
Guia para a formatação de teses Versão 4.0 Janeiro 2006

Watershed-scale runoff routing and solute transport
in a spatially aggregated hydrological framework

Jairo Arturo Torres Matallana

MASTERS PROGRAM IN GEOSPATIAL TECHNOLOGIES

Watershed-scale runoff routing and solute
transport in a spatially aggregated hydrological

framework

Master thesis

by

Jairo Arturo Torres Matallana

Institute for Geoinformatics, ifgi,

Westfälische Wilhelms-Universität, Münster, Germany

Instituto Superior de Estat́ıstica e Gestão de Informação, ISEGI,

Universidade NOVA de Lisboa, Portugal

Deptartamento de Lenguajes y Sistemas Informaticos, LSI,

Universitat Jaume I, Castellón, Spain

February 2014

Watershed-scale runoff routing and solute transport in a
spatially aggregated hydrological framework

Dissertation

Supervised by
Prof. Dr. Edzer Pebesma
ifgi - Institute for Geoinformatics
Westfälische Wilhelms-Universität
Münster, Germany

Co-supervised by
Dra. Ana Cristina Costa
ISEGI - Instituto Superior de Estat́ıstica e Gestão de Informação
Universidade NOVA de Lisboa
Lisboa, Portugal

Co-supervised by
Dr. Jorge Mateu
LSI - Departamento Lenguajes y Sistemas Informaticos
Universitat Jaume I
Castellón, Spain

Disclaimer

This document describes work undertaken as part of the program of study at
Westfälische Wilhelms-Universität Münster, Universidade NOVA de Lisboa and
Universitat Jaume I. All view and opinions expressed therein remain the sole
responsibility of the author, and do not necessarily represent those of the uni-
versities.

Author’s Declaration

I hereby declare that this Master thesis has been written independently by
me, solely based on the specified literature and resources. All ideas that have
been adopted directly or indirectly from other works are denoted appropriately.
The thesis has not been submitted for any other examination purposes in its
present or a similar form and was not yet published in any other way.

Signature: ...

Date and Place: 28 February 2014, Münster, Germany

Abstract

This document presents the implementation of several methods for geo-spatial
analysis of river networks and watersheds for runoff routing and solute trans-
port in R in order to contribute in a comprehensive hydrological modelling to
the current framework of the R package ”hydromad”.

The main aim of the study is to develop R routines to coupled the outputs of
the hydrological framework of the R package ”hydromad” to the selected solute
transport model looking forward better simulation of water-quality determinants
transport at watershed scale.

Following the research scheme presented in this proposal it is possible to
prove the hypothesis behind the study. The simulation of solute transport at
specific places of the river network was improved by implementing a runoff
routing method at watershed-scale, the ”hydromad” package, and by coupling
it into a suitable modeling framework for representing solute transport processes.

The developed package, ”watersheds”, allows geo-spatial river network anal-
ysis and makes use of the Catchments and Rivers Network System (ECRINS)
version 1.1, which constitutes the hydrographical system currently in use at the
European Environment Agency as well as widely serving as the reference sys-
tem for the Water Information System for Europe (WISE). The versatility of the
code generated lets to implement geo-spatial analysis in any watershed included
into the ECRINS, as a consequence, watersheds along entire Europe could be
analyzed. This constitutes an important fact because several institutions or
scientific community related with the WISE system could take advantage of the
package and this document.

Keywords
Geospatial river networks, hydrological modelling, solute transport, R

iii

Contents

1 Introduction 1
1.1 Justification . 1
1.2 Hypothesis . 2
1.3 Objectives . 2

2 Literature review 2
2.1 Hydrological modelling . 2

2.1.1 Soil Moisture Accounting models 3
2.1.2 Routing models . 4
2.1.3 Calibration methods . 5

2.2 Geo-spatial and Geo-temporal capabilities 5
2.2.1 sp . 5
2.2.2 rgeos . 5
2.2.3 rgdal . 6
2.2.4 maptools . 6
2.2.5 raster . 6
2.2.6 lattice . 6
2.2.7 multicore . 6
2.2.8 Watersheds . 7

2.3 Runoff routing and solute transport 7
2.3.1 General reaction transport equation in 1-Dimension . . . 7
2.3.2 Boundary conditions in 1-D models 8
2.3.3 Numerical approximation of the Advection Dispersion Equa-

tion . 9
2.3.4 1-D finite difference grids and properties in ReacTran . . 9
2.3.5 Stability . 10

