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Abstract. In this paper we describe into real-linear isometries defined between (not necessarily

unital) function algebras and show, based on an example, that this type of isometries behave

differently from surjective real-linear isometries and classical linear isometries. Next we intro-

duce jointly norm-additive mappings and apply our results on real-linear isometries to provide

a complete description of these mappings when defined between function algebras which are not

necessarily unital or uniformly closed.

1. Introduction

A great deal of work has been done on linear isometries between several spaces. Let X be a

locally compact Hausdorff space and let C0(X) (resp. C(X) if X is compact) denote the Banach

space of complex-valued continuous functions defined on X vanishing at infinity, endowed with the

supremum norm ‖ · ‖. The study of linear isometries (with respect to the supremum norm) is traced

back to the classical Banach-Stone theorem which gives the first characterization of surjective linear

isometries between C(X)-spaces as weighted composition operators ([3, 22]). Several extensions of

this theorem have been derived for different settings. In [15, 17], surjective linear isometries between

uniform algebras (unital uniformly closed separating subalgebras of C(X)-spaces) were described.

In another direction, Holsztyński ([11]) considered the non-surjective version of the Banach-Stone

theorem and showed that if T : C(X) −→ C(Y ) is a linear isometry (not necessarily onto), then T

can be represented as a weighted composition operator on a nonempty subset of Y . Generalizations

of this result have been obtained by replacing C(X) by certain subspaces or subalgebras of continuous

functions (cf. [1, 18]). We refer the reader to [6] for a survey on the topic.

Another direction of extensions of the Banach-Stone theorem deals with its real-linear version.

Given compact Hausdorff spaces, X1 and X2, let M1 be a uniform algebra on X1 and M2 be a unital

closed separating subspace of C(X2) such that the Šilov boundaries of M1 and M2 are X1 and X2,

respectively. Ellis proved that if T : M1 −→ M2 is a surjective real-linear isometry, then there
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exist a clopen subset K of X2 and a homeomorphism ϕ : X2 −→ X1 such that T (f) = T (1)f ◦ ϕ

on K and T (f) = T (1)f ◦ ϕ on X2 \ K, where ·̄ denotes the complex conjugate ([5]). This result

was extended by Hatori et al in [7] by characterizing surjective real-linear isometries between unital

function algebras. Their approach relied heavily on the existence of unit elements in the algebras.

In [16], Miura generalized this result to non-unital algebras as follows: If A and B are function

algebras on locally compact Hausdorff spaces X and Y , respectively, and T : A −→ B is a surjective

real-linear isometry, then there exist a homeomorphism ϕ : Ch(B) −→ Ch(A), a continuous function

ω : Ch(B) −→ T and a clopen subset K of Ch(B) such that T (f) = ωf ◦ϕ on K and T (f) = ωf ◦ ϕ

on Ch(B)\K. Following the study in this subject, Hatori and Miura showed that this representation

can be extended to the Šilov boundary but not necessarily to the maximal ideal space (see [9,

Example 3.2]). Moreover, in [13], real-linear isomeries between certain unital subspaces of continuous

functions, and also real-linear isometries between Lipschitz algebras (with respect to a complete

norm) were studied. More recently, in [14], the authors characterized surjective real-linear isometries

between complex function spaces satisfying certain separating conditions and extended some previous

results by a technique based on the extreme points.

In the first part of this paper (Section 3), we provide a Holsztyński-type characterization of the

above cited papers and obtain generalizations of some results of [5, 13, 16]. Namely we characterize

non-surjective real-linear isometries between (not necessarily unital) function algebras and show,

based on an example, that this type of isometries behave differently from surjective real-linear

isometries and classical linear isometries. As a consequence of our main result (Theorem 3.8), we

are able to give affirmative answers to Question 4 and Question 5 in [8, Section 5] for real-linear

isometries.

In [20], Rao, Tonev and Toneva studied maps T : A −→ B between uniform algebras satisfying

Rπ(Tf + Tg) = Rπ(f + g) for all f, g ∈ A, where Rπ(f) (the peripheral range of f) is the set of

range values of f with maximum modulus, and obtained sufficient conditions for such maps to be

algebra isomorphisms. Next, Tonev and Yates ([24]) considered maps preserving additively norm

conditions. In particular, they studied maps T which are called norm-additive in the sense that

‖Tf + Tg‖ = ‖f + g‖ for all f, g ∈ A, and gave conditions under which T is an isometric algebra

isomorphism. Moreover, in [7], Hatori, Hirasawa and Miura characterized maps T between unital

semisimple commutative Banach algebras satisfying r(Tf + Tg) = r(f + g), where r(f) is the

spectral-radius of f . Related results to the norm-additive maps are given between dense subsets of

uniformly closed function algebras in [23], which are extended by Miura [16]. Moreover, there are

results concerning certain norm-additive type conditions (involving more that one map) between

uniform algebras in [21]. For a survey of additive-type preservers, see [8].
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In the second part of this paper (Section 4), we introduce a new kind of mappings, which we

call jointly norm-additive. Namely, given two function algebras A and B, we say that the mappings

T1, T2 : A −→ B are jointly norm-additive if ‖T1(f)+T2(g)‖ = ‖f+g‖ for all f, g ∈ A. We first apply

our results on real-linear isometries to prove the following general result: let P and Q be arbitrary

nonempty sets, and let A and B be the uniform closures of two function algebras A and B on

locally compact Hausdorff spaces X and Y , respectively. We characterize surjections S1 : P −→ A,

S2 : Q −→ A, T1 : P −→ B and T2 : Q −→ B satisfying

‖T1(p) + T2(q)‖ = ‖S1(p) + S2(q)‖ (p ∈ P, q ∈ Q).

