the query results are returned to the client (b.8). 
At the end of the phase, the cache is updated with the 
(re-)downloaded source data (b.9).  

As mentioned, the Source Indexing and Data Query 
phases are respectively triggered when indexing an 
online source and executing an application query. In 
case new sources are discovered dynamically, they are 
thus likely to occur intermittently at runtime. The 
query service is implemented for the Android platform 
(version 4.1.2). The AndroJena library supplies the 
mobile query engine, though any other mobile query 
engine can be used. 

Below, we elaborate on the concrete implementations 
of our solutions, namely identifying online sources 
and caching source data. 

4. Identifying relevant online sources 

By indexing online source data, query-relevant 
sources can be identified during querying. In 
particular, the Source Index Model (SIM) focuses on 
source metadata, including predicates and resource 
types, resulting in a compact index that is quick to 
update and maintain, while still ensuring high source 
selectivity. Given analogous metadata extracted from 
queries, the SIM utilizes the indexed metadata to 
identify query-relevant sources in a fine-grained way.  

To validate the effectiveness of source metadata in 
reconciling data selectivity and overhead, we 
developed 3 SIM variants, each keeping increasing 
amounts of metadata: SIM1, only storing predicates, 
SIM2, keeping predicates and subject types, and 
SIM3, keeping predicates, subject and object types. 

Below, we shortly elaborate on the index structure 
employed by the SIM. Then, we discuss the source 
and query analysis and source identification processes. 

4.1 Source Index Model 

The Source Index Model is implemented using a 
multi-level index; a type of index used traditionally in 
databases, but in this case specifically tailored for 
source identification based on source meta-data. In the 
related work section (see Section 8), we discuss other 
indexing structures employed by related approaches. 
Each index level indexes on a particular metadata part 
(i.e., predicates, subject or object type), and keeps 
maps that connect metadata parts occuring together in 
source triples. In particular, the first-level map indexes 
on predicates, whereby each entry links to a second-
level map keeping subject types. Each subject type 



!"#$%#$%&%'()*'(#+,%-)($#.+/%01)&$)%2#,)%&$%3.11.4$5%%
%

!"##"$%&'$(&!)*(+*#,&-.*(&/$+0*#*1(2&3&%)4"#*&56*71&+*7."8*&9)7&"(0*:7$0*;&$88*++&0)&#$7:*&(6%4*7+&
)9&)(#"(*&+*%$(0"8&<*4&;$0$&+)678*+2&=)67($#&)9&!*4&-*%$(0"8+>&-8"*(8*,&-*7."8*+&$(;&3:*(0+&)(&0?*&
!)7#;&!";*&!*4,&')#6%*&@A,&BB2&CDEFA,&=$(6$71&GHIA&
&

%

further links to a map keeping object types, each of 
which finally points to a list of URLs. Each linked 
combination of predicate, subject and object type (i.e., 
path through the multi-level index) indicates that the 
particular metadata combination occur together in one 
or more triples from the indicated sources. Given that 
sources may contain triples without types, an <empty> 
map entry may be added as well. For instance, a 
predicate entry linking to an <empty> subject type and 
<empty> object type entry indicates the predicate was 
found without subject/object types in the indicated 
sources.  

To reduce the size of the SIM, dictionary encoding is 
applied (similar to RDF stores [27, 28]). This 
encoding process is fine-tuned towards RDF terms, 
and maps namespaces (indicating a set of related 
resources) to an integer identifier, while local names 
(indicating the concept or item) are kept as character 
arrays. We found this resulted in the largest size 
reduction, as namespaces are repeated across data 
sources much more often than the local names. 

4.2 Source Analysis 

The Source Analyzer extracts metadata for each 
retrieved online source, including predicates, subject 
and object types. Initially, this extraction was realized 
via predefined SPARQL extraction queries [17, 29]. 
However, this led to huge processing overheads when 
dealing with real-world sources, which contained large 
amounts of distinct metadata. %We therefore optimized 
the metadata extraction process by dynamically 
parsing RDF files in N-TRIPLE format (which are 
straightforward to parse), processing the RDF line-
per-line and returning new RDF metadata statements 
as requested by the Source Analyzer. This way, we 
avoid an expensive RDF graph creation (performance 
and memory-wise) and querying step. This resulted in 
an average performance gain of factor 10. 

4.3 Query Analysis 

The Query Analyzer analyzes each triple pattern in a 
query’s WHERE, OPTIONAL and UNION clauses to 
retrieve query metadata, including predicates and 
resource types, which can then be matched to indexed 
source metadata. FILTER clauses are further scanned 
for functions indicating equivalence between variables 
and resources (i.e., sameTerm function), which may 
result in additional concrete predicates and types.  

SELECT ?place 
WHERE { 

?person rdf:type foaf:Person . 
?person foaf:based_near ?place . 
?place rdf:type rest:Restaurant . 

} 

Code Listing 1. Example SPARQL query and extracted 
triple patterns 

Code Listing 1 shows an example SPARQL query, 
where the underlined triple patterns supply type 
constraints for the triple pattern in bold. The following 
query metadata combination, or search constraint, is 
extracted for Code Listing 1: foaf:based_near – 
foaf:Person – rest:Restaurant. 

The Query Analyzer utilizes the SPARQL Parser 
library [30] to parse SPARQL queries, and then visits 
the parsed Abstract Syntax Tree (AST) to extract the 
search constraints. 

4.3 Source Identification Process 

To identify query-relevant sources, search contraints 
extracted from queries are matched with metadata 
from online sources. In particular, the SIM follows 
each individual search constraint as a path through the 
multi-level index. Respectively using the predicate, 
subject and object type as keys, the predicate index 
returns a subject type index (predicate key), which in 
turn leads to an object type index (subject type key). 
Finally, this latter index returns a list of source URLs 
(object type key), each adhering to the given search 
constraint. By performing this step for each separate 
search constraint, as opposed to the entire query, 
sources can be identified for queries that are not 
solvable by any single source, but require a 
combination of sources; thus supplying full integrated 
query access across online sources. 

In case subject/object variables of a triple pattern have 
multiple type restrictions (e.g., foaf:Person, 
dcmi:Agent), a data source is only relevant for the 
triple pattern if it specifies all given types for that 
variable. To realize this, separate search constraints 
are extracted for each type, and an index search is 
performed for each constraint. Afterwards, the 
intersection of the found sources is taken, ensuring the 
sources each adhere to the extracted constraints. 

Similar to sources, some queries may lack certain 
metadata, including types and predicates. In this case, 
missing metadata indicates no constraint is given on 
the missing metadata part(s) (e.g., subject type). This  
means the search at the particular index level (e.g., 
subject type index) is unconstrained, and all entries at 
the particular index level need to be followed (e.g., 



!"#$%#$%&%'()*'(#+,%-)($#.+/%01)&$)%2#,)%&$%3.11.4$5%%
%

!"##"$%&'$(&!)*(+*#,&-.*(&/$+0*#*1(2&3&%)4"#*&56*71&+*7."8*&9)7&"(0*:7$0*;&$88*++&0)&#$7:*&(6%4*7+&
)9&)(#"(*&+*%$(0"8&<*4&;$0$&+)678*+2&=)67($#&)9&!*4&-*%$(0"8+>&-8"*(8*,&-*7."8*+&$(;&3:*(0+&)(&0?*&
!)7#;&!";*&!*4,&')#6%*&@A,&BB2&CDEFA,&=$(6$71&GHIA&
&

%

subject type index). Afterwards, the union of all found 
sources is taken, denoting all sources that fulfil the 
(partial) constraint. Note that the <empty> entry, 
indicating a lack of particular source metadata (e.g., 
subject type), only matches if the search is 
unconstrained at that level.  

By considering each search constraint separately, as 
well as supporting both missing source and query 
metadata, all sources containing query-relevant data 
are returned. However, full completeness can only be 
guaranteed if the Open World Assumption is also 
considered. We revisit this issue in Section 6. 

 

5. Caching source data 

Locally caching source data serves to reduce the 
number of source (re-)downloads required to serve a 
posed query. Importantly, cached data should be 
retrieved with high selectivity to keep the query 
dataset small, while additional data structures (e.g., 
indices) should only take up limited memory space 
and be quick to update and maintain. To study the 
extent to which source metadata can balance these two 
concerns, we consider multiple component variants: 
Source Cache, which arranges the cache according to 
origin source; and Meta Cache, organizing cached 
data according to shared metadata. In Section 5.1, we 
elaborate on both cache organizations, and weigh their 
respective advantages and drawbacks. 

To manage the occupied memory and storage space, 
replacement policies (or removal strategies) identify 
data to be moved to persistent storage or removed 
entirely. We discuss suitable removal strategies, and 
detail a novel removal strategy called Least-Popular-
Sources, in Section 5.2. Finally, a cache validity 
strategy is applied to ensure the freshness of the cache 
(Section 5.3). Both removal and cache validity 
strategies are tailored to our particular setting, where 
cached data originates from online data files.  

5.1 Cache organizations 

A cache can be organized in different ways, 
influencing the fine-graininess of cached data 
retrieval, as well as the maintenance costs and 
memory overhead. Cached data is indexed, stored and 
retrieved per unit of data called the cache unit, 
whereby the content of the unit depends on the 
particular cache organization. 

5.1.1 Source Cache 

In Source Cache, an individual cache unit contains all 
data from a particular online source; in other words, 
data is indexed, stored and retrieved per origin source. 
This is a natural organization in our setting, where 
data originates from small online sources. A search 
index (implemented as a hash table) is kept on source 
URLs, each of which uniquely identifies a cache unit. 
To obtain the URLs of cached, query-relevant sources, 
the Source Cache is deployed in combination with the 
SIM (see Section 4).  

Since only one index is kept with a relatively small 
amount of entries, this cache organization results in 
only minimal memory overhead, while the SIM 
memory impact is limited as well. Cache creation and 
updating is also efficient, since each downloaded 
source is directly stored as a cache unit. On the other 
hand, Source Cache does not support fine-grained data 
retrieval, since a retrieved cache unit comprises the 
entire source instead of only its relevant triples. Our 
experimental evaluation (Section 7) shows that this 
leads to high cache retrieval overheads during query 
resolution. As indicated by req. 3, Minimizing online 
data downloads, course-grained retrieval is 
unavoidable when dealing with online sources. 
However, this can be improved upon when dealing 
with local data, as shown by Meta Cache. 

5.1.2 Meta Cache 

In the Meta Cache organization, a single cache unit 
comprises all triples sharing the same metadata 
combination (i.e., predicate and subject, object type), 
irrespective or their origin source. By keeping search 
indices on predicates, subject and object types, 
relevant cache units can be quickly identified, given a 
particular query metadata combination.  

In this case, a retrieved cache unit comprises only 
triples matching the query’s search constraints, 
resulting in much more fine-grained retrieval. 
However, this comes with additional memory and 
processing overhead. Firstly, the cache update time is 
increased, since metadata from each source triple 
needs to be extracted, and added to three separate 
indices. Secondly, storing triples from a single online 
source potentially requires creating or updating 
multiple cache units, depending on their metadata. 
Regarding memory usage, three indices (implemented 
using hashtables) are kept with considerably more 
entries compared to Source Cache, since the number 
of distinct predicates and types usually exceeds the 



!"#$%#$%&%'()*'(#+,%-)($#.+/%01)&$)%2#,)%&$%3.11.4$5%%
%

!"##"$%&'$(&!)*(+*#,&-.*(&/$+0*#*1(2&3&%)4"#*&56*71&+*7."8*&9)7&"(0*:7$0*;&$88*++&0)&#$7:*&(6%4*7+&
)9&)(#"(*&+*%$(0"8&<*4&;$0$&+)678*+2&=)67($#&)9&!*4&-*%$(0"8+>&-8"*(8*,&-*7."8*+&$(;&3:*(0+&)(&0?*&
!)7#;&!";*&!*4,&')#6%*&@A,&BB2&CDEFA,&=$(6$71&GHIA&
&

%

number of source URLs. To enable validity checking, 
the origin URL of each cached triple also needs to be 
kept (see Section 5.3). In an effort to reduce memory 
and storage space, type statements (i.e., with predicate 
rdf:type) are not stored, but automatically generated 
based on the metadata associated with retrieved cache 
units2, and then inserted in the final query dataset. At 
the same time, we note that due to its focus on 
schema-level information, Meta Cache still has a 
much lower memory and update overhead compared 
to other indexing approaches (see Section 8).  
Additionally, our experimental evaluation  shows that 
this overhead is still reasonable, especially when 
considering the resulting improvement in query 
resolution performance. 

In addition, Meta Cache keeps information on 
“missing” cached data, previously removed by cache 
removal strategies (see next section). In particular, it 
keeps the metadata combination associated with the 
removed data, together with references to their origin 
sources; and indexes this information using the 
aforementioned indices. Consequently, a single cache 
lookup may return relevant cached data as well as 
references to online sources that need to be re-
downloaded. By integrating this functionality in the 
Meta Cache, we rule out the need for a separate source 
identification component, avoiding its associated 
overhead. As a result, the Meta Cache implements 
both online source identification and local caching. 

Finally, we note that, analogous to the SIM, both 
Source and Meta cache apply dictionary encoding to 
reduce memory and storage space. 