2.4 R Packages for routing and solute transport modelling 11
2.4.1 ReacTran . 11
2.4.2 deSolve . 12
2.4.3 rootSolve . 12

3 Materials and methods 12
3.1 Datasets . 12

3.1.1 The ECRINS dataset . 12
3.1.2 Water quality determinants 12
3.1.3 River discharge stations 13
3.1.4 Further datasets available 13

3.2 Methodology . 14
3.3 Site study: river Weser basin, Germany 17

3.3.1 Subsets . 17

4 Results 19
4.1 Geo-spatial analysis of zhyd subbasins 19

4.1.1 The Watersheds object 23
4.1.2 The Watersheds.Order method 25
4.1.3 The Watersheds.Order2 method 26
4.1.4 The Watersheds.IOR1 function 27
4.1.5 The Watersheds.IOR2 function 28

iv

4.1.6 The Watersheds.IOR3 function 29
4.1.7 The Watersheds.IOR4 function 30
4.1.8 The Karlshafen and Wahmbeck Stations watersheds . . . 31

4.2 Precipitation time series management 32
4.3 Flow time series management . 33
4.4 Runoff routing and hydrological modelling 34
4.5 Routing and solute transport modelling 36

5 Conclusions 40

6 Further work 41

References 42

7 Appendices 44
7.1 The Watersheds.Order method 44
7.2 The Watersheds.Order2 method 46
7.3 The Watersheds.IOR1 function 49
7.4 The Watersheds.IOR2 function 51
7.5 The Watersheds.IOR3 function 53
7.6 The Watersheds.IOR4 function 55
7.7 The Karlshafen and Whambeck Stations watersheds 57
7.8 Precipitation time series management 60
7.9 Routing and solute transport modelling 62
7.10 The ”Watersheds” package: user manual 64

v

List of Figures

1 The modelling framework in the hydromad package. 3
2 Overview of the hydromad package. 4
3 An illustration of multiple phases in ReacTran. From Soetaert

and Meysman (2012), Figure 1 8
4 Spatial 1-D discretization in ReacTran. From Soetaert and Meysman

(2012), Figure 2 . 10
5 Exponential grid cell size in ReacTran. From Soetaert and Meysman

(2012), Figure 3 . 11
6 Flow and level stations on river Weser 14
7 Flow and level stations at Germany available in the BfG portal . 15
8 River Rhein level at Köeln station 15
9 River Rhein level at Düsseldorf station 16
10 Strahler stream order. Illustration. 16
11 River Weser basin . 19
12 River Weser subbasin and tributaries 20
13 River Weser and intersecting zhyd subbasins 20
14 River Weser and all zhyd subbasins 21
15 River Weser and river network 21
16 River Weser and all zhyd subbasins 22
17 Flow chart of the Watersheds package. Red=data input; blue

rectangle = process; green rectangle = algorithm; diamond shape
= decision. 24

18 Current zhyd watershed (1) and first order tributary watersheds
(1.1 , 1.2) . 26

19 Current zhyd watershed and 1st and 2nd order tributary watersheds 27
20 Spatial analysis of watershed outlet, case I 28
21 Spatial analysis of watershed outlet, case II 29
22 Spatial analysis of watershed inlet and outlet, case III 30
23 Spatial analysis of watershed inlet and outlet, case IV 31
24 The Karlshafen and Wahmbeck Stations watersheds 32
25 Precipitation time series at Wahmbeck Station 33
26 Precipitation time series at Wahmbeck Station 34
27 Modelled and observed streamflow time series 35
28 Flow chart of the hydrological modelling. Red=data input; blue

rectangle = process; green rectangle = algorithm 36
29 Simulation time series of OC and flow between the Wahmbeck

and Kalshafen stations on 01.01.1995 37
30 Simulation time series of OC and flow between the Wahmbeck

and Kalshafen stations on 02.01.1995 38
31 Simulation time series of OC and flow between the Wahmbeck

and Kalshafen stations on 03.01.1995 38
32 Simulation time series of OC and flow between the Wahmbeck

and Kalshafen stations on 04.01.1995 39
33 Simulation time series of OC and flow between the Wahmbeck

and Kalshafen stations on 05.01.1995 39
34 Flow chart of the solute transport simulation. Red=data input;

blue rectangle = process; green rectangle = algorithm; diamond
shape = decision. 40

vi

List of Tables

1 Flow and level measurement stations, river Weser 13
2 Parameter definition . 35
3 Parameter calibration results . 35
4 Initializing parameter and boundary conditions 37

vii

List of Acronyms

AWBM: Australian Water Balance Model

BfG: Federal Institute of Hydrology, Germany

CCM: Catchment Characterisation and Modelling

CMD: Catchment Moisture Deficit

CORINE: Coordination of Information on the Environment

CWI: Catchment Wetness Index

ECRINS: Catchments and Rivers Network System

ECA&D: European Climate Assessment & Dataset

EEA: European Environment Agency

EOBS: Observational dataset for precipitation, temperature and sea level
pressure in Europe