As a corollary, we characterize jointly norm-additive surjections and, as a consequence, we obtain

generalizations of several results concerning maps satisfying additively norm conditions mentioned

above. In particular, we show that if A and B both have an approximate identity, they are real-

algebra isomorphic.

2. Preliminaries

Let X be a locally compact Hausdorff space and X∞ be the one-point compactification of X. By

C0(X) we mean the algebra of all complex-valued continuous functions on X vanishing at infinity.

We denote the supremum norm of f ∈ C0(X) by ‖f‖. A function algebra A on X means a subalgebra

of C0(X) which strongly separates the points of X, i.e. for each x, x′ ∈ X with x 6= x′, there exists

a function f ∈ A with 0 6= f(x) 6= f(x′). A uniformly closed function algebra on X is a function

algebra on X which is a closed subalgebra of (C0(X), ‖ · ‖). If X is a compact Hausdorff space, a

uniformly closed function algebra on X is called a uniform algebra on X if it contains the constant

functions.

If A is a nonempty subset of C0(X), a subset E of X is called a boundary for A if each function

in A attains its maximum modulus within E. We denote the uniform closure of A by A. Let A be

a function algebra on a locally compact Hausdorff space X. The Šilov boundary of A, ∂A, is the

unique minimal closed boundary for A and it exists by [2]. The Choquet boundary, Ch(A), of A is

the set of all x ∈ X for which the evaluation functional δx at x is an extreme point of the unit ball

of the dual space of (A, ‖.‖). So it is apparent that Ch(A) = Ch(A). Besides, this is a known fact

that for a function algebra A, ∂A is the closure of Ch(A) [2, Theorem 1].

A point x ∈ X is called a strong boundary point for A if for every neighborhood V of x, there

exists a function f ∈ A such that ‖f‖ = 1 = |f(x)| and |f | < 1 on X \ V . It is known that for

each uniformly closed function algebra on a locally compact Hausdorff space, the Choquet boundary

coincides with the set of all strong boundary points (see [19]). However, according to the example
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given in [4], it is not true for all function algebras, although the Choquet boundary always contains

all strong boundary points.

Now let us include some notions that are used throughout the rest of the paper. Let A be a

subspace of C0(X) (X is a locally compact Hausdorff space). For every x ∈ X, we put Vx := {f ∈

A : f(x) = 1 = ‖f‖}. For g ∈ A, Mg stands for the maximum modulus set of g, in fact Mg := {x ∈

X : |g(x)| = ‖g‖}. Moreover, the peripheral range of g is defined by Rπ(g) := {z ∈ g(X) : |z| = ‖g‖}.

We finally state the following results concerning the additive and the multiplicative versions of

Bishop’s lemma adapted to the context of uniformly closed function algebras:

Lemma 2.1. [24, Lemma 1] Assume that A is a uniformly closed function algebra on a locally

compact Hausdorff space X and f ∈ A. Let x0 ∈ Ch(A) and arbitrary r > 1 (or r ≥ 1 if f(x0) 6= 0),

then there exists a function h ∈ A with ‖h‖ = 1 = h(x0) such that

|f(x)|+ r‖f‖|h(x)| < |f(x0)|+ r‖f‖

for every x /∈ Mh and |f(x)| + r‖f‖|h(x)| = |f(x0)| + r‖f‖ for all x ∈ Mh. In particular, ‖|f | +

r‖f‖|h|‖ = |f(x0)|+ r‖f‖.

Lemma 2.2. [10, Lemma 2.3] Let A be a uniformly closed function algebra, f ∈ A and x ∈ Ch(A).

If f(x) 6= 0, then there is a function h ∈ A with ‖h‖ = 1 = h(x) such that Mfh = Mh and

Rπ(fh) = {f(x)}.

3. Real-linear isometries

Let A and B be function algebras on locally compact Hausdorff spaces X and Y , respectively,

and let T : A −→ B be a real-linear isometry.

Notice that we can extend easily T : A −→ B to a real-linear isometry T : A −→ B between the

uniform closures. Then in this section, we may assume, without loss of generality, that A and B are

uniformly closed function algebras on locally compact Hausdorff spaces X and Y , respectively,

Let us remark that our results are also valid if A and B are dense subspaces of uniformly closed

function algebras because real-linear isometries can be extended naturally to the uniform closures

of A and B.

In the first part of this section, we present several lemmas to establish a basis for the characteri-

zation of real-linear isometries from A into B provided in the second part.

Lemma 3.1. Let x ∈ Ch(A) and α ∈ T. Then the set
⋂

f∈αVx

MT (f) is nonempty.

Proof. We apply a minor modification of the proof of Lemma 3.1 in [16]. Since for each f ∈ αVx,

MT (f) is a compact set of Y∞ and∞ /∈ {y ∈ Y : |T (f)(y)| = 1}, it is enough to show that the family
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{MT (f) : f ∈ αVx} has the finite intersection property. For this, let f1, ..., fn ∈ αVx and define

f = 1
n

∑n
i=1 fi. Then f ∈ αVx and so ‖T (f)‖ = 1. Hence there is a point y ∈ Y with |T (f)(y)| = 1.