5.2 Removal Strategy 

In case of limited volatile and persistent storage, a 
removal strategy (or replacement policy) is applied to 
identify data to be moved from volatile to persistent 
storage or removed entirely, whenever volatile or 
persistent memory becomes full, respectively. For this 
purpose, well-known strategies such as Least-
Recently-Used (LRU) or Least-Frequently-Used 
(LFU) may be employed. A number of domain-
specific removal strategies exist as well, which are 
discussed in our related work section (see Section 8). 

However, such existing strategies have the potential to 
cause major performance issues for Meta Cache. This 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
6%E.g., for each triple “X Y Z .” in cache unit with metadata 
<pred1, subjType1>, the type statement “X rdf:type 
subjType1” is generated.%

is a result of the specific organization of Meta Cache, 
which groups source data based on shared metadata 
instead of origin source. As a result, cache units likely 
contain data originating from multiple sources. 
Whenever a removed cache unit is referenced during 
query resolution (i.e., a cache miss), this means all 
sources containing the missing metadata combination 
need to be fully re-downloaded, and the relevant data 
items extracted. This issue has its roots in our 
particular setting, where data is captured in online data 
files (see Section 2), and will have negative effects for 
any cache organization different from origin source. 
Previously, we found that this incurs a serious 
performance overhead during query resolution [17]. 

To allow for efficient query resolution when utilizing 
Meta Cache, we need to reduce the occurrence of this 
problem. For this purpose, we present a novel cache 
removal strategy called Least Popular Sources (LPS), 
which we discuss below. 

5.2.1 Least-Popular-Sources 

Instead of removing single cache units, the LPS 
strategy removes all data originating from a particular 
source, potentially across cache units3. By removing 
data on a per-source level, cache misses resulting from 
a single removal only require a single source to be re-
downloaded, instead of multiple sources. On the other 
hand, the probability of cache misses increases as 
well, as one source removal influences all cache units 
with the source’s data. This is illustrated in Figure 2; 
by removing source A, any cache miss only incurs one 
source re-download; although there is now a 3/4 
chance that accessing a cache unit incurs a cache miss.  

Consequently, the goal of LPS is to balance 1/ the 
number of source re-downloads and 2/ the probability 
of cache misses. To that end, LPS considers the 
“popularity” of cached sources when identifying 
sources to be stored persistently or removed. As 
explained below, both the popularity of its source data 
and metadata is considered. 

The first factor, source-data popularity, refers to the 
degree to which the source’s data is spread across the 
cache, indicated by the number of cache units 
containing the source’s data (i.e., the source data’s 
“popularity”). As such, it marks the amount of cache 
units that will be affected by removing the source’s 
data. By reducing the amount of cache units with 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3 Other sources’ data in these cache units is hereby retained.%



!"#$%#$%&%'()*'(#+,%-)($#.+/%01)&$)%2#,)%&$%3.11.4$5%%
%

!"##"$%&'$(&!)*(+*#,&-.*(&/$+0*#*1(2&3&%)4"#*&56*71&+*7."8*&9)7&"(0*:7$0*;&$88*++&0)&#$7:*&(6%4*7+&
)9&)(#"(*&+*%$(0"8&<*4&;$0$&+)678*+2&=)67($#&)9&!*4&-*%$(0"8+>&-8"*(8*,&-*7."8*+&$(;&3:*(0+&)(&0?*&
!)7#;&!";*&!*4,&')#6%*&@A,&BB2&CDEFA,&=$(6$71&GHIA&
&

%

missing data, we can decrease the probability of cache 
misses later on. In Figure 2, source A has the highest 
value for this factor, since its data is spread across 3 
cache units. 

The second factor, source-metadata popularity, 
reflects the number of other online sources that 
contain the source’s metadata (i.e., the source 
metadata’s “popularity”). Since cache units group data 
sharing the same metadata, origin sources 
participating in the same cache unit share (at least) this 
metadata. In case a cache unit has many origin 
sources, it will thus contribute to a high extent to the 
source-metadata popularity of each associated source. 
Applying this factor reduces the chance that many of 
these sources will be removed; thereby decreasing the 
potential number of source re-downloads on a cache 
miss. This is illustrated in Figure 2, where sources B, 
C, D and E each have three other sources keeping the 
same metadata (indicated by their participation in 
cache unit 1).  As a result, these sources have a large 
value for this factor, reducing the likelihood that many 
of them will be removed. This means that a cache 
miss, resulting from accessing cache unit 1, will lead 
to only a minimal number of source re-downloads. 

 
Figure 2. Example application of LPS. 

In practice, these two factors allow us to cope with 
sources of different sizes. Small sources will typically 
be spread across less cache units (as they typically 
contain less distinct combinations of metadata), and 
thus have a smaller value for the source-data 
popularity factor. Due to their smaller size, a 
comparably large number of them also needs to be 
removed to clear the same amount of storage space 
(compared to when removing a larger source). For 
instance, in Figure 2, clearing storage space could 
involve removing the (small) sources C, D and E, 

resulting in 3 source re-downloads when accessing 
cache unit 1. However, since this cache unit contains a 
large amount of sources, the sources’ associated value 
for the source-metadata factor is larger as well. This 
reduces the likelihood that many of these sources will 
be removed; thus decreasing the probability of many 
source re-downloads on a cache miss. 

As a final factor, LPS can take the source’s download 
cost into account, whereby sources that have long 
download times are less likely to be removed. Formula 
1 shows the removal value calculation for source s, 
where f1 stands for source-data popularity, f2 for 
source-metadata popularity, and f3 for download cost 
(in seconds)4. Due to the nature of f1 and f2, this 
calculation is performed each time cache units are 
created, updated or removed. Different factor weights 
may be set, respectively represented by  !, " and #. In 
our experimental section, we tested different weights 
to find an optimal balance between these factors in our 
dataset (see Section 7). 

LPS(s) = !f1 + "f2 + #f3 

Formula 1. LSP removal value calculation. 

We note that LPS was specifically designed to cope 
with the difficulties of cache removal in settings 
where data originates from online files. As such, it 
does not consider any particular locality of reference, 
as is typically the case for removal strategies (e.g., 
LRU, or Furthest-Away-Removal (FAR) [23]). Since 
our query service is general-purpose, it is also not 
possible to make a priori assumptions on likeliness of 
referral. Finally, we also note that LPS makes 
removals more complex and costly, compared to 
regular removal strategies. In our experimental 
evaluation (see Section 7), we investigate how these 
overheads weigh against the potential advantages. 

In the section below, we elaborate on implications of 
LPS on cache architecture. 

5.2.2 Decoupling retrieval, storage, removal units 

Until now, we indicated that cached data is retrieved, 
stored and removed per cache unit (see Section 5.1). 
To support removal strategies such as LPS, where data 
is removed via a different unit (e.g., origin source), we 
need to further distinguish between a retrieval, 
removal and storage unit. A retrieval unit keeps 
(pointers to) the data retrieved when accessing the 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
7%A higher result value means the source is less likely to be 
removed.%



!"#$%#$%&%'()*'(#+,%-)($#.+/%01)&$)%2#,)%&$%3.11.4$5%%
%

!"##"$%&'$(&!)*(+*#,&-.*(&/$+0*#*1(2&3&%)4"#*&56*71&+*7."8*&9)7&"(0*:7$0*;&$88*++&0)&#$7:*&(6%4*7+&
)9&)(#"(*&+*%$(0"8&<*4&;$0$&+)678*+2&=)67($#&)9&!*4&-*%$(0"8+>&-8"*(8*,&-*7."8*+&$(;&3:*(0+&)(&0?*&
!)7#;&!";*&!*4,&')#6%*&@A,&BB2&CDEFA,&=$(6$71&GHIA&
&

%

cache, while a removal unit keeps (pointers to) the 
data that is removed or persistently stored due to a 
memory management operation. A storage unit 
contains the actual cached data (in-memory/  
persistent), to which retrieval and removal units point. 
In other words, retrieval and storage units are indexes 
over the actual data, stored as storage units. This 
allows both efficient retrieval of query data, as well as 
efficient removal due to cache maintenance. 

In Meta Cache, the retrieval unit points to all data 
sharing the same metadata, and thus corresponds to 
the original notion of a “cache unit”. When applying 
the LPS strategy, the removal unit will point to all data 
originating from a particular source. To accommodate 
this, the storage unit needs to be more fine-grained, 
keeping data from a particular source that share the 
same metadata. This allows removal units to keep 
pointers to units only keeping their associated source 
data; and retrieval units towards units only storing the 
data matching their metadata combination. A memory 
management operation can thus selectively remove 
(from volatile/persistent memory) only the data 
originating from a particular online source5; while all 
data adhering to a given metadata combination can 
still be retrieved.  

Finally, we note that when moving a storage unit from 
volatile to persistent storage, multiple options exist to 
store the source data on the file system6. We found 
that the straightforward option, namely saving each 
storage unit to a single file, leads to an impractically 
large number of files (i.e., # distinct metadata 
combinations X # origin sources). Instead, grouping 
the persistent data per removal or retrieval unit 
reduces the number of data files, and has other 
advantages as well. Grouping per removal unit 
optimizes memory management (i.e., storage, 
removal), since only a single file is affected. By 
grouping per retrieval unit, data retrieval is optimized, 
since a single retrieval only requires accessing one 
data file. In our experimental section (see Section 7), 
we discuss on the effects of these data grouping 
methods on performance. 

5.3 Implementation 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
8%Removal of storage units is hereby propagated to their 
respective retrieval units, to update their internal pointers. 
6 Data is stored directly on the file system instead of a 
database, which would introduce unnecessary overhead. 

In this section, we discuss implementation issues 
related to the cache components. 

- Representing in-memory source data: when 
assembling the final dataset for querying, an 
AndroJena RDF graph needs to be created on which 
the query is executed. Loading this query graph with 
separate data strings from each retrieved cache unit 
incurs a performance overhead. This was especially 
the case for Source Cache, with its coarse-grained 
cached data retrieval. Therefore, in Source Cache, 
each in-memory cache unit keeps its data in an 
AndroJena RDF graph. By optimizing the AndroJena 
library to efficiently combine AndroJena graphs, the 
final data assembly became much more efficient.  

On the other hand, since the number of cache units in 
Meta Cache is comparably much higher (due to the 
higher amount of distinct metadata combinations), we 
found that keeping separate AndroJena graphs per 
cache unit caused too much memory overhead7. 
Therefore, cache units in Meta Cache still keep their 
data as a string.  

- Storage management: in order to manage volatile 
and persistent storage space, which involves 
persistently storing or removing cached data when 
storage limits are exceeded, cached data sizes need to 
be accurately measured. Since no effective way to 
estimate runtime memory usage is available in 
Android, this is currently done by estimating source 
data sizes, which does not include implementation-
specific data structures (e.g., Java object overheads). 
In our experiments, we compare the accuracy of this 
estimation with the actual memory usage, measured 
by analyzing Java heap dumps8.   

5.3 Cache validity 

Various invalidation strategies exist to detect invalid, 
out-of-date information in client-server systems and 
mobile scenarios (see related work, Section 8). 
However, such strategies cannot be applied in our 
setting, where cached data does not originate from 
dedicated servers but from online files, stored on 
multiple, general-purpose web servers.  

To accommodate our setting, we re-use web servers’ 
existing functionality by relying on the cache support 
provided by the HTTP protocol (e.g., also used by 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
7 E.g., due to the internal indices used by AndroJena (see 
related work). 
8 Due to their overhead, it is not possible to use heap dump 
analysis tools at runtime.%



!"#$%#$%&%'()*'(#+,%-)($#.+/%01)&$)%2#,)%&$%3.11.4$5%%
%

!"##"$%&'$(&!)*(+*#,&-.*(&/$+0*#*1(2&3&%)4"#*&56*71&+*7."8*&9)7&"(0*:7$0*;&$88*++&0)&#$7:*&(6%4*7+&
)9&)(#"(*&+*%$(0"8&<*4&;$0$&+)678*+2&=)67($#&)9&!*4&-*%$(0"8+>&-8"*(8*,&-*7."8*+&$(;&3:*(0+&)(&0?*&
!)7#;&!";*&!*4,&')#6%*&@A,&BB2&CDEFA,&=$(6$71&GHIA&
&

%

proxy caches). For each retrieved source, the last 
download time and expiration time (indicated by the 
“Expires” header field), if available, is kept. If no 
expiration time is given, a configurable maximum life 
span is assigned to the source; which depends on the 
volatility of the dataset, and data freshness 
requirements of the application. Based on these two 
criteria, the system may also be configured to let the 
max. life span take precedence over the source expiry 
time, meaning the same life span will be assigned to 
all sources (e.g., in case data freshness is less 
important,%or online sources are expected to evolve 
very frequently regardless of expiry times). To support 
timely validity checking, an ordered list of life spans / 
expiry times is kept by the system. In case the 
currently smallest time span has been exceeded, a 
background process checks the source’s validity. For 
optimisation purposes, in case a number of sequential 
time spans are sufficiently similar, they are grouped to 
invoke the background process only once (cfr. 
Android AlarmManager API9). Checking source 
validity involves sending a conditional GET request to 
the source’s web server, with its last download time 
filled into the “Last-Modified-Since” header field. If 
no change occurred, a 304 Not Modified header is 
returned, yielding only minimal data transfer 
overhead. Else, the updated source data is returned 
and used to update the cache.  