FEC: Functional Elementary Catchment

HEC-HMS: Hydrologic Engineering Center - Hydrological Modeling Sys-
tem

IHACRES: Identification of unit Hydrographs And Component flows from
Rainfall, Evaporation and Streamflow

LISFLOOD: GIS-based hydrological rainfall-runoff-routing model

NetCDF: network Common Data Form

SASHI: Sistema de Análise de Simulação Hidrológica

viii

SMA: Soil Moisture Accounting

SWAT: Soil Water Assessment Tool Model

USACE: United States Army Corps of Engineers.

USGS: United States Geological Survey

WATFLOOD: Integrated set of computer programs to forecast flood flows

WaSiM: Water balance Simulation Model

WFD: Water Framework Directive

WISE: Water Information System for Europe

zhyd: ECRINS’ primary hydrological unit

ix

1 Introduction

In a comprehensive environmental modelling in the water resources domain,
is of paramount importance to understand the interaction between the mate-
rial flows to coastal waters that are constrained by catchment boundaries and
the human activities therein, and those materials that are tied to trade and
other trans-boundary processes (e.g. residence time, transport and fate of phys-
ical, chemical and microbiological water-quality determinants) and their global
implications on preserving the quality of the natural environment.

In a similar sense, applications in river and environmental engineering, specif-
ically related with hydrological modelling, are related to the analysis of rainfall
and hydrometric time series in order to implement rainfall-runoff models as a
conceptual mathematical basis in flood risk management e.g. the study of the
probable maximum precipitation and probable maximum flood for basin water
resources management. In this case, the modelling framework is for creating the
conceptual basis to simulate flood events in probable scenarios of storm events.

The present document has the purpose of illustrating the implementation of
the spatial analysis and the runoff routing and solute transport in the framework
of the ECRINS river network a reference system for hydrological and climate
change modelling in order to contribute in a comprehensive modelling framework
by means of the understanding and representation of the flow celerities dynamics
and spatial distribution in the river network at the watershed scale.

In the following sections are presented the justification of the proposal (Sec-
tion 1.1), the hypothesis behind the study (Section 1.2) and the objectives
(Section 1.3). Also, in the Section 2, the preliminary review of literature is
introduced; the software and datasets required, and the methods to follow are
presented in Section 3. The Section 4 presents the results of the study. The
conclusions (Section 5) and some considerations for further work are presented
(Section 6). Finally, references and appendices (Section 7) are presented.

1.1 Justification

The ultimate aim of flow prediction using models must be to improve deci-
sion making e.g. in water resources planning, flood protection and mitigation
of contamination (K. J. Beven, 2012). From the Millenium Development Goals
(MDGs) point of view (United Nations - UN, 2012), to secure water-quality and
predict floods have an impact on reducing child mortality (Goal 4) and ensure
environmental sustainability (Goal 7). Currently, UN (2012) also recognizes
that improving monitoring systems is paramount due to reliable, timely and
internationally comparable data on the MDG indicators are crucial for devis-
ing appropriate policies and interventions needed to achieve the MDGs and for
holding the international community to account. In this sense, rainfall-runoff
models are a primary component in the monitoring system for real-time flow
and water-quality prediction.

In the literature exists several hydrological models for rainfall-runoff mod-
elling. However, there are few studies that attempt to model both flow and
water-quality in a totally consistent way because before is required to represent
adequately the complexity of the system e.g. the dynamics of celerities and the
complete distribution of water pore velocities (K. J. Beven, 2012). Some studies
that points toward this direction are provided by Botter et al. (2009, 2010) and
Duffy (2010).

1

Moreover, for addressing a comprehensive hydrological modelling, specifi-
cally looking forward on the validation of the hydrological cycle, and the trans-
port and fate of sediments and solutes in surface water resources, it is paramount
to recognize that in environmental modelling all model structures, regardless of
their complexity, are to some extent in error (K. J. Beven, 1989; Grayson et al.,
1992; Freer et al., 2004).