Consequently,

1 = |T (f)(y)| ≤ 1

n

n∑
i=1

|T (fi)(y)| ≤ 1

n

n∑
i=1

‖T (fi)‖ = 1,

which implies that |T (fi)(y)| = 1 for all i ∈ {1, ..., n}. This means y ∈
n⋂
i=1

MT (fi). Therefore,

{MT (f) : f ∈ αVx} has the finite intersection property and so
⋂

f∈αVx

MT (f) 6= ∅. �

For each x ∈ Ch(A) and α ∈ T, we put Ix,α :=
⋂

f∈αVx

MT (f). By Lemma 3.1, Ix,α 6= ∅.

Lemma 3.2. Let x ∈ Ch(A), α ∈ T and y ∈ Ix,α. Then there exists a unique λ ∈ T such that

T (αVx) ⊆ λVy.

Proof. Let f, g ∈ Vx. Then αf, αg ∈ αVx and so |T (αf)(y)| = 1 = |T (αg)(y)|. It is also clear

that |T (αf)(y)+T (αg)(y)|
2 = 1 because αf+αg

2 ∈ αVx. Hence, from these equations, it follows that

T (αf)(y) = T (αg)(y). Now, if we define λ := T (αf)(y) for some f ∈ Vx, then the argument implies

that T (αVx) ⊆ λVy. �

Lemma 3.3. Let x ∈ Ch(A), α ∈ T and y ∈ Ix,α. If f ∈ A with f(x) = 0, then T (f)(y) = 0.

Proof. Let f ∈ A with f(x) = 0. Suppose, on the contrary, that T (f)(y) 6= 0. Because of the real-

linearity of T , without loss of generality, we may assume that T (f)(y) = eiθ, where −π < θ ≤ π.

Fix a real constant r > 1 and let r′ = r‖f‖. By Lemma 2.1, there is a function h ∈ Vx such that

‖|f |+ r′|h|‖ = r′. In particular, ‖f + r′αh‖ = r′. Since T (αh)(y) ∈ T, we may take T (αh)(y) = eiθ
′
,

where −π < θ′ ≤ π. According to the values of θ and θ′, one of the following cases will happen and

as it is seen below all of them lead to contradictions.

• If cos(θ − θ′) > 0 then

r′ = ‖f + r′αh‖ = ‖T (f + r′αh)‖ ≥ |T (f)(y) + r′T (αh)(y)| = |ei(θ−θ
′) + r′| ≥ r′ + cos(θ − θ′).

• If cos(θ − θ′) = 0 then

r′ = ‖f+r′αh‖ = ‖T (f+r′αh)‖ ≥ |T (f)(y)+r′T (αh)(y)| = |ei(θ−θ
′)+r′| = |r′±i| =

√
r′2 + 1 > r′.

• If cos(θ − θ′) < 0 then

r′ = ‖−f+r′αh‖ = ‖T (−f+r′αh)‖ ≥ |−T (f)(y)+r′eiθ
′
| = |−ei(θ−θ

′)+r′| ≥ − cos(θ−θ′)+r′ > r′.

So in all cases we get a contradiction. Thereby, T (f)(y) = 0. �

Lemma 3.4. If α, α′ ∈ T, x, x′ ∈ Ch(A) and x 6= x′, then Ix,α ∩ Ix′,α′ = ∅.
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Proof. Let x and x′ be two distinct points in Ch(A), and α, α′ ∈ T. There is a function g ∈ A such

that g(x) = α and g(x′) = 0. Next, by Lemma 2.2, we can choose a function h ∈ Vx such that

gh
α ∈ A with ‖ ghα ‖ = 1 = gh

α (x). Then letting f := gh, we have f ∈ αVx and f(x′) = 0. Now if

y ∈ Ix,α ∩ Ix′,α′ , then |T (f)(y)| = 1 since f ∈ αVx, but on the other hand, from Lemma 3.3, it

follows that T (f)(y) = 0, which is a contraction. Hence Ix,α ∩ Ix′,α′ = ∅. �

The sets Ix,α, which dates back to Holsztynski [11], are a usual tool in the context of into linear

and surjective real-linear isometries on function algebras A (see e.g., [1], [6] and [16]). In all papers

dealing with them, a common result is the following: Ix,α = Ix,α′ for each x ∈ Ch(A) and any

α, α′ ∈ T. The next simple example shows that this equality is no longer true when we consider

non-surjective real-linear isometries:

Example. Define T : C({x}) −→ C({y1, y2}) as T (a+ ib)(y1) := a and T (a+ ib)(y2) := (a+ ib). It

is apparent that T is a non-surjective real-linear isometry for which Ix,1 = {y1, y2} and Ix,i = {y2}.

For each x ∈ Ch(A), assume that Ix,1∩Ix,i 6= ∅ and put Ix := Ix,1∩Ix,i. Let Y0 := {y ∈ Y : y ∈

Ix for some x ∈ Ch(A)}. Clearly, Y0 6= ∅. Now we can define a map ϕ : Y0 −→ Ch(A) by ϕ(y) = x

if y ∈ Ix for some x ∈ Ch(A). Since, by Lemma 3.4, for any distinct points x, x′ ∈ Ch(A) and any

scalars α, α′ ∈ T, Ix,α ∩ Ix′,α′ = ∅, then Ix ∩ Ix′ = ∅ and ϕ is well-defined. It is clear that ϕ is

surjective. Moreover, let us define a map Λ : Y0 × T −→ C by Λ(y, α) = λ such that λ is a unique

scalar with T (αVϕ(y)) ⊆ λVy, by Lemma 3.2. It is apparent that Λ is a well-defined map.

Lemma 3.5. If y ∈ Y0, then either Λ(y, i) = iΛ(y, 1) or Λ(y, i) = −iΛ(y, 1).