6. The Semantic Web as an Distributed System, 
supporting the Open World Assumption 

The vision of the Semantic Web is that of an open, 
interlinked web of machine-readable data, where 
semantic sources may publish information on anything 
identifiable by a resource URI. To that end, Semantic 
Web technology implements the Open World 
Assumption (OWA) which, contrary to the Closed 
World Assumption, states that no assumptions can be 
made on non-explicitly stated knowledge. As such, no 
data source may be assumed to be comprehensive and 
self-contained, and due to the distributed nature of the 
Semantic Web, additional information on resources, 
missing from the particular source, may be found in 
any other online source. Data sources are thus 
transformed from closed data silos to collaborating 
parties – each contributing their own data to the online 
Semantic Web knowledge base.  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
9%",,'$5::;)-)1.')(/&+;(.#;/2.<:,(&#+#+=:$2");>1#+=:&1&(<$/",<1%

By supporting the distributed nature of the Semantic 
Web and the OWA assumption, our query service can 
provide fully integrated access to the Semantic Web. 
Supplying this support has two important 
consequences, which we discuss next. 

6.1  Distributed type constraints 

As mentioned, the OWA implies semantic sources are 
not self-contained, which also means that their 
comprised RDF resources may be described by other 
online sources. Regarding the query service, this 
means that new sources may specify different types 
for already processed data; possibly leading to 
previously indexed source metadata to become out-of-
date. Consequently, resource types should ideally be 
tracked across online sources, whereby appropriate 
action is taken when incomplete source metadata is 
found. In doing so, we guarantee that all relevant 
query results are returned, for any online data 
composition. We call this process type mediation.  

In particular, type mediation is applied in two cases; 
when new sources specify additional types for 
previously found resources, and when new sources 
specify less types than known for the comprised 
resources. In the former case, internal indices should 
be updated; and in the latter case, the extracted source 
metadata should be extended with the missing types. 
To keep track of resource types across sources, we 
rely on a resource index (implemented as a hashtable) 
linking found resources to their known types.  

We note that online sources cannot be directly updated 
with the missing types, as data in our setting is 
captured in online files not under our control. As such, 
type mediation needs to be applied on new sources 
during the Source Indexing phase; as well as during 
the Data Query phase, on re-downloaded sources (due 
to cache misses) on which type mediation had already 
been applied. We finally note that, due to the different 
internal structures in the SIM and cache components, 
the type mediation process and resource index differ 
for these components and their variants. For Meta 
Cache, we note that type mediation often involves 
loading previously cached data into memory, to 
update their associated metadata. As such, type 
mediation process will have a large impact on removal 
times, as the loaded cache units need to be moved 
back to persistent storage afterwards. In the 
experimental section (see Section 7), we study the 



!"#$%#$%&%'()*'(#+,%-)($#.+/%01)&$)%2#,)%&$%3.11.4$5%%
%

!"##"$%&'$(&!)*(+*#,&-.*(&/$+0*#*1(2&3&%)4"#*&56*71&+*7."8*&9)7&"(0*:7$0*;&$88*++&0)&#$7:*&(6%4*7+&
)9&)(#"(*&+*%$(0"8&<*4&;$0$&+)678*+2&=)67($#&)9&!*4&-*%$(0"8+>&-8"*(8*,&-*7."8*+&$(;&3:*(0+&)(&0?*&
!)7#;&!";*&!*4,&')#6%*&@A,&BB2&CDEFA,&=$(6$71&GHIA&
&

%

effects of each type mediation process and index on 
performance, memory and data access. 

Type mediation is a resource-intensive process, given 
the resource index and need for updating internal 
indices. Consequently, it contradicts req. 1, 
Minimizing resource usage. At the same time, we 
point out this resource index still consumes less 
memory compared to e.g., RDF stores, which often 
utilize multiple indexes to support fast querying (e.g., 
3 for Androjena; and 6 for YARS [28] and HexaStore 
[27]). We also note that in some cases, type mediation 
may be safely disabled. By analyzing the online 
dataset, the existence of inconsistent typing can be 
ruled out. Alternatively, when there is control over the 
online sources (e.g., in closed-world systems), the 
source data can be automatically supplemented with 
missing resource types, ensuring consistent typing. 
Some applications also prefer fast, partial results over 
guaranteed completeness, especially in a Web setting 
(e.g., [31, 32]). Finally, in the real-world dataset used 
in our experiments, we observed that only a limited 
number of typing issues occurred (see Section 7).  

It can be noted that related approaches integrating 
Semantic Web data suffer this problem, yet to the best 
of our knowledge, they do not consider it. For 
instance, the SemWIQ [20] and DARQ [19] query 
distribution systems do not update indexed resource 
types based on types found in other sources. As a 
result, related state of the art corresponds to the case 
where type mediation is disabled in our query service. 

6.2 Inferring new types 

A second important consequence of the Semantic Web 
OWA is that it allows new statements to be inferred, 
based on logical axioms specified in RDF schema 
definitions or OWL ontologies. For example, an 
ontology may contain property domain/range 
restrictions, which constrain the types of related 
subject/object resources. In case these type constraints 
are not explicitly stated in the RDF data, they may be 
inferred. This process is called type inferencing, and is 
supported by most RDF stores. Typically, these stores 
allow enabling/disabling inferencing to suit 
application needs and improve performance. 
Analogously, our query service supports type 
inferencing and allows to enable/disable it. When 
enabled, type inferencing is applied during the Source 
Indexing phase to enrich extracted source metadata; 

and during the Data Query phase, to enhance the 
extracted search constraints of posed queries.  

For this purpose, the Source Indexing phase is 
extended with the Ontology Manager (see Figure 1). 
This component provides inferencing support based 
on axioms from online schema definitions and 
ontologies. The Source Analyzer, responsible for 
extracting source metadata, employs the Ontology 
Manager to retrieve each found predicate’s 
domain/range types, optionally including their 
subtypes. If encountered, these inferred types are 
added to the extracted source metadata10, allowing 
more query-relevant data to be identified. Consider the 
following RDF snippet in Code 2 (namespaces 
omitted for brevity): 

  vub:thinker_in_all_states 
    rdfs:label “Thinker in all states”. 
  vub:thinker_in_all_states     
    geo:xyCoordinates  
    ”50.82242202758789,4.393936634063721”. 

Code 2. Example RDF snippet to illustrate type inferencing 
during Source Indexing. 

The Source Analyzer contacts the Ontology Manager 
to obtain the domain type restriction of the 
geo:xyCoordinates predicate (specified in the 
GeoFeatures [33] ontology), namely 
geo:SpatialEntity; and subsequently extends the 
source metadata with this inferred type. Whenever a 
query is posed requesting all labels of 
geo:SpatialEntity resources, the 
vub:thinker_in_all_states resource will now be 
returned as a result; which would not have been the 
case without type inferencing.  

During the Data Query phase, the Query Analyzer 
component, responsible for extracting query search 
constraints, leverages the same ontological 
knowledge. By utilizing the Ontology Manager, the 
Query Analyzer obtains each concrete predicate’s 
domain and range types (possibly accompanied by 
their subtypes), and uses them to enhance the search 
constraints. In doing so, more irrelevant source data 
can be ruled out. Code 3 shows a query containing two 
triple patterns (namespaces omitted for brevity): 

  ?restaurant lgd:cuisine ?cuisine . 
  ?restaurant rdfs:label ?label . 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
10 If inferred types are already materialized in the online 
dataset, type inferencing in this phase can be skipped.%



!"#$%#$%&%'()*'(#+,%-)($#.+/%01)&$)%2#,)%&$%3.11.4$5%%
%

!"##"$%&'$(&!)*(+*#,&-.*(&/$+0*#*1(2&3&%)4"#*&56*71&+*7."8*&9)7&"(0*:7$0*;&$88*++&0)&#$7:*&(6%4*7+&
)9&)(#"(*&+*%$(0"8&<*4&;$0$&+)678*+2&=)67($#&)9&!*4&-*%$(0"8+>&-8"*(8*,&-*7."8*+&$(;&3:*(0+&)(&0?*&
!)7#;&!";*&!*4,&')#6%*&@A,&BB2&CDEFA,&=$(6$71&GHIA&
&

%

Code 3. Example query to illustrate type inferencing during 
the Data Query phase. 

Using the Ontology Manager, the Query Analyzer 
retrieves the domain type restriction of the lgd:cuisine 
predicate (as specified in the LGD ontology [34]), 
namely lgd:Restaurant, and adds it as a subject type to 
the two extracted search constraints. Since no type 
constraints were explicitly given, and rdfs:label is a 
much-occurring predicate, adding the extra inferenced 
lgd:Restaurant type has to potential to drastically 
improve selectivity.  

To implement the two lightweight inferencing tasks 
mentioned above, we apply two mechanisms:  

• To support retrieving all super types of a given 
type, we keep a hierarchy of Java objects, 
combined with a (hash) map linking type URIs to 
objects in the hierarchy; 

• To retrieve all domain/range types of a given 
predicate, we keep an additional (hash) multimap 
linking predicates to their domain/range types. 

Per source analysis, we additionally keep a cache of 
inferred domains/ranges and supertypes, as these are 
typically re-used inside a source. We found that these 
two straightforward mechanisms, combined with a 
temporary cache, greatly optimizate performance; 
compared to issuing queries%on-the-fly on the ontology 
RDF graph to obtain the same information. 

We note that, as for type mediation, type inferencing 
needs to be re-applied on re-downloaded sources 
during the Data Query phase; as it was not possible to 
update the online sources with the inferred types. 
Further, due to the increased size of the cache units, 
we note that removal times will be influenced as well. 

7. Experimental evaluation 

This section presents an elaborate experimental 
evaluation of the query service and its components. In 
these experiments, we apply a context-aware scenario, 
where the SCOUT mobile context-provisioning 
framework [11] plays the role of client. We extracted 
real-world semantic data sources from existing 
datasets (e.g., LinkedGeoData, DBPedia) to serve as 
an online experiment dataset.  

These experiments focus on the difference aspects of 
the query service, and investigate: 

* The utility of different amounts of source metadata 
in balancing fine-graininess of data retrieval with 
memory and processing requirements . This is 

studied for online source identification (SIM; 
Section 7.2) and local caching (Section 7.3). 

* The impact of the novel Least-Popular-Sources 
strategy, with different configurations, on cache 
composition and query performance (section 7.4); 

* The Open World Assumption features, namely 
type inferencing and mediation, and their positive 
effects on data access vs. memory and 
performance penalties (section 7.5). 

All resources related to the experiments, including 
dataset and queries, can be found on [35] (queries are 
also included in Appendix A). Before going into detail 
on the experiments, we first describe the experiment 
setup and methodology below. 

7.1 Experiment setup 

This section outlines the setup for our experiments. 

7.1.1 Device 

The experiments were performed on an LG Nexus 5 
(model LG-D820), with 2.26 GHz Quad-Core 
Processor, 2Gb RAM and 32Gb storage. We note that 
this device also runs the latest Android OS version 
(Android 5.1.1, Lollipop). Android apps obtain a 
maximum Java heap space of 192Mb. 

7.1.2 Dataset 

The semantic dataset used in the experiments consists 
of 5000 data sources, and has a total size of 526Mb; 
with an average size of ca. 107Kb, median size of 
13Kb and standard deviation of 322Kb. The data 
sources were assumed not to change during the 
experiments, and were distributed across four different 
remote web servers. 

The sources were extracted from 8 online datasets, 
some referenced on the Billion Triples Challenge 
(BTC) 2012 Dataset webpage [36]. The extracted data 
contain information on people (Timbl), places and 
things (Freebase, DBPedia, DataHub), shopping items 
(BestBuy RDF extract), geographical entities 
(LinkedGeoData, Geonames) and online news 
(NYTimes). An individual source groups data on a 
specific RDF resource; possibly obtained from 
multiple remote datasets and linked together using 
interlinks (released by the Linked Data initiative). 
Overall, the dataset references 191 ontologies.  

Due to its re-use of existing online data, our 
experiment dataset can be considered as representative 
of real-world use cases. At the same time however, we 



!"#$%#$%&%'()*'(#+,%-)($#.+/%01)&$)%2#,)%&$%3.11.4$5%%
%

!"##"$%&'$(&!)*(+*#,&-.*(&/$+0*#*1(2&3&%)4"#*&56*71&+*7."8*&9)7&"(0*:7$0*;&$88*++&0)&#$7:*&(6%4*7+&
)9&)(#"(*&+*%$(0"8&<*4&;$0$&+)678*+2&=)67($#&)9&!*4&-*%$(0"8+>&-8"*(8*,&-*7."8*+&$(;&3:*(0+&)(&0?*&
!)7#;&!";*&!*4,&')#6%*&@A,&BB2&CDEFA,&=$(6$71&GHIA&
&

%

note that different dataset compositions will influence 
certain results, such as for LPS (see Section 7.4.2) and 
type mediation  (see Section 7.5.2.2). A systematic 
study of the query service using multiple, distinct 
dataset compositions is considered future work. 

7.1.3 Query scenario 

Our experimental evaluation is applied in a context-
aware scenario, using the SCOUT context-aware 
application framework [11] as a client. As the user is 
moving around, SCOUT continuously discovers new 
physical entities in the user’s vicinity (e.g., using a 
built-in mobile RFID reader), and extracts references 
to online semantic sources describing the particular 
entity (e.g., by reading URLs from RFID tags). To 
allow integrated querying over this gradually 
discovered semantic dataset, SCOUT dynamically 
passes detected source references to the query service.  