Therefore, model comparison in structure, calibration methods and simu-
lation events, is essential for choosing objectively the suitable configuration of
the model for addressing a specific task related with hydrological modelling.
To accomplish this, a novel, versatile, and open source application is provided
with the R Project for Statistical Computing (Ihaka & Gentleman, 1996; R
Development Core Team, 2013). R more than a statistical software is a model-
ing framework that provides for standardised tests and comparisons of models.
Also, the R environment allows the reproducibility of methods and results, as is
often required by science and research.

The implementation of a method for runoff routing in the river network
contributes to the existing hydrological modelling framework and intends for
the representation of the solute transport in the river network at the watershed-
scale domain.

1.2 Hypothesis

The simulation of solute transport at specific places of the river network
(measurement stations) could be improved by implementing a runoff routing
method at watershed-scale and by coupling it into a suitable modeling frame-
work for representing transport processes.

1.3 Objectives

• Primary objective

– To coupled the selected runoff routing model to R for representing
solute transport in the river network at the watershed-scale domain.

• Secondary objectives

– To implement several methods for geo-spatial analysis of river net-
works in R.

– To implement the selected runoff routing in R.

– To define a simulation configuration for testing.

2 Literature review

2.1 Hydrological modelling

Several applications in river and environmental engineering and science, re-
lated with hydrological modelling are related to the analysis of rainfall and
hydrometric time series in order to implement rainfall-runoff and water-quality
models as a conceptual mathematical basis for solute transport and fate as-
sessment. Similarly, such applications and models are common in basin water
resources and flood risk management e.g. in the study of the probable maxi-
mum precipitation and probable maximum flood. In this case, the application

2

Figure 1: The modelling framework in the hydromad package.

From F. Andrews (2011).

of hydrological models is done as the conceptual basis to simulate flood events
in probable scenarios of storm events (Torres & Pebesma, 2013).

Regarding to the challenges for modern hydrological and environmental re-
search as it is depicted in current researches –e.g. McDonnell et al. (2010);
Swaney et al. (2011)– is essential to understand and develop a comprehensive
modelling framework that includes as an important step the uncertainty anal-
ysis in order to identify primary physical controls, and henceforth for coupling,
in a most suitable way, inland hydrological models with the coastal system at
regional, transboundary and global scales.

Henceforth, in hydrological applications a main aim is to consider a suit-
able and reproducible modelling framework that takes into account data input,
spatial interpolation, calibration and simulation, and includes geospatial capa-
bilities for querying, updating, sharing and visualization of data, methods and
results (Torres & Pebesma, 2013). This focus is addressed in the following
subsections where is presented in a succinct manner the existing open source
software hydromad a R package for hydrological modelling.

hydromad is an interesting hydrological modelling framework presented by
F. T. Andrews, Croke, and Jakeman (2011). The framework is based loosely
on the unit hydrograph theory of rainfall-runoff modelling. The documentation
of the methods in hydromad could be found in the web page of the project
(http://hydromad.catchment.org). The Figure 1 illustrates the work-flow of
the modelling framework in the hydromad package and the following subsections
present a description of the three main components of the hydromad package:
the Soil Moisture Accounting (Section 2.1.1), the routing models (Section 2.1.2)
and the calibration methods (Section 2.1.3). The Figure 2 resumes the compo-
nents and structure of the package hydromad (F. Andrews, 2011).

2.1.1 Soil Moisture Accounting models

hydromad counts with 11 Soil Moisture Accounting (SMA) models (F. Andrews,
2014): 1) the Catchment Moisture Deficit (CMD) an effective rainfall model for
IHACRES. It is a conceptual-type model, where input rainfall is partitioned ex-
plicitly into drainage, evapo-transpiration, and changes in catchment moisture;
2) the Catchment Wetness Index (CWI) effective rainfall model for IHACRES.
This is the classic model of Jakeman and Hornberger (1993), with the exten-
sions to ephemeral catchments of Ye et al. (1997); 3) the GR4J model (mode’le
du Ge´nie Rural a’ 4 parame’tres Journalier); 4) the Australian Water Balance
Model (AWBM): simple 3 bucket model; 5) bucket: the Single-bucket Soil Mois-
ture Accounting models with saturated/unsaturated zones and interception; 6)

3

http://hydromad.catchment.org

Figure 2: Overview of the hydromad package.