Proof. Let y ∈ Y0, and put λi := Λ(y, i) and λ1 := Λ(y, 1) for simplicity. For each f ∈ Vϕ(y) we have

|λ1 ± λi| = |T (f)(y)± T (if)(y)| = |T (f ± if)(y)|

≤ ‖T (f ± if)‖ = ‖f ± if‖

= ‖f‖|1± i| =
√

2.

Hence |λ1 ± λi| ≤
√

2, and since |λ1| = |λi| = 1, it follows easily that λ2i = −λ21. Consequently,

either Λ(y, i) = iΛ(y, 1) or Λ(y, i) = −iΛ(y, 1). �

Since according to the above lemma, Λ(y, i) = ±iΛ(y, 1) for all y ∈ Y0, if we set K = {y ∈ Y0 :

Λ(y, i) = iΛ(y, 1)}, then Y0 \K = {y ∈ Y0 : Λ(y, i) = −iΛ(y, 1)}. Now we obtain the following result

easily:
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Lemma 3.6. Let y ∈ Y0 and α ∈ T. Then

Λ(y, α) =

 αΛ(y, 1) y ∈ K,

αΛ(y, 1) y ∈ Y0 \K.

Proof. Let α = a+ ib, where a, b ∈ R. Take also λi := Λ(y, i), λ1 := Λ(y, 1) and λα := Λ(y, α). Since

we have T (αVϕ(y)) ⊆ λαVy, then, for a given f ∈ Vϕ(y), T (αf)(y) = λα. Hence λα = T (αf)(y) =

T (af + ibf)(y) = aT (f)(y) + bT (if)(y), and so, from Lemma 3.5,

λα =

 aλ1 + bλi = aλ1 + ibλ1 = (a+ ib)λ1 = αλ1 y ∈ K,

aλ1 + bλi = aλ1 − ibλ1 = (a− ib)λ1 = αλ1 y ∈ Y0 \K.

Therefore,

Λ(y, α) =

 αΛ(y, 1) y ∈ K,

αΛ(y, 1) y ∈ Y0 \K.

�

Remark 3.7. We define the map ω : Y0 −→ T by ω(y) = Λ(y, 1) for all y ∈ Y0. Hence if y ∈ Y0,

then, by the above lemma, we have

T (αf)(y) =

 αω(y) y ∈ K,

αω(y) y ∈ Y0 \K,

for all α ∈ T and f ∈ Vϕ(y).

Now we are ready to prove the main result of this section:

Theorem 3.8. Let T : A −→ B be a real-linear isometry and assume that Ix,1 ∩ Ix,i 6= ∅ for each

x ∈ Ch(A). Then there exist a nonempty subset Y0 of Y , a continuous surjective map ϕ : Y0 −→

Ch(A), a unimodular continuous function ω : Y0 −→ T and a clopen subset K of Y0 such that for

all f ∈ A and y ∈ Y0,

T (f)(y) = ω(y)

 f(ϕ(y)) y ∈ K,

f(ϕ(y)) y ∈ Y0 \K.

Moreover, ω(y) = T (g)(y) for any g ∈ A with g(ϕ(y)) = 1.

Proof. Let ϕ : Y0 −→ Ch(A) and ω : Y0 −→ T be the maps defined after Lemma 3.4. Assume

that f ∈ A and y ∈ Y0. If f(ϕ(y)) = 0, then from Lemma 3.3, T (f)(y) = 0. Now suppose that

f(ϕ(y)) 6= 0. Choose a function h in Vϕ(y). If we define g := f − f(ϕ(y))h, then g ∈ A and

g(ϕ(y)) = 0, so, again from Lemma 3.3, T (f)(y) = T (f(ϕ(y))h)(y). If we set α := f(ϕ(y))
|f(ϕ(y))| , then
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|α| = 1 and T (f)(y) = T (α|f(ϕ(y))|h)(y) = |f(ϕ(y))|T (αh)(y). Therefore, according to Remark

3.7, we observe that

T (f)(y) = |f(ϕ(y))|T (αh)(y) =

 |f(ϕ(y))|αω(y) y ∈ K,

|f(ϕ(y))|αω(y) y ∈ Y0 \K.

Then

T (f)(y) =

 f(ϕ(y))ω(y) y ∈ K,

f(ϕ(y))ω(y) y ∈ Y0 \K.

We now claim that ϕ is continuous. Contrary to what we claim, assume that there is a net, (yi),

in Y0 converging to y0 ∈ Y0 but ϕ(yi) does not approach ϕ(y0). Then by passing to a subnet if

necessary, we may suppose that ϕ(yi) converges to x0 ∈ X∞ with x0 6= ϕ(y0). From the derived

representation of T , it follows that for each f ∈ A, |T (f)| = |f ◦ ϕ| on Y0, which implies that

|f(ϕ(y0))| = |T (f)(y0)| = lim |T (f)(yi)| = lim |f(ϕ(yi))| = |f(x0)|.

Thus |f(ϕ(y0))| = |f(x0)|, but it is impossible because we can choose a function f ∈ Vϕ(y0) such

that |f(x0)| < 1. Hence, ϕ is a continuous map.

Next we prove that K is a clopen subset of Y0. Indeed, it is shown that

K =
⋂
f∈A

{y ∈ Y0 : T (if)(y) = iT (f)(y)} and Y0 \K =
⋂
f∈A

{y ∈ Y0 : T (if)(y) = −iT (f)(y)}.