For the experiments, five context-aware application 
queries were selected that request context-relevant 
data, covering the different types of data in our 
experiment dataset (e.g., geographical entities, 
people). Two queries return geographical data, for 
instance allowing to plot physical entities (e.g., 
shopping centers, airports) on a map. The other three 
queries return “interesting” physical entities in the 
vicinity (e.g., products for sale in an affordable price 
range), together with details and indication of 
relevance (e.g., manufacturer and user comments).  

7.1.4 Methodology 

All experiments were run on the aforementioned 
device (Section 7.1.1), using the extracted dataset 
(Section 7.1.2) and five selected queries (Section 
7.1.3), in the following way: 

Experiment initiation: before each experiment, the 
Android device was re-started to clear memory.  

Query service phases: each experiment involved 
running the Source Indexing phase on all 5000 dataset 
sources, and the Data Query phase on the 5 
experiment queries (unless stated otherwise). 

Experiment runs: each experiment was run five times 
and the average processing times and battery usage 
were taken, to minimize the effect of external factors 
(e.g., OS background processes). 

Below, we list the applied configurations, and make 
general notes on the measuring methods.  

Cache configuration: the cache components were 
configured to use up to 75% of the dataset size for 
persistent storage11, and 8Mb for in-memory storage12. 
As we deal with non-evolving sources, cache 
validation was disabled. 

OWA features: where type inferencing was used, both 
domain/range constraints and subtype relations were 
leveraged to infer new types (only direct supertypes).  

Memory usages: To accurately measure memory 
usage, snapshots of the Android Java heap were taken 
at runtime using Eclipse MAT [37], collecting the 
retained heap size of the revelant classes. 

Energy consumption: we utilize the Android 
BatteryManager API to obtain the accurate energy 
consumption (in Joules) of query service processes. 
This involves sending an Intent each time energy 
usage needs to be calculated. After draining the 
battery purposefully, we found that mobile query 
processes had consumed 18226 Joules; any capacity 
percentage shown is relative to that number. 

Dealing with network fluctations: to avoid network 
fluctuations influencing results, the query service 
retrieves RDF sources from persistent storage, 
whereby retrieval times were substituted by average 
download times from the sources’ online locations 
(obtained by downloading 1000 random sources over 
5 runs). In the same vein, ontologies referenced by the 
Ontology Manager were stored locally, and download 
times substituted in the same way. Evaluating the 
impact of network quality is subject of future work.  

7.2 Experiment 1: Source Index Model 

This experiment evaluates the impact of source 
metadata on selectivity when identifying query-
relevant online sources. To that end, we compare 
different SIM variants, each keeping varying amounts 
of metadata: SIM1 only indexes predicates; SIM2 
indexes predicates and subject types; and SIM3 
indexes predicates, subject and object types. In 
addition, we consider the case where queries are 
executed on the entire dataset (i.e., native query 
engine performance). Since this experiment focuses on 
SIM selectivity, it does not include a local cache.  

7.2.1 Experiment 1: Results 

Source Indexing phase 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
11 To force the necessity of cache removals. 
12 This relatively low limit was chosen since other 
components also take up memory (e.g., SIM, RDF graphs). 



!"#$%#$%&%'()*'(#+,%-)($#.+/%01)&$)%2#,)%&$%3.11.4$5%%
%

!"##"$%&'$(&!)*(+*#,&-.*(&/$+0*#*1(2&3&%)4"#*&56*71&+*7."8*&9)7&"(0*:7$0*;&$88*++&0)&#$7:*&(6%4*7+&
)9&)(#"(*&+*%$(0"8&<*4&;$0$&+)678*+2&=)67($#&)9&!*4&-*%$(0"8+>&-8"*(8*,&-*7."8*+&$(;&3:*(0+&)(&0?*&
!)7#;&!";*&!*4,&')#6%*&@A,&BB2&CDEFA,&=$(6$71&GHIA&
&

%

Table 1 shows SIM memory usage for the total 
dataset; processing times, including metadata 
extraction, index update and download; and energy 
usage (between brackets). 

 mem. 
size avg. dl. 

processing 
extract & add total 

SIM1 1143 
246 

(0.13J) 

40 (0.04J) 286 (0.17J) 
SIM2 5789 54 (0.06J) 300 (0.19J) 
SIM3 8893 57 (0.07J) 303 (0.20J) 

Table 1. SIM – Source Indexing: sizes (Kb), processing 
times per source (ms) and energy usage (J) 

To process all 5000 sources, SIM1 consumed 4.7% 
battery capacity, SIM2 consumed 5.2%, and SIM3 
consumed 5.3%. This includes downloading the 5000 
sources, which consumes ca. 3,5% battery capacity. 

Data Query phase 

Table 2 illustrates source selectivity, by showing the 
number of identified (and potentially relevant) sources 
per query. In addition, it shows the total query 
resolution times and energy consumption.  

 SIM1 SIM2 SIM3 
# exec. # exec. # exec. 

Q1 2116 895310 (272J) 254 108199 (33J) 254 108270 (33J) 

Q2 313 132289 (40J) 305 128906 (39J) 272 114949 (35J) 

Q3 1293 546501 (166J) 319 134967 (41J) 319 134978 (41J) 

Q4 1984 837748 (254J) 87 36803 (11J) 87 36805 (11J) 

Q5 2146 932846 (291J) 256 132700 (47J) 256 132635 (48J) 

Table 2. SIM – Data Query: selectivity (# sources), query 
times (ms) and energy usage (J) 

To execute all 5 queries, SIM1 consumed 5.6% 
battery capacity, SIM2 and SIM3 consumed 0.9%. 

Tables 3 to 5 show a breakup of the total query 
resolution times, including source identification13 (id), 
data collection (collect) and query execution14 
(execute) times. For collection (collect), we separately 
indicate source download times (dl) and time to 
assemble the data into a query graph (assemble). We 
indicate the energy usage for source downloads and 
total resolution times. 

SIM1 

  
id 

collect  
execute 

 
total dl assemble 

Q1 730 520536 (271J) 372416 1628 895310 (272J) 

Q2 16 76998 (40J) 55088 187 132289 (40J) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
13 This includes query analysis time as well.  
14 Query execution denotes the execution of the query on the 
already collected and assembled dataset.%

Q3 244 318078 (166J) 227568 611 546501 (166J) 

Q4 219 488064 (254J) 349184 281 837748 (254J) 

Q5 366 527916 (275J) 377696 26868 932846 (291J) 

Table 3. SIM1 – Data query: times (ms) & energy usage (J) 

SIM2 

  
id 

collect  
execute 

 
total dl assemble 

Q1 161 62484 (33J) 44704 850 108199 (33J) 

Q2 12 75030 (39J) 53680 184 128906 (39J) 

Q3 20 78474 (41J) 56144 329 134967 (41J) 

Q4 10 21402 (11J) 15312 79 36803 (11J) 

Q5 46 62976 (33J) 45056 24622 132700 (47J) 

Table 4. SIM2 – Data query: times (ms) & energy usage (J) 

SIM3 

  
id 

collect  
execute 

 
total dl assemble 

Q1 209 62484 (33J) 44704 873 108270 (33J) 

Q2 11 66912 (35J) 47872 154 114949 (35J) 

Q3 27 78474 (41J) 56144 333 134978 (41J) 

Q4 11 21402 (11J) 15312 80 36805 (11J) 

Q5 75 62976 (33J) 45056 24528 132635 (48J) 

Table 5. SIM3 – Data query: times (ms) & energy usage (J) 

The case without SIM (i.e., native query engine 
performance) fails with an out-of-memory exception 
for all queries, and is thus not shown here. 

7.2.2 Experiment 1: Discussion 

Table 1 shows that memory overhead, data processing 
times and energy usage are larger for variants utilizing 
increasing amounts of metadata, which is to be 
expected. At the same time, the size of the largest SIM 
(SIM3) still only corresponds to a fraction of the 
dataset (ca. 1,7% of the 5000 sources), while the data 
processing overhead is almost negligible (< 60ms) for 
any SIM. In total, the largest SIM consumes ca. 6.2% 
battery capacity, mostly due to the required source 
downloads (4.3% download vs. 1.9% for processing). 
As such, our requirement of Minimizing resource 
usage (req. 1, Section 2) is met. 

Table 2 indicates that SIM2 and SIM3 significantly 
improve source selectivity (ruling out 95% of the 
sources on average), thus adhering better to req. 3, 
Minimizing online data downloads. In contrast, out-of-
memory errors occur when resolving any query 
without a SIM. Comparing SIM2 and SIM3, we only 
observe differences in selectivity for the 2nd query. 
Since this query restricts the object types of each triple 



!"#$%#$%&%'()*'(#+,%-)($#.+/%01)&$)%2#,)%&$%3.11.4$5%%
%

!"##"$%&'$(&!)*(+*#,&-.*(&/$+0*#*1(2&3&%)4"#*&56*71&+*7."8*&9)7&"(0*:7$0*;&$88*++&0)&#$7:*&(6%4*7+&
)9&)(#"(*&+*%$(0"8&<*4&;$0$&+)678*+2&=)67($#&)9&!*4&-*%$(0"8+>&-8"*(8*,&-*7."8*+&$(;&3:*(0+&)(&0?*&
!)7#;&!";*&!*4,&')#6%*&@A,&BB2&CDEFA,&=$(6$71&GHIA&
&

%

pattern, SIM3 can utilize its additional metadata to 
increase selectivity. We also observe that the number 
of sources to download greatly influences energy 
usage. Capacity-wise, by ruling out many more 
sources, SIM2 and SIM3 reduce battery usage by 84% 
compared to SIM1, to a mere ca. 0,9% battery usage. 

However, Tables 4 and 5 show SIM2 and SIM3 still 
incur an exceedingly high query resolution overhead 
(ca. 0.5 – 2.25 minutes). Most of this overhead occurs 
during data collection, which involves downloading 
the sources and assembling all source data into an 
(AndroJena) query graph (which requires parsing the 
data). As shown in the table, over half this time is 
spent on downloading the data (ca. 56%). Therefore, 
employing a local cache has the potential to greatly 
reduce collection overhead. 

In conclusion, the SIM variants utilizing most source 
metadata (SIM2 and SIM3) represent the best 
solutions. These significantly increase selectivity, and 
thus improve query execution times and energy 
efficiency; while keeping data processing, memory 
usage and battery consumption during source 
processing in check. As such, regarding source 
identification, this confirms that source metadata 
indeed enables a balance between fine-grained data 
retrieval, and memory/ processing requirements. On 
the other hand, query resolution is clearly impractical, 
necessitating a local cache to reduce download times. 

7.3 Experiment 2: Cache 

This section evaluates the impact of caching on query 
service performance. We present an experiment 
comparing two different cache organizations: Source 
Cache, organizing cached data via origin source; and 
Meta Cache, grouping data via shared metadata. For 
Source Cache, the best performing SIM variant 
(SIM3) is employed for online source identification. 

As Meta Cache performs both online source 
identification and local caching (see Section 5.1.2), it 
is deployed autonomously. For these experiments, 
Least Recently Used (LRU) is employed as removal 
strategy; Section 7.4 shows the effect of applying 
different removal strategies. 

7.3.1 Experiment 2: Results 

Source Indexing phase 

In Table 6, we show the volatile memory and 
persistent storage space utilized by Source Cache and 
Meta Cache when serving the full dataset. We 

separately indicate the memory overhead of 
supporting data structures for the SIM and the cache 
(i.e., Java objects and internal indices), and the actual 
payload (i.e., the stored source data). For the latter, we 
further differentiate between the measured payload 
size (obtained via snapshots of the Java heap) and the 
estimated payload size (between brackets), which is 
approximated at runtime to dynamically manage 
memory space (see Section 5.3). For ease of reference, 
Table 6 also includes the corresponding SIM sizes, as 
Source Cache is used in combination with the SIM. 

 
cache 

in-memory 
persistent 

SIM cache payload 

Source 8893 7198 6323 (8192) 405285 

Meta n/a 35821 16882 (7778) 426834 

Table 6. Cache – Source Indexing: sizes (Kb). 

In Table 7, we show the average data processing 
overhead and energy usage, resulting from inserting 
data into the cache (insert) and performing the LRU 
removal strategy whenever the cache is full (removal). 
Source Cache incurs an extra overhead of updating the 
SIM (SIM). Meta Cache incurs an extra overhead for 
extracting the different metadata combinations from 
the RDF sources (extract). 

 
cache avg. dl. add removal total SIM extract insert 

Source 246 
(0.13J) 

65  
(0.07J) n/a 87  

(0.08J) 
1126  
(0.8J) 

1524  
(1.1J) 

Meta n/a 81 
(0.09J) 

81 
(0.2J) 

170 
(0.3J) 

578 
(0.73J) 

Table 7. Cache – Source Indexing: processing times (ms) & 
energy usage (J) / source 

To process 5000 sources, Source Cache consumes ca. 
30% battery, while Meta Cache consumes ca. 20%. As 
mentioned before, downloading 5000 sources 
consumes ca. 3.5% battery capacity (included in the 
percentages shown above). 