Adapted from F. Andrews (2014).

the Sacramento Soil Moisture Accounting model. Developed by the US National
Weather Service; 7) snow: a simple degree day factor snow model coupled with
IHACRES CMD soil moisture model; 8) scalar: a simple constant runoff pro-
portion: a constant fraction of rainfall reaches the stream; 9) intensity: Runoff
as rainfall to a power. This allows an increasing fraction of runoff to be gener-
ated by increasingly intense/large rainfall events (for power > 0). The fraction
increases up to a full runoff level at maxP; 10) runoffratio: simple time-varying
runoff proportion. Rainfall is scaled by the runoff coefficient estimated in a
moving window; and 11) dbm: Typical initial model used in Data-Based Mech-
anistic modelling. Rainfall is scaled by corresponding streamflow values raised
to a power.

The models 10 and 11 use streamflow data, so can not be used for prediction.

2.1.2 Routing models

hydromad counts with 6 routing models (F. Andrews, 2014): 1) armax: the
ARMAX linear transfer functions with a single input and single output se-
ries. Can be used as a general Unit Hydrograph transfer function, defined by
Auto-Regressive and Moving Average coefficients; 2) expuh: A unit hydrograph
(linear transfer function) defined as a system of exponentially receding compo-
nents. Each component is defined by its time constant and fractional volume,
and if there are multiple (up to 3) such components they may be in a paral-
lel and/or series configuration; 3) lambda: Lambda unit hydrograph. Transfer
function with two exponential components and variable partitioning; 4) powuh:
a power-law form of unit hydrograph (transfer function); 5) leakyExpStore: an
exponential store (linear transfer function) which has a loss term, produces no
flow when the store drops below a level, and can therefore model longer-term dis-
connection of a store from streamflow.; and 6) expuh3s: a unit hydrograph with
a quickflow pathway and two layered slow-flow pathways modelling recharge to
groundwater in order to allow modelling of long-term disconnection of slow-flow

4

stores from streamflow.

2.1.3 Calibration methods

Accordingly with F. Andrews (2011), currently implemented calibration meth-
ods in hydromad include simple sampling schemes (fitBySampling), general op-
timisation methods with multistart or presampling (fitByOptim) and the more
sophisticated Shuffled Complex Evolution (fitBySCE) and Differential Evolu-
tion (fitByDE) methods. All attempt to maximise a given objective function.
Other 8 calibration algorithms are available (see F. Andrews (2014)).

Accordingly to F. Andrews (2014) the ”fitBySampling” method fit a hy-
dromad model by sampling the parameter space. Returns best result from
sampling in parameter ranges using random, latin hypercube sampling, or a
uniform grid (all combinations). The function also retains the parameter sets
and objective function values, which can be used to define a feasible parame-
ter set. The ”fitByOptim” method fits a hydromad model using R’s optim or
nlminb functions. Has multi-start and pre-sampling options. The ”fitBySCE”
fit a hydromad model using the SCE (Shuffled Complex Evolution) algorithm,
and finally, the ”fitByDE” fit a hydromad model using the DE (Differential
Evolution) algorithm.

2.2 Geo-spatial and Geo-temporal capabilities

Several packages developed in the programming language R Project for Sta-
tistical Computing (Ihaka & Gentleman, 1996; R Development Core Team,
2013) are available for Geo-spatial and Geo-temporal analysis. The packages
sp (Pebesma & Bivand, 2005-2012), rgeos (Bivand & Rundel, 2012), rgdal
(Bivand et al., 2003-2013), maptools (Lewin-Koh & Bivand, 2012), raster
(Hijmans, 2014), Lattice (Sarkar, 2012), multicore (Urbanek, 2013) and Watersheds
was used in the present study and are described in the following subsections.

The present subsection has the purpose of introducing the packages devel-
oped in the programming language R available for Geo-spatial and Geo-temporal
analysis and used and implemented in the present work.

2.2.1 sp

The package sp (Pebesma & Bivand, 2005-2012), provides classes and methods
for spatial data. The classes document where the spatial location information
resides, for 2D or 3D data. Utility functions are provided, e.g. for plotting
data as maps, spatial selection, as well as methods for retrieving coordinates,
for subsetting, print, and summary.

The package has i.a. the class SpatialPolygons which is a data object
equivalent to an ESRI polygon shapefile containing information for polygons,
and additional similar definitions for spatial points and lines are defined through
the objects SpatialPoints and SpatialLines, respectively.

2.2.2 rgeos

This package developed by Bivand and Rundel (2012), is an interface to Geom-
etry Engine - Open Source (GEOS) using the C API for topology operations on
geometries. The packages provides methods and functions for geospatial analysis

5

i.a. garea, gBoundary, gBuffer, gCentroid, gContains, gConvexHull, gCrosses,
gDifference, gDistance, gEnvelope, gEquals, gIntersection, gIntersects,
gRelate, gSimplify, gSymdifference, gTouches, gUnion, SpatialCollections,
SpatialRings.