We only check the first equality since the second one can be concluded similarly. By the above

representation of T , it is clear that K ⊆
⋂
f∈A
{y ∈ Y0 : T (if)(y) = iT (f)(y)}. Conversely, let

y ∈ Y0 such that T (if)(y) = iT (f)(y) for all f ∈ A. If y ∈ Y0 \K, then, according to the obtained

representation of T we deduce that, for any function f in Vϕ(y), we have T (if)(y) = −iω(y) while

T (f)(y) = ω(y), which is a contradiction. This contradiction yields y ∈ K. Therefore,

K =
⋂
f∈A

{y ∈ Y0 : T (if)(y) = iT (f)(y)}.

Now, these equations ensure us that K and Y0 \ K are closed in Y0, which is to say that K is a

clopen subset of Y0.

We finally show the continuity of ω. Fix y0 ∈ Y0 and choose a function f ∈ A such that

f(ϕ(y0)) 6= 0. If we consider W := {x ∈ Ch(A) : f(x) 6= 0}, then ϕ−1(W ) is a neighborhood of y0.

Hence

ω(y) =


T (f)(y)
(f◦ϕ)(y) y ∈ ϕ−1(W ) ∩K,
T (f)(y)

(f◦ϕ)(y)
y ∈ ϕ−1(W ) ∩ (Y0 \K).

Now from the continuity of T (f)
f◦ϕ and T (f)

f◦ϕ on ϕ−1(W ) ∩ Y0 and the openness of K and Y0 \K, it

follows that ω is continuous at y0. �
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Remark 3.9. 1) Notice that in Theorem 3.8, the set Y0 can be neither open nor closed in Y .

2) Since for each f ∈ A, |T (f)| = |f ◦ ϕ| on Y0, ϕ(Y0) = Ch(A) and Ch(A) is a boundary for A,

then it is concluded easily that Y0 is a boundary for T (A). In particular, if f, g ∈ A, the equation

Tf = Tg on Y0 ensures that f = g. We also remark that if Ch(A) is compact, then Y0 is a closed

boundary for T (A).

3) If T (A) separates the points of Y in the sense that for each distinct points y, y′ ∈ Y , there

exists g ∈ T (A) such that |g(y)| 6= |g(y′)|, then clearly Y0 is heomeomorphic to Ch(A).

The following result, which is a consequence of Theorem 3.8, gives affirmative answers to Question

4 and Question 5 in [8, Section 5] for real-linear isometries.

Corollary 3.10. (i) If T : A −→ B is a real-linear isometry and T (ih0) = iT (h0) for some h0 ∈ A

with h0 6= 0 on Ch(A), then K = Y0 and T is a weighted composition operator on Y0, where K and

Y0 are given by Theorem 3.8.

(ii) Under the hypotheses of Theorem 3.8, if furthermore, Rπ(T (h)) = Rπ(h) for all functions

h ∈ A, then T (f) = f ◦ ϕ for each f ∈ A on Y0.

Proof. (i) First notice that since T (ih0) = iT (h0) and T is a real-linear map, then we have T (αh0) =

αT (h0) for all α ∈ T. Suppose that x ∈ Ch(A), y ∈ Ix,1 and f ∈ Vx. Lemma 3.3 implies that

T ( ih0

h0(x)
− if)(y) = 0 and T ( h0

h0(x)
− f)(y) = 0. Then T (if)(y) = i

h0(x)
T (h0)(y) and T (f)(y) =

1
h0(x)

T (h0)(y), which easily lead to this fact that T (if)(y) = iT (f)(y). In particular, it is concluded

that Ix,1 = Ix,i. Therefore, from Theorem 3.8, there exist a nonempty subset Y0 =
⋃

x∈Ch(A)

Ix,1 of

Y , a continuous surjective map ϕ : Y0 −→ Ch(A), a unimodular continuous function ω : Y0 −→ T

and a clopen subset K of Y0 such that for all f ∈ A and y ∈ Y0,

T (f)(y) = ω(y)

 f(ϕ(y)) y ∈ K,

f(ϕ(y)) y ∈ Y0 \K.

Now since T (ih0) = iT (h0), it is easy to see K = Y0 and get the result.

(ii) It is clear. �

We now consider the onto case and obtain the main theorem in [16].

Corollary 3.11. Let T : A −→ B be a surjective real-linear isometry. Then there exist a homeo-

morphism ϕ from Ch(B) onto Ch(A), a unimodular continuous function ω : Ch(B) −→ T and a

clopen subset K of Ch(B) such that for each f ∈ A and y ∈ Ch(B),

T (f)(y) = ω(y)

 f(ϕ(y)) y ∈ K,

f(ϕ(y)) y ∈ Ch(B) \K.
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Proof. Let x ∈ Ch(A).

the first option:

Take z ∈ Ix,1. Clearly,

N :=
⋂
f∈Vx

{z′ ∈ Y : T (f)(z′) = T (f)(z)} ⊆ Ix,1,

which implies that Ix,1∩Ch(B) 6= ∅ since the intersection of the p-set N and the Choquet boundary

is nonempty (see e.g., [12, Lemma 3.2] or [16, Proposition 2.1]).

2nd option:

Since the intersection of each p-set and the Choquet boundary is nonempty, then we may conclude

that Ix,1 ∩ Ch(B) 6= ∅ (see e.g., the arguments in [12, Page 86] or [16, Lemma 3.2]).