Data Query phase 

In Tables 8 and 9, we show the total query resolution 
times and energy usages with their constituent parts. 
In particular, we distinguish between the following 
parts: 1) query analysis, which involves extracting 
search constraints; 2) SIM access, required by Source 
Cache for source identification; 3) cache access, 
which comprises retrieving cached data (retrieval) and 
downloading missing sources (miss); 4) data 
assembly, which involves assembling the retrieved 
data into a final query graph; and 5) query execution, 
where the query is executed on the collected query 



!"#$%#$%&%'()*'(#+,%-)($#.+/%01)&$)%2#,)%&$%3.11.4$5%%
%

!"##"$%&'$(&!)*(+*#,&-.*(&/$+0*#*1(2&3&%)4"#*&56*71&+*7."8*&9)7&"(0*:7$0*;&$88*++&0)&#$7:*&(6%4*7+&
)9&)(#"(*&+*%$(0"8&<*4&;$0$&+)678*+2&=)67($#&)9&!*4&-*%$(0"8+>&-8"*(8*,&-*7."8*+&$(;&3:*(0+&)(&0?*&
!)7#;&!";*&!*4,&')#6%*&@A,&BB2&CDEFA,&=$(6$71&GHIA&
&

%

graph. For retrieval, we show the number of retrieved 
in-memory/persistent cache units, as well as the total 
retrieval time and energy usage. For misses, we 
indicate the total number of misses and amount of 
resulting source re-downloads (between brackets); 
accompanied by the total incurred download times and 
energy usage. The data collect part further shows the 
total number of returned triples (#t), thus illustrating 
the data retrieval fine-graininess. For Meta Cache, the 
number of generated type triples, required to make the 

type of cached resources explicit in the query dataset, 
is shown between brackets (see Section 5.1.2). To 
execute all 5 queries, Source Cache consumed 0.4% 
battery, while Meta Cache consumed 0.2%.  

Table 10 shows maintenance times and energy usage 
resulting from cache access. This comprises 1/ 
updating the cache with new source data, in case 
missing data was downloaded (update); and 2/ running 
the removal strategy (removal), in case storage limits 
were exceeded. Since maintenance occurs after query 
resolution, it is not included in the access times. We 
note that these results heavily depend on the utilized 
removal strategy (see next section). 

 Source Cache Meta Cache 

 update removal update removal 

Q1 0 75137 (44J) 3316 (16J) 13 (1.7J) 

Q2 1499 (2.4J) 76237 (46J) 456 (1.4J) 1 (0.26J) 

Q3 0 47249 (27J) 847 (4.4J) 258 (0.93J) 

Q4 0 37742 (22J) 0 1 (0.01J) 

Q5 0 54736 (31J) 0 1 (0.01J) 

Table 10. Cache – Data Query: maintenance (ms) and 
energy consumption (J) 

Collectively, this maintenance process costs Source 
Cache ca. 0.9% battery capacity, and for Meta Cache 

ca. 0,04%. 

7.3.2 Experiment 2: Discussion 

As shown in Table 6, the Meta Cache supporting 
structures (cache column) take up significantly more 
memory (ca. factor 5) compared to Source cache, even 
combined with the SIM. This is in line with 
expectations, as Meta Cache requires 3 indices instead 
of just 1 for Source Cache. Given the number of 
distinct metadata combinations (24068), these indices 
also comprise more entries, and many more storage 
unit objects need to be kept (see Section 5.1.2). 
However, this overhead still only takes up a fraction 
of the total dataset; 6,7% for Meta Cache, and 3% for 
Source Cache. We note that the payload size estimated 
at runtime (between brackets) is slightly higher than 

Source Cache 

 
 

query 
analysis 

 
SIM  

access 

cache access  
data 

assembly 
 

query  
exec. 

 
 

total 
retrieval miss  

total # time # time #t time 

Q1 133 30 8/246 4758 (4.8J) 0 0 4762 (4.8J) 25364 293 370 (0.22J) 5588 (5.2J) 

Q2 23 3 0/19 334 (0.38J) 253 (253) 62238 (34J) 62572 (34.4J) 31706 296 133 (0.09J) 63027 (34.5J) 

Q3 5 26 0/319 4720 (5.1J) 0 0 4724 (5.1J) 24396 291 264 (0.17J) 5310 (5.3J) 

Q4 8 3 0/87 2732 (2.6J) 0 0 2732 (2.6J) 13295 152 70 (0.04J) 2965 (2.7J) 

Q5 12 65 4/252 3249 (5.6J) 0 0 3251 (5.6J) 13392 158 24443 (14J) 27929 (19.8J) 

Table 8. Source Cache – Data Query: query resolution (ms) & energy usage (J) 

Meta Cache 

 
 

query 
analysis 

cache access  
data assembly 

 
query 
exec. 

 
 

total 
retrieval miss  

total # time # time #t time 

Q1 63 1/609 2372 (2J) 176 (50) 12300 (6.4J) 14764 (9.1J) 1592 (19597) 529 342 (0.2J) 15698 (9.4J) 

Q2 7 1/5 65(0.15J) 1 (32) 7872 (4.1J) 7938 (4.3J) 867 (1759) 56 112 (0.08J) 8113 (4.3J) 

Q3 7 66/126 586 (1J) 24 (32) 7872 (4.1J) 8476 (5.2J) 1804 (25745) 639 214 (0.2J) 9336 (5.5J) 

Q4 8 0/6 61 (0.16J) 0 0 61 (0.16J) 545 (648) 82 57 (0.06J) 208 (0.23J) 

Q5 12 8/1 11 (0.36J) 0 0 11 (0.36J) 2914 (4292) 403 23657 (14J) 24083 (14.3J) 

Table 9. Meta Cache – Data Query: query resolution (ms) & energy usage (J) 

 
 
 
Table 9. Meta Cache – Data Query: query resolution (ms) 

%



!"#$%#$%&%'()*'(#+,%-)($#.+/%01)&$)%2#,)%&$%3.11.4$5%%
%

!"##"$%&'$(&!)*(+*#,&-.*(&/$+0*#*1(2&3&%)4"#*&56*71&+*7."8*&9)7&"(0*:7$0*;&$88*++&0)&#$7:*&(6%4*7+&
)9&)(#"(*&+*%$(0"8&<*4&;$0$&+)678*+2&=)67($#&)9&!*4&-*%$(0"8+>&-8"*(8*,&-*7."8*+&$(;&3:*(0+&)(&0?*&
!)7#;&!";*&!*4,&')#6%*&@A,&BB2&CDEFA,&=$(6$71&GHIA&
&

%

the actual payload size15, due to lack of effective 
runtime memory analysis (see Section 5.3).  

On the other hand, Table 7 shows that the overall 
processing overhead and energy consumption is much 
lower for Meta Cache. In particular, cache removal is 
much less costly for Meta Cache, reducing total 
processing and energy overhead. Meta Cache keeps 
smaller and more fine-grained cache units, leading to 
smaller storage and removal times. Also, we note that 
Meta Cache incurs an extra extraction step, which 
involves extracting source triples with their metadata 
(extract column). Although we optimized this process 
with factor 10 (see Section 4.2), it still takes up half of 
the processing overhead. Although source processing 
takes up 30% and 20% for Source and Meta Cache 
respectively, we note that this is a one time cost, and 
typically ensues over a longer period of time (thus 
spreading mobile resource usage over time). 

The utility of local caching is clearly indicated by 
Tables 8 and 9. They show a dramatic decrease in total 
resolution times, compared to when no cache is used 
(see Table 2, 5): an average reduction of ca. 80% in 
total resolution for Source Cache, and ca. 90% for 
Meta Cache. Energy consumption is low (respectively 
0,4% and 0.2% for all queries combined), down from 
0.9% for SIM3 due to much less downloads. This 
reduced battery usage is especially apparent when 
looking at the individual energy usages in Tables 5 
and 8-9. 

In general, we observe that Meta Cache outperforms 
Source cache, especially regarding cache retrieval. For 
Meta Cache, retrieved cache units only comprise 
source data associated with the requested query 
metadata; resulting in more fine-grained retrieval, and 
thus lower cache retrieval times (see retrieval – time) 
and associated energy usage. This fine-graininess is 
further illustrated by the number of collected triples 
(see collect data - #t column). As such, Meta Cache 
adheres to our requirement of Minimizing the query 
dataset (Section 2, req. 2). In Source Cache, data is 
instead retrieved per origin source, whereby other, 
query-irrelevant data is also retrieved. Since most 
cache units are stored persistently, the majority of the 
data needs to be read from storage, significantly 
increasing retrieval time and energy usage. For Meta 
Cache, we further note that cached type statements do 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
15 This difference is higher for Meta Cache, since more 
cache unit objects are kept. 

not require (persistent) retrieval, but are instead 
generated based on associated metadata (see Section 
5.1.2). As before, these observations confirm that a 
balance between fine-grained retrieval and memory 
and data processing requirements can indeed be 
achieved by focusing on source metadata. 

Despite improvements in data retrieval, cache misses 
have the ability to cause major problems for Meta 
Cache (see miss column). Indeed, cache misses for 
Q1, Q2 and Q3 cause a large number of source re-
downloads, which result in worse performance for 
Meta Cache for Q1 and Q3. Since cache units keep 
data sharing the same metadata, typically with 
multiple origin sources, a cache miss requires re-
downloading all related sources. This is especially 
problematic regarding energy usage, as downloading a 
source takes more energy than retrieving it locally 
(e.g., see Source Cache; Q5 retrieval time vs. Q2 miss 
time). In the following section, we evaluate a removal 
strategy aiming to mitigate this problem. 

Although more triples are involved, data assembly 
times are slightly lower for Source Cache (avg. 238 
ms vs. 342 ms). Source Cache retrieves source data in 
the form of AndroJena graphs, which can be very 
efficiently combined (see Section 5.3). On the other 
hand, assembly times for Meta Cache clearly depend 
on the number of triples. Query execution times are 
very similar for both Source and Meta Cache, and 
rather depend on the query complexity than the query 
dataset size. Regarding cache maintenance, Table 10 
shows that cache removals are very costly for Source 
Cache, due to more coarse-grained cache units.  

7.4 Experiment 3: Removal strategies  

In this experiment, we evaluate our novel Least-
Popular-Sources (LPS) removal strategy, designed to 
tackle the Meta Cache cache-miss problem described 
in the previous section. In particular, we study its 
ensuing cache composition and effects on query 
performance, and compare these findings to when a 
regular strategy is applied (in this case, LRU). The 
impact of using different factor weights in the LPS 
removal value calculation is investigated, as well as 
the impact of different persistent data groupings. We 
note that the download time factor is not considered 
here, since we aim to avoid network fluctuations 
influencing experiment results (see Section 7.1.4). 

7.4.1 Experiment 3: Results 

Source Indexing phase 



!"#$%#$%&%'()*'(#+,%-)($#.+/%01)&$)%2#,)%&$%3.11.4$5%%
%

!"##"$%&'$(&!)*(+*#,&-.*(&/$+0*#*1(2&3&%)4"#*&56*71&+*7."8*&9)7&"(0*:7$0*;&$88*++&0)&#$7:*&(6%4*7+&
)9&)(#"(*&+*%$(0"8&<*4&;$0$&+)678*+2&=)67($#&)9&!*4&-*%$(0"8+>&-8"*(8*,&-*7."8*+&$(;&3:*(0+&)(&0?*&
!)7#;&!";*&!*4,&')#6%*&@A,&BB2&CDEFA,&=$(6$71&GHIA&
&

%

Table 11 shows the Meta Cache memory sizes16 for 
the total dataset, when respectively applying LRU and 
LPS. For each strategy, we indicate the total memory 
size taken up by Meta Cache, size of the payload (i.e., 
cache unit objects and source data), and the size taken 
up by extra supporting structures (e.g., indices) used 
by the removal strategy (removal). 

Meta Cache 

removal 
strategy 

in-memory sizes 
total payload removal 

LRU 35821 16882 1197 
LPS 45777 27905 2325 

Table 11. Removal strategies – Source Indexing: Sizes (Kb) 

In Table 12, we show the resulting cache composition, 
focusing on “missing” data; i.e., data that was 
removed to clear persistent storage space. This 
includes missing keys (keys), which stand for 
metadata combinations associated with removed cache 
units; and missing sources (sources), which represent 
sources to be re-downloaded when a particular 
missing key is referenced (cache miss). The 
distribution column relates missing keys with missing 
sources; in particular, indicating the range of potential 
source re-downloads for missing keys. For instance, a 
missing key in 
range 1-10 
incurs 1-10 
source re -
downloads in 
case the key is 
referenced. 
For LPS, we 
show the 
results for 
different 
weightings of 
the popularity factors (see Section 5.2.1) in the 
strategy column. These weightings were obtained by 
either considering only one of the two factors, or the 
sum of both factors, whereby the impact of one factor 
is potentially reduced (i.e., divided by a power of 10).%
Note that since factor f1/100 + f2 yields the same 
results as when f1 is not considered, it is left out. 

 
LRU 

LPS 
removal-unit retrieval-unit 

170 (0.3J) 117 (0.3J) 204 (0.4J) 

Table 13. Removal strategies – Source Indexing: 
replacement times (ms) & energy usage (J) / source 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
16 These were accurately measured using the Eclipse MAT. 