2.2.3 rgdal

A binding package for the Frank Warmerdam’s Geospatial Data Abstraction
Library (GDAL, http://www.gdal.org) is available in R through the package
rgdal (Bivand et al., 2003-2013). It allows to deploy multiple classes defined
in the sp package and access to the projection/transformation operations from
the PROJ.4 library (https://trac.osgeo.org/proj/) and to the OGR library.
The OGR Simple Features Library is a C++ open source library for reading, and
in some cases writing, a variety of vector file formats including ESRI Shapefiles
and PGDBs .mdb files via ODBC (Warmerdam, 2013). Therefore, using rgdal
both GDAL raster and OGR vector map data can be imported into R and
exported, and the ECRINS database could be handled properly.

2.2.4 maptools

The maptools package (Lewin-Koh & Bivand, 2012) is a set of tools for ma-
nipulating and reading geographic data, in particular ESRI shape- files; C code
used from shapelib. It includes binary access to GSHHS shoreline files. The
package also provides interface wrappers for exchanging spatial objects with
packages such as PBSmap- ping, spatstat, maps, RArcInfo, Stata tmap, Win-
BUGS, Mondrian, and others.

2.2.5 raster

The raster package (Hijmans, 2014) has capabilities for reading, writing, ma-
nipulating, analyzing and modeling of gridded spatial data. The package im-
plements basic and high-level functions and processing of very large files is
supported.

2.2.6 lattice

Lattice (Sarkar, 2012), is a powerful and elegant high-level data visualization
system, with an emphasis on multivariate data, that is sufficient for typical
graphics needs, and is also flexible enough to handle most nonstandard require-
ments.

2.2.7 multicore

This package (Urbanek, 2013) provides a way of running parallel computations
in R on machines with multiple cores or CPUs. Jobs can share the entire initial
workspace and it provides methods for results collection.

6

http://www.gdal.org
https://trac.osgeo.org/proj/

2.2.8 Watersheds

The package Watersheds developed by the author for the present work, allows
spatial analysis for watersheds aggregation and ordering accordingly to an outlet
point and size of tributary watershed of the current watershed. Also, enables
spatial drainage networks analysis inside the aggregated watersheds. It makes
use of the functionalities of the spatial classes, functions and methods of the R
package sp (Pebesma & Bivand, 2005-2012). Also is build on the capabilities of
the R packages rgeos, maptools, lattice, splancs, and multicore.

The Watersheds package allows creation and handling of objects class Water-
shed for identifying the subbasin that contains the current station (class
Spatial- Points) and subsets the zhyd object to subbasin and extract the
current zhy object that contains station via the S4 method Watershed.Order.
Identification of the inlet and outlet stretches and inlet and outlet nodes of
the zhyd. Implementation of the functions Watershed.IOR1, .IOR2, .IOR3,
and .IOR4 for determining the actual inlet and outlet nodes. S4 methods
Watershed.Order2 and Watershed.Tributary for defining tributary nodes and
tributary catchments of the current zhyd watershed.

2.3 Runoff routing and solute transport

A large-scale runoff routing with an aggregated network-response function
is presented by Gong et al. (2009). A scale dependency of routing dynamics is
evaluated, as well as the flow velocities and the routing performance at different
spatial resolutions. Also, some limitations of aggregated networks are evaluated.

An example of runoff routing at large scales that involves development of
low-resolution flow networks, with spatial resolutions of which range from 1 Km
is presented with the model HYDRO1k (USGS, 1996).

Regarding to identify different schemes of runoff routing in the river network,
some distributed and semi-distributed models could be evaluated i. a. WAT-
FLOOD (Kouwen, 1988); TOPMODEL (K. Beven et al., 1995; K. J. Beven,
1997; Buytaert, 2012); SASHI (Sistema de Análise de Simulação Hidrológica,
INPE, Rennó (2003)); SCS-TerraMe (INPE, Pereira (2009)); LISFLOOD (van
der Knijff et al., 2010); SWAT (Soil Water Assessment Tool Model, Neitsch
et al. (2011)); WaSiM (Water balance Simulation Model, Schulla (2012)); and
aggregated models as the Hydrological Modeling System HEC-HMS (USACE,
HEC, 2006).