Let y ∈ Ix,1 ∩ Ch(B). By Lemma 3.2, there exists λ ∈ T such that T (Vx) ⊆ λVy. Similarly, for

this y, there exists a unique α ∈ T and x′ ∈ X such that T−1(λVy) ⊆ αVx′ . Hence

Vx ⊆ T−1(λVy) ⊆ αVx′ ,

which easily yields x = x′ and α = 1. Therefore, T (Vx) = λVy. Similarly, there exist λ′ ∈ T and

y′ ∈ Ch(B) such that T (iVx) = λ′Vy′ . We claim that y = y′. Otherwise, choose F ∈ B such that

F (y) = 1 = ‖F‖ and |F (y′)| < 0.1. If we set E = {z ∈ Y : |F (z)| ≥ 0.1}, then y′ belong to the open

set Y \ E. We take F ′ ∈ B with F ′(y′) = 1 = ‖F ′‖ and |F ′| < 0.1 on E. Now letting f1, f2 ∈ Vx
with T (f1) = λF and T (if2) = λ′F ′, we have

1.1 ≥ ‖λF + λ′F ′‖ = ‖T (f1) + T (if2)‖ = ‖T (f1 + if2)‖ = ‖f1 + if2‖ ≥
√

2,

which is a contradiction. This argument shows that y = y′. In particular, we deduce that Ix,1∩Ix,i 6=

∅. Hence from Theorem 3.8, there exist a nonempty subset Y0 of Y , a continuous surjective map

ϕ : Y0 −→ Ch(A), a unimodular continuous function ω : Y0 −→ T and a clopen subset K of Y0 such

that for all f ∈ A, T (f) = ωf ◦ ϕ on K, and T (f) = ωf ◦ ϕ on Y0 \K.

Next we show that ϕ is injective. Let y1, y2 ∈ Y0 such that ϕ(y1) = ϕ(y2). Then, from the

representation of T obtained in Theorem 3.8, we have

|T (f)(y1)| = |f(ϕ(y1))| = |f(ϕ(y2))| = |T (f)(y2)| (f ∈ A),

which, by the surjectivity of T , implies that y1 = y2 because we can choose g ∈ B such that

g(y1) = 1 and g(y2) = 0. Therefore ϕ is injective. In particular, the argument also shows that for

each x ∈ Ch(A), the set Ix is a singleton.

We next prove that Y0 = Ch(B). Take y0 ∈ Y0 and x0 = ϕ(y0). Since Ix ∩ Ch(B) 6= ∅ and Ix is

a singleton, then we conclude that y0 ∈ Ch(B). Hence Y0 ⊆ Ch(B).
10



Conversely, let y0 ∈ Ch(B). Consider T−1 (the inverse of T ), which is a real-linear isometry

from B onto A. Similar to the above arguments for T−1, there exists a continuous surjective map

ψ from the nonempty subset X0 =
⋃

y∈Ch(B)

Iy of X onto Ch(B), where Iy =
⋂

g∈(Vy∪iVy)

MT−1(g).

Set x0 ∈ X0 such that y0 = ψ(x0). Then, for each g ∈ B, |T−1(g)(x0)| = |g(y0)|. In other words,

|f(x0)| = |T (f)(y0)| for each f ∈ A, which shows that y0 ∈ Ix0
⊆ Y0 and ϕ(y0) = x0. Thereby,

Y0 = Ch(B). Furthermore, note that ϕ(ψ(x0)) = x0 and ψ(ϕ(y0)) = y0. A similar argument for the

surjective real-linear isometry T−1 shows that X0 = Ch(A), and in fact, ψ is the inverse of ϕ. This

means that ϕ is a homeomorphism from Ch(B) onto Ch(A). �

If in the above corollary we assume that X and Y are compact Hausdorff spaces, then ω = T (1).

Moreover, T1(f) := T (1)T (f) defines a real-algebra isomorphism from A onto B, and ϕ can be

extended to a homeomorphism from the maximal ideal space MB of B onto the maximal ideal space

MA of A (see [9]). It should be noted that the example given in [9] shows that, in general, A and B

need not be real-algebra isomorphic and moreover, MA is not necessarily homeomorphic to MB .

Corollary 3.12. Let X and Y be compact metric spaces and let T : Lip(X) −→ Lip(Y) be a

surjective real-linear isometry. Then there exist a continuous function ω : Y −→ T, a bi-Lipschitz

homeomorphism ϕ : Y −→ X and a clopen subset K of Y such that

T (f)(y) = ω(y)

 f(ϕ(y)) y ∈ K,

f(ϕ(y)) y ∈ Y \K,

for all y ∈ Y and f ∈ Lip(X). A similar result is valid for the pointed Lipschitz algebras.

Proof. Since each point in the underling spaces is a strong boundary point for Lipschitz algebras,

by Corollary 3.11, there exist a homeomorphism ϕ : Y −→ X and a clopen subset K of Y such that

T (f)(y) = T (1)(y)

 f(ϕ(y)) y ∈ K,

f(ϕ(y)) y ∈ Y \K,

for all y ∈ Y and f ∈ Lip(X). In particular, the above representation shows that ‖|Tf | + |Tg|‖ =

‖|f | + |g|‖ holds for all f, g ∈ Lip(X), then [12, Corollary 3.7] implies that ϕ is a bi-Lipschitz

homeomorphism.

We would like to remark that it can be checked that the Closed Graph theorem is true for real-

linear maps. So we can also apply the common method to show that ϕ is bi-Lipschitz. Consider

Lip(X) with the complete norm

‖f‖L = ‖f‖+ L(f) (f ∈ Lip(X)),

where L(f) is the Lipschitz constant of f . Indeed, T : (Lip(X), ‖ · ‖L) −→ (Lip(Y), ‖ · ‖L) is

continuous by the Closed Graph theorem. Then there exists t > 0 such that for every f ∈ Lip(X),
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‖T (f)‖L ≤ t‖f‖L. Let y, y′ be two distinct elements in Y . Define f0(z) = d(ϕ(y), z) for all

z ∈ X. Obviously, f0 ∈ Lip(X) with ‖f0‖L ≤ k, where k = 1+diam(X). Since T is continuous,

‖T (f0)‖L ≤ tk and, in particular, the Lipschitz constant L(T (f0)) ≤ tk.