Table 13 summarizes the maintenance overhead. It 
only shows the overhead (time and energy usage) of 
running the removal strategy, since the extraction and 
insertion operations (see Table 7) are not influenced 
by removal strategies. For LPS, we further show the 
results for two potential persistent data groupings. For 
retrieval-unit grouping, persistent data sharing the 
same metadata is stored in a single data structure (i.e., 
file); for removal-unit grouping, persistent data is 
grouped based on their origin source. To obtain these 
values, the f1+f2/100 popularity factor weighting was 
employed; since this struck the best balance between 
the number of missing keys and sources to be re-
downloaded. To process 5000 sources, LPS removal-
unit consumed 18% battery capacity, whereas LPS 
retrieval-unit consumed 20%. %

Data Query phase 
Table 14 presents times and energy usage resulting 
from cache access for LPS, as only these are 
influenced by the removal strategy. We refer to Table 
9 for results related to LRU. As before, we 
differentiate between cache retrieval (retrieval) and 
misses (miss). Also, we show the total resolution time 
(also including constituent times not shown here). For 

LPS, each retrieval unit requires loading one or more 
storage units (see Section 5.2.2). Table 14 shows the 
number of retrieval units, with the amount of loaded 
storage units between brackets. In addition, the table 
shows retrieval times for each persistent data grouping 
method (a=removal-unit, b=retrieval-unit). As before, 
the cache miss part shows the total number of misses, 
accompanied by the resulting amount of sources to re-
download (between brackets). We again assume the f1 
+ f2/100 popularity factor weighting29. 

LPS – Meta cache 

 retrieval miss cache 
access 

 
total # time # time 

Q1 784 
(935) 

a: 1301 
b: 3594 

5 
(5) 1230 a: 2531 (2.3J) 

b: 4824 (3.6J) 
a: 3547 (2.6J) 
b: 5854 (3.8J) 

strategy #keys #sources distribution 
LRU 11058 1084 1-10: 10854 10-50: 196 50-100: 1 100-250: 6 250-500: 1 

        
LPS  f1+f2 9322 819 1-10: 9232 10-50: 82 50-100: 8 100-250: 0 250-500: 0 

LPS   f1 741 1586 1-10: 643 10-50: 60 50-100: 4 100-250: 21 250-500: 7 

LPS  f1+f2/100 961 1049 1-10: 857 10-50: 86 50-100: 4 100-250: 11 250-500: 3 

LPS   f1+ f2/10 2061 752 1-10: 1967 10-50: 85 50-100: 3 100-250: 6 250-500: 0 

LPS   f2 10314 785 1-10: 10224 10-50: 82 50-100: 8 100-250: 0 250-500: 0 
LPS   f1/10+ f2 10266 792 1-10: 10176 10-50: 82 50-100: 8 100-250: 0 250-500: 0 

Table 12. Removal strategies – Source Indexing: removed data 

%



!"#$%#$%&%'()*'(#+,%-)($#.+/%01)&$)%2#,)%&$%3.11.4$5%%
%

!"##"$%&'$(&!)*(+*#,&-.*(&/$+0*#*1(2&3&%)4"#*&56*71&+*7."8*&9)7&"(0*:7$0*;&$88*++&0)&#$7:*&(6%4*7+&
)9&)(#"(*&+*%$(0"8&<*4&;$0$&+)678*+2&=)67($#&)9&!*4&-*%$(0"8+>&-8"*(8*,&-*7."8*+&$(;&3:*(0+&)(&0?*&
!)7#;&!";*&!*4,&')#6%*&@A,&BB2&CDEFA,&=$(6$71&GHIA&
&

%

Q2 6 
(272) 

a: 383 
b: 90 0 0 a: 383 (1.3J) 

b: 90 (0.13J) 
a: 583 (1.4J) 

b: 289 (0.25J) 

Q3 216 
(957) 

a: 1114 
b: 695 0 0 a: 1114 (2.1J) 

b: 695 (1J) 
a: 2081 (2.3J) 
b: 1536 (1.2J) 

Q4 6 
(467) 

a: 587 
b: 68 0 0 a: 587 (0.6J) 

b: 68 (0.2J) 
a: 750 (0.7J) 
b: 214 (0.3J) 

Q5 9 
(2146) 

a: 2226 
b: 318 0 0 a: 2226 (2.4J) 

b: 318 (0.9J) 
a: 28269 (17J) 
b: 25818 (16J) 

Table 14. LPS – Data Query: query resolution (ms) and 
energy consumption (J) 

To execute 5 queries, LPS removal-unit and retrieval-
unit consumed ca. 0.1% battery capacity.%

 
 
 

LRU LPS 
 
replacement 

replacement 
a b 

Q1 13 (1.7J) 3220 (2.1J) 3466 (3J) 
Q2 1 (0.26J) 10524 (11J) 20304 (10J) 
Q3 258 (0.93J) 6011 (7J) 20980 (13J) 
Q4 1 (0.01J) 6213 (3.8J) 11949 (8J) 
Q5 1 (0.01J) 55202 (90J) 58655 (40J) 

Table 15. LPS – Data Query: cache maintenance (ms) and 
energy consumption (J) 

Finally, Table 15 shows the removal strategy times 
and energy usage from cache access. Both adding new 
data due to cache misses, as well as loading cached 
data into memory, may cause the memory limit to be 
exceeded, necessitating cache maintenance. For LPS, 
we again indicate these times for removal-level (a) 
and retrieval-level (b) grouping. Since maintenance 
occurs after query resolution, it is not included in the 
previously shown cache access times. We note that the 
maintenance process takes up ca. 0.6% battery for 
LPS removal-unit, and 0.4% for retrieval-unit. 

7.4.2 Experiment 3: Discussion 

Firstly, we observe that LPS incurs a larger memory 
overhead (see Table 11). By decoupling removal, 
storage and retrieval units, more cache unit objects 
need to be kept in-memory, and extra indices are 
needed to link these units. At the same time, while 
presenting a 27% increase compared to LRU, this 
overhead still only makes up 9% of the total dataset.  

Table 12 illustrates how LPS copes with the cache-
miss issue of Meta Cache by affecting cache 
composition; in particular, by enabling a balance 
between the 1/ likelihood of cache misses, and 2/ the 
number of source re-downloads. The results show that 
as more preference is given to source-data popularity 
(f1), the total number of missing keys is minimized; 
decreasing the likelihood of cache misses. However, 
the number of missing sources increases as well, 
together with the amount of missing keys resulting in 
many source re-downloads (see ranges 100-250 and 

250-500). When source-metadata popularity (f2) is 
preferred, the total number of missing sources 
decreases, and the number of source re-downloads per 
missing key is capped (i.e., no more outliers in ranges 
100-250 and 250-500). However, the number of 
missing keys increases drastically, raising the chance 
of a cache miss. We note that the best weighting 
depends on the online dataset composition; including 
the number of distinct metadata combinations 
contained in sources (f1), and the extent to which 
metadata is shared across the online dataset (f2). As 
such, further research on this issue is needed. For our 
experiment dataset and queries, the weighting 
f1+f2/100 yields the best balance. Table 13 further 
shows that, when grouping persistent data per 
removal-unit, memory management is slightly more 
efficient, since only one persistent file is affected per 
operation (see Section 5.2.2).  

Reflecting the improved cache composition, 
significantly less cache misses are observed during 
query resolution (see Table 14). As a side-effect, this 
also increases the cache retrieval time, since more 
locally available (persistent) cache units are retrieved. 
Moreover, since retrieval and storage units are 
separated, a single retrieval likely results in accessing 
and combining data from multiple storage units, also 
increasing retrieval times. Nevertheless, overall query 
resolution times are reduced, in particular for those 
queries where cache misses presented a problem for 
Meta Cache (see Tables 9 and 14; Q1, Q2, Q3) 
compared to Source Cache. We also note that energy 
usage is much lower for these queries (0,1% for all 
queries); resulting from the fact that far less 
downloads are necessary. By applying LPS, Meta 
Cache now outperforms Source Cache for any query. 
Further, we observe that grouping the persistent data 
per retrieval-unit (option b in Table 14) optimizes 
retrieval time, since only one persistent file needs to 
be read per retrieval operation.  

However, Table 15 again shows that cache 
maintenance occurring after query resolution, 
including performance times and energy usage, are 
much higher for LPS than LRU. Since the LPS 
removal unit is more coarse-grained (i.e., per origin 
source) compared to LRU (i.e., per metadata 
combination), larger removal penalties are incurred. 
Even when grouping persistent data per removal unit 
(column a), this maintenance results remain relatively 
high. For queries 1 – 4 this is avg. ca. 6,5s, with an 



!"#$%#$%&%'()*'(#+,%-)($#.+/%01)&$)%2#,)%&$%3.11.4$5%%
%

!"##"$%&'$(&!)*(+*#,&-.*(&/$+0*#*1(2&3&%)4"#*&56*71&+*7."8*&9)7&"(0*:7$0*;&$88*++&0)&#$7:*&(6%4*7+&
)9&)(#"(*&+*%$(0"8&<*4&;$0$&+)678*+2&=)67($#&)9&!*4&-*%$(0"8+>&-8"*(8*,&-*7."8*+&$(;&3:*(0+&)(&0?*&
!)7#;&!";*&!*4,&')#6%*&@A,&BB2&CDEFA,&=$(6$71&GHIA&
&

%

outlier for query 5, which has a steeper overhead (ca. 
59s). Further investigation and optimization of this 
process is future work (see Section 9).%We 
nevertheless note that maintenance times and energy 
consumption for Meta Cache + LPS represent a 
significant improvement compared to the baseline 
approach, Source Cache + LRU (i.e., ca 57% 
improvement; see Tables 10, 15). 

To conclude, the most optimal querying configuration 
is Meta Cache + LPS (retrieval-unit). For the 
relatively large experiment dataset, Meta Cache + LPS 
requires more memory (27%), processing time (20%) 
and slightly more energy (+0.1 J / source; although 
total battery usage is virtually equivalent) than LRU 
during the source indexing phase. These are one-time 
costs, and are typically incurred over a longer period 
of time (thus spreading mobile resource usage over 
time). Once set up, Meta Cache + LPS results in fast 
query execution times (6s; 0,3s; 1,5s; 0,2s, with an 
outlier of 25s for query 5), and low energy 
consumption (0,1% for all queries combined). These 
energy reductions are again most apparent when 
looking at individual energy usages in Tables 9, 14. 
For the outlier query, we note that the bulk of the 
resolution time (23s of 25s) is made up by the query 
execution time of the external RDF library, 
AndroJena. We thus conclude that for our experiment 
queries and dataset, this optimal configuration 
supplies realistic performance (barring the RDF 
library performance issues with query 5). However, 
LPS still incurs a high maintenance overhead after 
query execution, depending on the query (3s, 20s, 21s, 
12s, 59s). Although these times already present a good 
improvement (ca. 57%) compared to the baseline 
approach (i.e., Source Cache), cache maintenance 
needs to be further optimized in future work.  

7.5 Experiment 4: OWA features 

This experiment evaluates the two Semantic Web 
Open World Assumption (OWA) features, type 
inferencing and type mediation. The best performing 
variant of the SIM and cache were considered, namely 
SIM3 and Meta Cache. We investigate the 
improvements in data access and compare them to the 
incurred performance and memory overhead. 

7.5.1 Experiment 4: Results 

Source Indexing phase 

Type inferencing can be applied at two places in the 
query service: on dataset sources (@source), and on 

posed queries (@query). Clearly, only type 
inferencing on sources influences performance during 
the Source Indexing phase.  

Table 16 shows the overheads for SIM3 and Meta 
Cache when type inferencing is enabled. Firstly, it 
shows the increased memory size for the total dataset. 
Also, the extra computational overhead and energy 
usage of type inferencing is shown (performance), 
including the inferencing time itself (infer) and 
ontology retrieval time (retrieval). We further show 
the removal strategy time, which is influenced by the 
increased cache unit size due to type inferencing (see 
Section 6.2). We note that, due to the exceedingly 
high amount of energy consumed by cache removal, 
the mobile battery was drained after 4524 sources. 

Type mediation requires resource information to be 
tracked, such as types. To index this information, we 
keep a separate resource index (see Section 6.1). Table 
17 shows the computational overhead and energy 
usage of type mediation for SIM3 and Meta Cache 
(mediation), together with the memory consumed by 
the resource index (index size). As the type mediation 
processes differ for these components, different index 
sizes and mediation results are incurred. We again 
show the removal strategy time, which is likewise 
influenced by type mediation (see Section 6.1). As 
was the case before, cache removal drained the mobile 
battery after 4464 sources. 

 memory 
size (Kb) 

performance (ms) 
infer retrieval removal 

SIM3 60549 
11 60 

n/a 
Meta Cache 49364 3024  

(15446J – 3.4J / src) 

Table 16. Type inferencing – Source Indexing: memory 
(Kb), performance (ms) overhead and energy usage (J) 

 index performance (ms) 
 size (Kb) mediation removal 

SIM3 71238 996 n/a 

Meta Cache 63846 2264 3986 
(6636J – 1.5J / src)  

Table 17. Type mediation – Source Indexing: index size 
(Kb), performance (ms) overhead and energy usage (J). 