2.3.1 General reaction transport equation in 1-Dimension

Accordingly with Soetaert and Meysman (2012), the general 1-D reaction-
transport equation in multi-phase environments and for shapes with variable
geometry is:

∂ξC

∂t
= − 1

A
· ∂ (A · J)

∂x
+ reac (1)

where 1

• t is time
1here the units are M for Mass, L for Length and t for time

7

Figure 3: An illustration of multiple phases in ReacTran. From Soetaert and Meysman
(2012), Figure 1

• x is space

• C is concentration of a substance in its respective phase

• ξ is the volume fraction (-), i.e. the fraction of a phase in the bulk volume
(see Figure 3). In most of cases, when one phase is considered ξ = 1. For
sediments, ξ would be porosity (solutes), or 1-porosity (solids)

• A is the total surface area (L2)

• J are fluxes (ML−2t−1)

The Fluxes, J , are estimated per unit of total surface, and represents a
dispersive and a advective component:

J = −ξD · ∂C
∂x

+ ξu · C (2)

where:

• D is the diffusion (or dispersion) coefficient (L2t−1)

• u is the advection velocity (Lt−1)

2.3.2 Boundary conditions in 1-D models

Accordingly with Soetaert and Meysman (2012), the boundaries at the extremes
of the model domain e.g. at x = 0 could be one of the following options:

• A concentration boundary, C|x=0= C0

• A diffusive + advective flux boundary, Jx=0 = J0

• A boundary layer convective exchange flux boundary Jx=0 = abl·(Cbl − C0)

8

2.3.3 Numerical approximation of the Advection Dispersion Equa-
tion

Following Soetaert and Meysman (2012), the reaction-transport formula is a
partial differential equation (PDE), as a consequence it is solve by approximating
the spatial gradients using the numerical differences by the method-of-lines,
MOL, approach. This converts the PDE into ordinary differential equations
(ODE).

Thus, the model is divided into a number of grid cells, and for each grid cell
i is writen:

dξiCi

∂t
= − 1

A
· ∆i (A · J)

∆xi
+ reaci (3)

where ∆i denotes that the flux gradient is to be taken over box i, and ∆xi

is the thickness of the box i:

∆i (A · J) = Ai,i+1 · Ji,i+1 − (Ai−1,i · Ji−1,i) (4)

where i, i+ 1 denotes the interface between box i and i+ 1.
The fluxes at the box interfaces are discretized as:

Ji−1,i = −ξi−1,iDi−1,i ·
Ci − Ci−1

∆xi−1,i
+ξi−1,iui−1,i ·(ϑi−1,i · Ci−1 + (1− ϑi−1,i) · Ci)

(5)
where ∆xi−1,i is the distance between the centre of the grid cells i− 1 and

i, and ϑ the upstream weighing coefficients for the advective term.

2.3.4 1-D finite difference grids and properties in ReacTran

the spatial discretization grid could be generated with the function setup.grid.1D
of the package ReacTran. The generated grid comprises several zones:

setup.grid.1D = function(x.up = 0,x.down = NULL, L = NULL, N = NULL,
dx.1 = NULL, p.dx.1 = rep(1,length(L)), max.dx.1 = L,
dx.N = NULL, p.dx.N = rep(1,length(L)), max.dx.N = L)

with the following arguments:

• x.up, the position of the upstream boundary

• x.down, the position of the downstream boundaries in each zone

• L, N, the thickness and the number of grid cells in each zone.

• dx.1, p.dx.1, max.dx.1, the size of the first grid cell, the factor of increase
near upstream boundary, and maximal grid cell size in the upstream half
of each zone

• dx.N, p.dx.N, max.dx.N, the size of the last grid cell, the factor of in-
crease near the downstream boundary, and maximal grid cell size in the
downstream half of each zone

9

Figure 4: Spatial 1-D discretization in ReacTran. From Soetaert and Meysman (2012),
Figure 2

The function returns an element of class grid.1D that contains the following
elements (units L) (see Figure 4):

• x.up, x.down, the position of the upstream and downstream boundary

• x.int, the position of the grid cell interfaces, where the fluxes are specified,
a vector of length N+1

• x.mid, the position of the grid cell centres, where the concentrations are
specified, a vector of length N. This is equivalent to ∆xi−1,i

• dx, the thickness of boxes, i.e. the distance between the grid cell interfaces,
a vector of length N. Equivalent to ∆xi

• dx.aux, the distance between the points where the concentrations are spec-
ified, a vector of length N+1. This is equivalent to ∆xi−1,i