Since f0(ϕ(y)) = 0 then T (f0)(y) = 0. Moreover, T (f0)(y′) = T (1)(y′)d(ϕ(y), ϕ(y′)). Hence

d(ϕ(y), ϕ(y′))

d(y, y′)
=
|T (f0)(y)− T (f0)(y′)|

d(y, y′)
≤ tk.

Therefore, sup
y,y′∈Y
y 6=y′

d(ϕ(y),ϕ(y′))
d(y,y′) ≤ tk; that is, ϕ satisfies the Lipschitz condition on Y . Similarly ϕ−1

is a Lipschitz function on X.

Given a compact metric space X with distinguished base point eX , the pointed Lipschitz algebra

on X is a function algebra on the locally compact Hausdorff space X \ {eX} and every point in

X \ {eX} is a strong boundary point. Then a similar argument can be applied to get the result for

the pointed Lipschitz algebras. �

4. Jointly norm-additive mappings

Below we characterize jointly norm-additive maps (see Introduction) when defined between func-

tion algebras (not necessarily unital or uniformly closed) and obtain an extension of the main theorem

by Shindo [21, Theorem 1]. We note that the maps here are not necessarily linear.

Theorem 4.1. Let P and Q be arbitrary nonempty sets, and let A and B be the uniform closures

of two function algebras A and B on locally compact Hausdorff spaces X and Y , respectively. Let

S1 : P −→ A, S2 : Q −→ A, T1 : P −→ B and T2 : Q −→ B be surjections satisfying

‖T1(p) + T2(q)‖ = ‖S1(p) + S2(q)‖ (p ∈ P, q ∈ Q).

Then there exist a homeomorphism ϕ from Ch(B) onto Ch(A), a unimodular continuous function

ω : Ch(B) −→ T and a clopen subset K of Ch(B) such that for each p ∈ P , q ∈ Q and y ∈ Ch(B),

T1(p)(y)− T1(p0)(y) = ω(y)

 S1(p)(ϕ(y)) y ∈ K,

S1(p)(ϕ(y)) y ∈ Ch(B) \K,

and

T2(q)(y)− T2(q0)(y) = ω(y)

 S2(q)(ϕ(y)) y ∈ K,

S2(q)(ϕ(y)) y ∈ Ch(B) \K,

where p0 ∈ P and q0 ∈ Q are elements with S1(p0) = S2(q0) = 0. Moreover, if p ∈ P and q ∈ Q

such that S1(p) = S2(q), then T1(p)− T1(p0) = T2(q)− T2(q0).

Proof. We first show that

‖T1(p)− T1(p′)‖ = ‖S1(p)− S1(p′)‖ and ‖T2(q)− T2(q′)‖ = ‖S2(q)− S2(q′)‖(4.1)
12



for all p, p′ ∈ P and q, q′ ∈ Q. We only need to show the first equation since the conditions are

symmetric for T2, S2 in comparison with T1, S1. From our assumptions, we may conclude easily that

T2(q) = −T1(p) if and only if S2(q) = −S1(p) for p ∈ P and q ∈ Q. For any p ∈ P , let qp ∈ Q with

T2(qp) = −T1(p). Then if p, p′ ∈ P we have

‖T1(p)− T1(p′)‖ = ‖T1(p) + T2(qp′)‖ = ‖S1(p) + S2(qp′)‖ = ‖S1(p)− S1(p′)‖.

Hence ‖T1(p)− T1(p′)‖ = ‖S1(p)− S1(p′)‖ for all p, p′ ∈ P .

Let us define two maps T1 and T2 on A as follows:

T1(S1(p)) := T1(p) and T2(S2(q)) := T2(q) (p ∈ P, q ∈ Q).

According to (4.1), T1 and T2 are well-defined surjections from A onto B such that

‖T1(f)− T1(g)‖ = ‖f − g‖ and ‖T2(f)− T2(g)‖ = ‖f − g‖

for all f, g ∈ A. Then the Mazur-Ulam theorem (see [25]) implies that the maps T1 − T1(0) and

T2 − T2(0) are real-linear. So T1 − T1(0) and T2 − T2(0) can be extended naturally to real-linear

isometries between the uniform closures of A and B, A and B, respectively. We denote the extensions

by T1 − T1(0) and T2 − T2(0).

Let f ∈ A, then T1(f) = −T2(−f) since, letting p ∈ P and q ∈ Q such that S1(p) = −S2(q) = f ,

we have

‖T1(f) + T2(−f)‖ = ‖T1(p) + T2(q)‖ = ‖S1(p) + S2(q)‖ = 0,

which yields the desired conclusion. Now from the real-linearity of T2 − T2(0) it follows that

T1(f)− T1(0) = −T2(−f) + T2(0) = −(T2(−f)− T2(0)) = T2(f)− T2(0),

thus T1(f)−T1(0) = T2(f)−T2(0). Now if f ∈ A, then there exists a sequence {fn} in A converging

uniformly to f . From the above we conclude that

T1(f)− T1(0) = lim
n
T1(fn)− T1(0) = lim

n
T2(fn)− T2(0)

= T2(f)− T2(0).