Data Query phase 

Regarding type inferencing, we consider three cases 
during querying; applying type inferencing on posed 
queries (@query), on dataset sources (@source), and 
on both (@both). Table 18 shows the effects on data 
access, indicating the number of query results (res) as 



!"#$%#$%&%'()*'(#+,%-)($#.+/%01)&$)%2#,)%&$%3.11.4$5%%
%

!"##"$%&'$(&!)*(+*#,&-.*(&/$+0*#*1(2&3&%)4"#*&56*71&+*7."8*&9)7&"(0*:7$0*;&$88*++&0)&#$7:*&(6%4*7+&
)9&)(#"(*&+*%$(0"8&<*4&;$0$&+)678*+2&=)67($#&)9&!*4&-*%$(0"8+>&-8"*(8*,&-*7."8*+&$(;&3:*(0+&)(&0?*&
!)7#;&!";*&!*4,&')#6%*&@A,&BB2&CDEFA,&=$(6$71&GHIA&
&

%

well as the amount of sources identified by the SIM17 
(src). For ease of reference, the table also shows the 
original selectivity (original). In case the results differ 
from the original, the new results are shown in bold.  

 original @query @source @both 
res src res src res src res src 

Q1 4 254 0 49 4 254 4 215 
Q2 272 272 272 271 658 313 658 313 
Q3 319 319 0 0 319 319 319 319  
Q4 77 87 77 87 77 87 77 87 
Q5 148 256 0 256 148 256 148 256  

Table 18. Type inferencing – Data Query: data access. 

Table 19 shows the type inferencing overhead for both 
components during querying. As type inferencing 
needs to be re-applied to re-downloaded sources (see 
Section 6.2), this process also incurs a query-time 
overhead @source. We note that, since the source 
indexing phase drained the battery, no battery usage 
data is available for the data query phase. 

 @query SIM Meta Cache 
@source @source 

Q1 174 45051 341 
Q2 100 484646 420 
Q3 128 383611 173 
Q4 84 3743 0 
Q5 156 120774 0 

Table 19. Type inferencing – Data Query: data retrieval 
(ms). 

For type mediation, Table 20 illustrates the effects on 
data access, indicating the new SIM source selectivity 
(src) and new amount of query results (res) (values 
differing from the original in bold). Also, the table 
indicates the performance overhead during querying 
(synchronization). Comparable to type inferencing, the 
original contents of re-downloaded sources need to be 
synchronized with mediated resource types (see 
Section 6.1). As before, since the source indexing 
phase drained the battery, no battery usage data is 
available for the data query phase. 

 selectivity synchronization 
res src SIM3 Meta Cache 

Q1 4 254 1104 113 
Q2 273 272 1413 58 
Q3 319 319 1190 151 
Q4 77 87 235 40 
Q5 148 256 1008 17 

Table 20. Type mediation – Data Query: data access (ms) 

7.5.2 Experiment 4: Discussion 
This section discusses the effects of applying the 
OWA features. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
17 Although the Meta Cache selectivity is also influenced, 
the increase in selectivity is most apparent for the SIM. 

7.5.2.1 Type inferencing 
From Table 16, we observe that type inferencing 
results in large memory usage. While the 
computational overhead of type inferencing itself is 
acceptable, it incurs a very high removal time (and 
associated high energy usage, draining the battery 
after processing 4524 sources); due to the increased 
size of the cache units. This contradicts our 
requirement of reduced resource usage. As such, we 
conclude that, in our mobile query service, type 
inferencing is unfeasible at this point. 

Regarding query resolution, Table 18 shows that  
applying type inferencing on posed queries (@query) 
leads to the search constraints ruling out more sources 
(Q1, Q2, Q3), although results are no longer returned 
for Q1, Q3 and Q5. On closer inspection, extra query 
type constraints are inferred for those queries that are 
not found in the online dataset. Typically, content 
authors do not exhaustively type RDF resources; an 
issue that can be resolved by additionally applying 
type inferencing on sources. In that case (@both), the 
same inferred types are added to the source metadata, 
resolving the issue. Furthermore, many more query 
results (658) are now returned for Q2, thus enhancing 
data access. Finally, compared to only applying source 
type inferencing (@source), we observe that 
additionally enabling query type inferencing (@both) 
improves data selectivity for Q1. 

The above indicates that type inferencing should be 
applied on both queries and sources (@both). Table 19 
shows that for Meta Cache, type inferencing yields an 
acceptable overhead, but exceedingly high processing 
times for SIM. This results from re-applying type 
inferencing to all identified sources (SIM), which are 
more numerous than cache-missed sources. Since 
online data sources are not under our control, they 
cannot be updated with inferred types. Locally storing 
inferred types for online sources could mitigate the 
problem to some extent, and is considered future 
work. We also note that inferred types may already be 
materialized in the online dataset (see Section 6.2); if 
so, type inferencing @source is unnecessary.  

Given our observations regarding source indexing, we 
conclude that type inferencing, when aiming to ensure 
completeness of query results, is currently not feasible 
in our query service. Analogously to RDF stores, type 
inferencing can be switched on/off to suit dataset 
composition, device capabilities and app requirements. 



!"#$%#$%&%'()*'(#+,%-)($#.+/%01)&$)%2#,)%&$%3.11.4$5%%
%

!"##"$%&'$(&!)*(+*#,&-.*(&/$+0*#*1(2&3&%)4"#*&56*71&+*7."8*&9)7&"(0*:7$0*;&$88*++&0)&#$7:*&(6%4*7+&
)9&)(#"(*&+*%$(0"8&<*4&;$0$&+)678*+2&=)67($#&)9&!*4&-*%$(0"8+>&-8"*(8*,&-*7."8*+&$(;&3:*(0+&)(&0?*&
!)7#;&!";*&!*4,&')#6%*&@A,&BB2&CDEFA,&=$(6$71&GHIA&
&

%

7.5.2.2 Type mediation 

Table 17 shows that, just like with type inferencing, 
type mediation results in large memory usage. At the 
same time, computational overhead is problematic as 
well; regarding both type mediation overhead and 
removal overhead. Since type mediation involves 
continuously loading previously stored cache units 
into memory (see Section 6.2), it incurs an 
exceedingly high removal time and energy usage 
(draining the battery, as was the case for type 
inferencing, after 4464 sources). 

Both these observations contradict req. 1, Minimizing 
resource usage, and makes type mediation currently 
impractical for mobile devices for our current query 
service. Analogous to type inferencing, type mediation 
also incurs a query-time overhead called 
synchronization (see Table 20). In this process, 
identified sources (SIM) or cache-missed sources 
(Meta Cache) are synchronized with the previously 
mediated types. As before, this process is necessitated 
by our setting where online sources cannot be updated. 
However, overheads resulting from this process can be 
considered acceptable for Meta Cache and SIM. 

We further observe only a small impact on selectivity 
and data access, with the same SIM source selectivity 
and only one extra query result (Q2). In particular, this 
extra result concerned an RDF resource that was 
referenced but not typed in a first source, and then 
typed in a second source. For our real world dataset, 
situations where RDF resources were found in 
multiple sources occurred 2097746 times, and only in 
1,7% did these sources specify different resource 
types, thus necessitating type mediation. Clearly, the 
dataset composition will impact the number of 
occurrences. At the same time, as our experiment 
dataset was extracted from real-world sources, this 
may be considered an indication for other datasets as 
well. An a priori analysis could determine whether 
type mediation is required, whereby the process could 
be disabled to reduce memory and processing 
overhead. This is subject of future work. 

8. Related work 

Currently, a number of mobile RDF stores exist to 
access and manipulate locally stored RDF data, 
including AndroJena [25], RDF On The Go [15], and 
i-MoCo [16]. Analogous to our query service, the 
MobiSem Context Framework [12] aims to supply 
transparent and integrated access to multiple online 

Semantic Web sources. The framework continuously 
and pro-actively replicates Semantic Web data from 
pre-configured online datasets, based on their 
relevance to the user’s context, and supplies 
programmatic access to the local data. Such pro-active 
data selection avoids downloads at query-time, yet it is 
necessarily domain-specific, and cannot support 
arbitrary application queries. In contrast, our query 
service is re-active and thus supports any scenario 
encapsulated by application queries; at the cost of 
potential download overhead at query time. 
Query distribution approaches likewise supply 
integrated query access across multiple online 
datasets. As opposed to retrieving relevant data and 
querying it locally, these systems distribute query 
execution across dataset query endpoints. In 
particular, they divide queries into subqueries, each of 
which is executed on relevant datasets; and afterwards 
integrate the results. Such approaches relieve clients 
of resource-intensive query resolution, and are well 
suited to query large datasets outfitted with online 
query endpoints. However, they are not suitable for 
semantic data not residing behind a query endpoint, 
which is the focus of our query engine.  

To identify query-relevant datasets, as well as 
optimize query distribution, query distribution systems 
typically rely on indices. The Distributed ARQ 
(DARQ) [19] and Semantic Web Integrator and Query 
Engine (SemWIQ) [20] systems each keep an index 
with summary info on each dataset, including found 
predicates, classes (SemWIQ) and resource patterns 
(DARQ), indicating which subjects and objects occur 
together with found predicates. Statistical information 
is kept as well, which is used to further optimize query 
distribution. The authors in [24] further index 
predicate paths found in datasets, allowing a more 
accurate identification of relevant datasets. In settings 
where datasets are under third-party control, keeping 
these indices up-to-date is paramount. The 
aforementioned query distribution approaches, as well 
as our query service, tackle this issue by focusing 
mainly on schema-level information (e.g., classes and 
predicates), as it can be assumed that schema-level 
changes will occur less often. The Adaptive 
Distributed Endpoint RDF Integration System 
(ADERIS) system [38] aims to avoid this issue by 
keeping only limited summary data, and instead 
collecting runtime selectivity estimates. 
Notwithstanding their similarity in using source 



!"#$%#$%&%'()*'(#+,%-)($#.+/%01)&$)%2#,)%&$%3.11.4$5%%
%

!"##"$%&'$(&!)*(+*#,&-.*(&/$+0*#*1(2&3&%)4"#*&56*71&+*7."8*&9)7&"(0*:7$0*;&$88*++&0)&#$7:*&(6%4*7+&
)9&)(#"(*&+*%$(0"8&<*4&;$0$&+)678*+2&=)67($#&)9&!*4&-*%$(0"8+>&-8"*(8*,&-*7."8*+&$(;&3:*(0+&)(&0?*&
!)7#;&!";*&!*4,&')#6%*&@A,&BB2&CDEFA,&=$(6$71&GHIA&
&

%

metadata for indexing purposes, we note that none of 
these approaches explicitly takes the Open World 
Assumption into account, and thus do not guarantee 
query result completeness. 
Many RDF stores focus on keeping extensive indices 
to speed up access to RDF data, trading index space 
and update efficiency for retrieval time. AndroJena is 
a port of the well-known Jena RDF store to the 
Android platform. To speed up query access, this store 
uses 3 hash tables, respectively indexing the subjects, 
predicates and objects of RDF triples. Depending on 
the concrete terms specified in the query, AndroJena 
selects between these hash tables. Our Meta Cache 
utilizes a similar index structure for quick data 
retrieval. However, since the Meta Cache indices keep 
schema-level information instead of instances, they 
contain significantly less entries. Similar to 
AndroJena, other RDF stores also trade memory space 
to optimize data access. The Yet Another RDF Store 
(YARS) system [28] keeps 6 indices to cover all 
potential triple access patterns. HexaStore [27] 
similarly relies on a sextuple indexing scheme to 
cover each potential triple access pattern. Aside from 
their higher memory usage, caused by having multiple 
instance-based indices, these approaches also have 
higher update and insertion costs, since all indices 
need to be updated [27]. Analogous to our query 
service, both systems apply dictionary encoding to 
reduce storage space and optimize query processing. 
We note that two of the mobile RDF stores mentioned 
at the beginning of the section, namely RDF On The 
Go [15] and i-MoCo [16], are respectively built on top 
of YARS and Hexastore.  

Most caching approaches are based on client-server 
architectures, where data can be retrieved on-demand 
from the server and clients cache the data for later re-
use [22]. In case of a cache miss, the missing data is 
directly obtained from the server. Query caching 
presents a particular type of client-server caching, 
whereby query results are cached and later re-used by 
other queries, by using query folding techniques [39]. 
To deal with cache misses, the system generates a 
remainder query to retrieve missing data from the 
server. These kinds of approaches cannot be directly 
applied in our setting, where data does not originate 
from a particular online server, but is instead spread 
across online files. Regarding cache replacement, 
ample work has been put in developing policies for 
mobile settings. Such policies typically rely on 

semantic locality, which is based on general properties 
and relations of data items. For instance, in [22], 
semantic locality indicates that query results, 
associated with physical locations closest to the user, 
will be frequently referenced. Similarly, the Furthest-
Away-Replacement (FAR) policy [23] assumes that 
cached data, which is located in the user’s movement 
direction and currently nearby, will be frequently 
referenced. As before, we opted for a replacement 
policy that is instead domain-independent, and focuses 
on dealing with our particular querying scenario where 
data is captured in online files. 
Finally, various invalidation strategies exist to detect 
invalid, no longer up-to-date information in client-
server architectures and mobile scenarios. For 
example, the Selective Adaptive Sorted (SAS) 
invalidation strategy [40] ensures that updates on data 
items on the server are reflected on the mobile device. 
In [41, 42], the authors present location-dependent 
cache invalidation, which ensures validity of location-
specific cached data retrieved from information 
services. As before, such strategies are not suitable in 
our setting, where data does not originate from a 
single, special-purpose server. Instead, we rely on the 
built-in cache support of HTTP, which is typically 
also used by proxy caches. 

9. Conclusions 

We presented a general-purpose mobile query service, 
which supplies client applications with integrated 
querying capabilities across a currently untapped part 
of the Semantic Web; consisting of large amounts of 
small sources, namely RDF files and the growing set 
of annotated websites. Mobile clients are hereby able 
to outline and dynamically extend their relevant 
selection of online semantic data, according to the 
application scenario and requirements. 

Our solution is conceived according to a number of 
challenges occurring in this particular mobile querying 
scenario, as well as their ensuing requirements. It 
involves 1/ fine-grained identification of query-
relevant online sources, and 2/ locally caching data for 
later re-use. In order to reconcile fine-grained data 
selection, either during online source identification or 
cached data retrieval, with memory and processing 
usage, we developed source identification and caching 
components leveraging the semantics of 
RDF(S)/OWL data. To fully evaluate the effect of 
source metadata in realizing this goal, we developed 



!"#$%#$%&%'()*'(#+,%-)($#.+/%01)&$)%2#,)%&$%3.11.4$5%%
%

!"##"$%&'$(&!)*(+*#,&-.*(&/$+0*#*1(2&3&%)4"#*&56*71&+*7."8*&9)7&"(0*:7$0*;&$88*++&0)&#$7:*&(6%4*7+&
)9&)(#"(*&+*%$(0"8&<*4&;$0$&+)678*+2&=)67($#&)9&!*4&-*%$(0"8+>&-8"*(8*,&-*7."8*+&$(;&3:*(0+&)(&0?*&
!)7#;&!";*&!*4,&')#6%*&@A,&BB2&CDEFA,&=$(6$71&GHIA&
&

%

and evaluated several variants for each component. 
Regarding source identification, three Source Index 
Models were implemented; each maintaining 
increased amounts of metadata. We further explored 
two cache variants, Source Cache and Meta Cache, 
which respectively organize cached data based on 
origin source and shared metadata. To optimize the 
query service for large amounts of small, online 
semantic sources, we introduced a removal strategy 
called Least-Popular-Sources (LPS). Our query 
service further explores supports for the Semantic 
Web’s distributed nature and OWA by keeping 
indexed metadata up-to-date, in light of newly 
discovered sources (type mediation); and inferring 
new metadata to potentially identify additional query 
results (type inferencing).  

An experimental validation, using a real-world dataset 
in a context-aware application scenario, confirmed the 
utility of source metadata to reach the aforementioned 
goal; namely, balancing high data selectivity with 
memory/performance overhead. We found that Meta 
Cache, combined with the LPS (retrieval-unit) 
removal strategy, supplied the best performance. After 
an initial source indexing phase, which incurs a one-
time, noticeable cost in our experiments (but will 
usually be spread over time), we show realistic query 
performance and energy consumption. However, we 
also observed that this configuration incurs notable 
maintenance overhead after query execution; which is 
steep in some cases. Finally, type inferencing, and to a 
lesser extent type mediation, proved useful in 
improving data access by returning additional query 
results. However, the experiments showed they 
currently exhibit impractical performance and energy 
usage; mostly resulting from problematic cache 
maintenance times.  

Future work includes investigating how cache 
maintenance for source-based replacement, which 
involves persistently storing large amounts of data, 
can be made more efficient. Optimizations for our 
OWA features, including storing previously inferred 
types (e.g., using incremental reasoning to cope with 
dataset updates [43]), and analyzing the online dataset 
to determine the necessity for type mediation, are also 
considered future work. We further aim to consider 
issues such as the composition of datasets and the 
impact of network delays in future experiments. 
Finally, additional efforts are needed to fully support 
semantic data exploration in the “wild”. For instance, 

existing interlinks (i.e., owl:sameAs statements) can be 
leveraged to determine equivalence between two 
resources with different URIs; and existing ontology 
matching approaches can be applied to align 
heterogeneous ontologies. 

10. References 

1.  Bizer, C., Heath, T., Berners-Lee, T.: Linked Data - The 
Story So Far. Int. J. Semant. Web Inf. Syst. 5, 1–22 
(2009). 

2. Sindice, http://sindice.com/. 
3. Schema.org, http://schema.org/. Access date: 1/3/2015. 
4.  Adida, B.: hGRDDL: Bridging microformats and RDFa. 

Journal of Web Semantics 6, 54–60 (2008). 
5. Web Data Commons, 

http://webdatacommons.org/structureddata/. 
6.  Reynolds, V., Hausenblas, M., Polleres, A., Hauswirth, 

M., Hegde, V.: Exploiting linked open data for mobile 
augmented reality. W3C Workshop: Augmented Reality 
on the Web (2010). 

7.  Zander, S., Chiu, C., Sageder, G.: A computational model 
for the integration of linked data in mobile augmented 
reality applications. Proceedings of the 8th International 
Conference on Semantic Systems. pp. 133–140. ACM, 
New York, NY, USA (2012). 

8.  Ziegler, C.: Semantic web recommender systems. In 
Proceedings of the Joint ICDE/EDBT Ph.D. Workshop 
2004 (Heraklion. pp. 78–89. Springer-Verlag (2004). 

9.  Wilson, M., Russell, A., Smith, D.A., Owens, A., 
Schraefel, M.C.: mSpace Mobile: A Mobile Application 
for the Semantic Web. User Semantic Web Workshop, 
ISWC2005 (2005). 

10.  Becker, C., Bizer, C.: DBpedia Mobile: A Location-
Enabled Linked Data Browser. LDOW. CEUR-WS.org 
(2008). 

11.  Van Woensel, W., Casteleyn, S., Paret, E., De Troyer, 
O.: Mobile Querying of Online Semantic Web Data for 
Context-Aware Applications. IEEE Internet Comput. 
Spec. Issue (Semantics Locat. Serv. 15, 32–39 (2011). 

12.  Zander, S., Schandl, B.: A framework for context-
driven RDF data replication on mobile devices. 
Proceedings of the 6th International Conference on 
Semantic Systems. pp. 22:1–22:5. ACM, New York, 
NY, USA (2010). 

13.  Keller, C., Pöhland, R., Brunk, S., Schlegel, T.: An 
Adaptive Semantic Mobile Application for Individual 
Touristic Exploration. HCI (3). pp. 434–443 (2014). 

14.  Puertas, E., Prieto, M.L., De Buenaga, M.: Mobile 
Application for Accessing Biomedical Information 
Using Linked Open Data. Proceedings of the 1st 
Conference on Mobile and Information Technologies in 
Medicine. , Prague, Czech Republic (2013). 

15.  Le-Phuoc, D., Parreira, J.X., Reynolds, V., Hauswirth, 
M.: RDF On the Go: An RDF Storage and Query 
Processor for Mobile Devices. 9th International 
Semantic Web Conference (ISWC2010) (2010). 

16.  Weiss, C., Bernstein, A., Boccuzzo, S.: i-MoCo: Mobile 
Conference Guide Storing and querying huge amounts 
of Semantic Web data on the iPhone-iPod Touch. 
Semantic Web Challenge 2008 (2008). 

17.  Van Woensel, W., Casteleyn, S., Paret, E., De Troyer, 
O.: Transparent Mobile Querying of Online RDF 



!"#$%#$%&%'()*'(#+,%-)($#.+/%01)&$)%2#,)%&$%3.11.4$5%%
%

!"##"$%&'$(&!)*(+*#,&-.*(&/$+0*#*1(2&3&%)4"#*&56*71&+*7."8*&9)7&"(0*:7$0*;&$88*++&0)&#$7:*&(6%4*7+&
)9&)(#"(*&+*%$(0"8&<*4&;$0$&+)678*+2&=)67($#&)9&!*4&-*%$(0"8+>&-8"*(8*,&-*7."8*+&$(;&3:*(0+&)(&0?*&
!)7#;&!";*&!*4,&')#6%*&@A,&BB2&CDEFA,&=$(6$71&GHIA&
&

%

sources using Semantic Indexing and Caching. In: 
Proceedings of the 12th International Conference on 
Web Information System Engineering. pp. 185–198. 
Springer-Verlag, Sydney, Australia (2011). 

18.  Bolchini, C., Curino, C., Schreiber, F.A., Tanca, L.: 
Context Integration for Mobile Data Tailoring. 
Proceedings of the 7th International Conference on 
Mobile Data Management. p. 5. IEEE Computer 
Society, Washington, DC, USA (2006). 

19.  Quilitz, B., Leser, U.: Querying distributed RDF data 
sources with SPARQL. Proceedings of the 5th European 
semantic web conference on The semantic web. pp. 
524–538. Springer-Verlag, Berlin, Heidelberg (2008). 

20.  Langegger, A., Wöß, W., Blöchl, M.: A semantic web 
middleware for virtual data integration on the web. 
Proceedings of the 5th European semantic web 
conference on The semantic web: research and 
applications. pp. 493–507. Springer-Verlag (2008) 

21.  Bolchini, C., Quintarelli, E.: Filtering mobile data by 
means of context: a methodology. Springer-Verlag, 
LNCS 4278. pp. 1986–1995 (2006). 

22.  Dar, S., Franklin, M.J., Jónsson, B.T., Srivastava, D., 
Tan, M.: Semantic Data Caching and Replacement. 
Proceedings of the 22th International Conference on 
Very Large Data Bases. pp. 330–341. San Francisco, 
CA, USA (1996). 

23.  Ren, Q., Dunham, M.H.: Using semantic caching to 
manage location dependent data in mobile computing. 
Proceedings of the 6th annual international conference 
on Mobile computing and networking. pp. 210–221. 
ACM, New York, NY, USA (2000). 

24.  Stuckenschmidt, H., Vdovjak, R., Broekstra, J., 
Houben, G.: Towards distributed processing of RDF 
path queries. Int. J. Web Eng. Technol. 2, 207–230 
(2005). 

25. AndroJena, https://code.google.com/p/androjena/. 
26.  Phuoc, D. Le, Parreira, J.X., Reynolds, V., Hauswirth, 

M.: RDF On the Go: RDF Storage and Query Processor 
for Mobile Devices. In: ISWC Posters&Demos. (2010). 

27.  Weiss, C., Karras, P., Bernstein, A.: Hexastore: sextuple 
indexing for semantic web data management. Proc. 
VLDB Endow. 1, 1008–1019 (2008). 

28.  Harth, A., Decker, S.: Optimized Index Structures for 
Querying RDF from the Web. Presented at the (2005). 

29.  Paret, E., Van Woensel, W., Casteleyn, S., Signer, B., 
De Troyer, O.: Efficient Querying of Distributed RDF 
Sources in Mobile Settings based on a Source Index 
Model. In: Proceedings of the 8th International 
Conference on Mobile Web Information Systems. pp. 
554–561. Elsevier, Niagara Falls, Canada (2011). 

30. SPARQL Parser library, http://sparql.sourceforge.net/. 
Access date: 1/3/2015. 

31.  Shanmugasundaram, J., Tufte, K., DeWitt, D., Maier, 
D., Naughton, J.F.: Architecting a Network Query 
Engine for Producing Partial Results. World Wide Web 
Databases. 1997, 58–77 (2001). 

32.  Raman, V., Hellerstein, J.M.: Partial Results for Online 
Query Processing. Proceedings of the 2002 ACM 
SIGMOD International Conference on Management of 
Data. pp. 275–286. ACM, New York, NY, USA (2002). 

33. GeoFeatures, 
http://niche.cs.dal.ca/materials/ontologies/lgd-
ontology.nt.bz2. Access date: 1/3/2015. 

34. LGD Ontology, 

http://niche.cs.dal.ca/materials/ontologies/ 
geoFeatures.owl. Access date: 1/3/2015. 

35.  Van Woensel, W.: Online Documentation, 
http://niche.cs.dal.ca/materials/mobile-query-service. 

36. Billion Triples Challenge 2012, 
http://km.aifb.kit.edu/projects/btc-2012/. Access date: 
1/3/2015. 

37. Eclipse Memory Analyzer (MAT), 
http://www.eclipse.org/mat/. Access date: 1/3/2015 

38.  Lynden, S., Kojima, I., Matono, A., Tanimura, Y.: 
Adaptive Integration of Distributed Semantic Web Data. 
Databases Networked Inf. Syst. 5999, 174–193 (2010). 

39.  Ren, Q., Dunham, M.H., Kumar, V.: Semantic Caching 
and Query Processing. IEEE Trans. Knowl. Data Eng. 
15, 192–210 (2003). 

40.  Safa, H., Artail, H., Nahhas, M.: A cache invalidation 
strategy for mobile networks. J. Netw. Comput. Appl. 
33, 168–182 (2010). 

41.  Xu, J., Tang, X., Lee, D.L.: Performance Analysis of 
Location-Dependent Cache Invalidation Schemes for 
Mobile Environments. IEEE Trans. Knowl. Data Eng. 
15, 474–488 (2003). 

42.  Zheng, B., Lee, W.-C., Lee, D.L.: On semantic caching 
and query scheduling for mobile nearest-neighbor 
search. Wirel. Netw. 10, 653–664 (2004). 

43.  Alani, H., Kagal, L., Fokoue, A., Groth, P., Biemann, 
C., Parreira, Josiane Xavier Aroyo, L., Noy, N., Welty, 
C., Janowicz, K.: DynamiTE: Parallel Materialization of 
Dynamic RDF Data. 12th International Semantic Web 
Conference. pp. 657–672. , Sydney, Australia (2013). 

 