Therefore, T1(f) − T1(0) = T2(f) − T2(0) for all f ∈ A. Applying Corollary 3.11 to the real-linear

isometry T1 − T1(0) from A onto B, there exist a homeomorphism ϕ from Ch(B) onto Ch(A), a

unimodular continuous function ω : Ch(B) −→ T and a clopen subset K of Ch(B) such that for

each f ∈ A,

T1(f)− T1(0) = T2(f)− T2(0) = ω

 f ◦ ϕ onK,

f ◦ ϕ onCh(B) \K.
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Then for each p ∈ P , q ∈ Q and y ∈ Ch(B),

T1(p)(y)− T1(p0)(y) = ω(y)

 S1(p)(ϕ(y)) y ∈ K,

S1(p)(ϕ(y)) y ∈ Ch(B) \K,

and

T2(p)(y)− T2(q0)(y) = ω(y)

 S2(p)(ϕ(y)) y ∈ K,

S2(p)(ϕ(y)) y ∈ Ch(B) \K,

where p0 ∈ P and q0 ∈ Q satisfy S1(p0) = S2(q0) = 0.

Moreover, if p ∈ P and q ∈ Q such that S1(p) = S2(q), then we have

T1(p)− T1(p0) = T1(S1(p))− T1(0) = T2(S2(q))− T2(0) = T2(q)− T2(q0),

therefore T1(p)− T1(p0) = T2(q)− T2(q0). �

Composing the following and Corollary 3.10, we can give generalizations of [16, Corollary], [21,

Corollary 5], [24, Theorems 13, 16, 20] and [23, Theorems 3.6, 4.1, and their corollaries] under weaker

conditions between function algebras (not necessarily unital or uniformly closed).

Corollary 4.2. (i) Let A and B be the uniform closures of two function algebras A and B, respec-

tively. Let also T1, T2 : A −→ B be jointly norm-additive surjections, i.e., ‖T1(f) +T2(g)‖ = ‖f + g‖

for all f, g ∈ A. Then for each f ∈ A,

T1(f)− T1(0) = T2(f)− T2(0) = ω

 f ◦ ϕ onK,

f ◦ ϕ onCh(B) \K,

where ω, ϕ and K are given by the above theorem.

(ii) If a surjection T : A −→ B satisfies ‖T (f) + T (g)‖ = ‖f + g‖ for all f, g ∈ A, then

T (f) = ω

 f ◦ ϕ onK,

f ◦ ϕ onCh(B) \K,

where ω, ϕ and K are as in (i).

(iii) If surjections T1, T2 : A −→ B satisfy ‖T1(f) − T2(g)‖ = ‖f − g‖ for all f, g ∈ A, then

T1(f) = T2(f) and

T1(f)− T1(0) = ω

 f ◦ ϕ onK,

f ◦ ϕ onCh(B) \K,

where ω, ϕ and K are as in (i).

Proof. (i) If we let P = Q = A and S1 = S2 = id : A −→ A, then, from Theorem 4.1, we conclude

that Tj − Tj(0) is a real-linear isometry, and there exist a homeomorphism ϕ from Ch(B) onto
14



Ch(A), a unimodular continuous function ω : Ch(B) −→ T and a clopen subset K of Ch(B) such

that for each f ∈ A,

Tj(f)− Tj(0) = ω

 f ◦ ϕ onK,

f ◦ ϕ onCh(B) \K,

where j ∈ {1, 2}.

(ii) From the assumption, it is apparent that T (0) = 0. So (ii) is a direct consequence of (i).

(iii) It is clear that T1(f) = T2(f) for each f ∈ A. Now apply (i) for the maps T1 and T ′2, where

T ′2 is defined by T ′2(g) = −T2(−g) for all g ∈ A, to get the result. �

Corollary 4.3. Under the hypotheses of Theorem 4.1, if furthermore, A and B both have an ap-

proximate identity, respectively, then there exist a real-algebra isomorphism T from A onto B, a

homeomorphism φ : MA −→MB and a clopen subset K of MB such that for each f ∈ A,

T̂ (f) =

 f̂ ◦ φ onK,

f̂ ◦ φ onMB \ K.

Moreover, K ∩ Ch(B) = K and φ = ϕ on Ch(B).

Proof. According to the proof of Theorem 4.1, there exists a real-linear isometry T1 −T1(0) from A

onto B. Moreover,

T1(f)− T1(0) = ω

 f ◦ ϕ onK,

f ◦ ϕ onCh(B) \K,

where ω, K and ϕ are from the previous theorem. Since both A and B have an approximate

identity, then, from [9, Corollary 3.4], it follows B is the algebra which consists of the extensions of

the continuous functions T1(f)−T1(0)
ω |Ch(B), where f ∈ A and also the operator

T (f) =

 f ◦ ϕ onK,

f ◦ ϕ onCh(B) \K,

defines a real-algebra isomorphism from A onto B. In fact, ϕ can be extended to a homeomorphism

φ from MA onto MB , and there exists a clopen subset K of MB such that K ∩ Ch(B) = K and for

each f ∈ A, T̂ (f) = f̂ ◦ φ on K and T̂ (f) = f̂ ◦ φ on MB \ K. �

The above corollary may be considered as an extension of [21, Corollary 4].

The example given in [9] (Example 3.2) shows that, in general, the above conclusion is not valid

and B need not be real-algebra isomorphism if both A and B do not have an approximate identity.

Finally we mention that the results are valid if A and B are replaced by dense subspaces of

uniformly closed function algebras A and B, by following the proofs.
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