For example, to represent a subdivision of a river streach of 100 Km long
into 50 boxes, with the first box size of 1 Km, is established by:

grid = setup.grid.1D(L=90, dx.1=1, N=50)

and the grid is plotted with the command:

plot(grid)

2.3.5 Stability

The stability criteria followed for determining the relation between the temporal
interval and the residence time in a finite volume is given by the Courant number
(Chaudhry, 2008, p. 375):

10

Figure 5: Exponential grid cell size in ReacTran. From Soetaert and Meysman (2012),
Figure 3

C =
∆t
∆x

u

= u
∆t

∆x
(6)

where:

• C is the Courant number

• ∆t is the time interval

• ∆x is the space interval

• u is velocity

2.4 R Packages for routing and solute transport modelling

2.4.1 ReacTran

The R package ReacTran contains routines that enable the development of re-
active transport models in aquatic systems (rivers, lakes, oceans), porous media
(floc aggregates, sediments,...) and even idealized organisms (spherical cells,
cylindrical worms,...) (Soetaert & Meysman, 2012).

The geometry of the model domain is either one-dimensional, two-dimensional
or three-dimensional. The package contains (Soetaert & Meysman, 2012):

• Functions to setup a finite-difference grid (1D or 2D)

• Functions to attach parameters and properties to this grid (1D or 2D)

11

• Functions to calculate the advective-diffusive transport term over the grid
(1D, 2D, 3D)

2.4.2 deSolve

Citing Soetaert, Petzoldt, and Setzer (2013) from the users manual, the pack-
age deSolve provides ”Functions that solve initial value problems of a system
of first-order ordinary differential equations (ODE), of partial differential equa-
tions (PDE), of differential algebraic equations (DAE), and of delay differential
equations. The functions provide an interface to the FORTRAN functions lsoda,
lsodar, lsode, lsodes of the ODEPACK collection, to the FORTRAN functions
dvode and daspk and a C-implementation of solvers of the Runge-Kutta fam-
ily with fixed or variable time steps. The package contains routines designed
for solving ODEs resulting from 1-D, 2-D and 3-D partial differential equations
(PDE) that have been converted to ODEs by numerical differencing”.

2.4.3 rootSolve

Accordingly Soetaert (2014) from the users manual, the package rootSolve
provides ”routines to find the root of nonlinear functions, and to perform steady-
state and equilibrium analysis of ordinary differential equations (ODE). Includes
routines that: (1) generate gradient and Jacobian matrices (full and banded),(2)
find roots of non-linear equations by the Newton-Raphson method,(3) estimate
steady-state conditions of a system of (differential) equations in full, banded or
sparse form, using the Newton-Raphson method, or by dynamically running, (4)
solve the steady-state conditions for uni-and multicomponent 1-D, 2-D, and 3-D
partial differential equations, that have been converted to ODEs by numerical
differencing (using the method-of-lines approach).”

3 Materials and methods

This section presents a summary of the specific techniques used in the study,
procedures, statistical design, and data collection and analysis.

3.1 Datasets

Primary datasets for the present study are defined in the following subsec-
tions.

3.1.1 The ECRINS dataset

The European Environment Agency (EAA) has been developed the Catchments
and Rivers Network System (ECRINS) version 1.1 (EAA, 2012). The ECRINS
is the hydrographical system currently in use at the EEA as well as widely
serving as the reference system for the Water Information System for Europe
(WISE)(EAA, 2012, p. 49).

3.1.2 Water quality determinants

The following physical and water quality determinants are available at Depart-
ment of Hydrometry and Hydrological Survey of the Federal Institute of Hy-

12

Table 1: Flow and level measurement stations, river Weser

GRDC Number National ID River Station name Latitude Longitude Area Altitude
6337400 43100109 WESER HANN.-MUENDEN 51.426 9.641 12442 114.95
6337519 43900105 WESER WAHMBECK 51.625 9.52 12996 98
6337516 45100100 WESER KARLSHAFEN 51.648 9.438 14794 94.05
6337514 45300200 WESER BODENWERDER 51.973 9.516 15924 69.39
6337100 45900208 WESER VLOTHO 52.176 8.862 17618 41.66
6337518 47100100 WESER PORTA 52.249 8.922 19162 37.04
6337517 47500200 WESER LIEBENAU 52.594 9.113 19910 20
6337515 47900209 WESER DOERVERDEN 52.852 9.211 22110 7.99
6337200 49100101 WESER INTSCHEDE 52.964 9.125 37720 4.79

drology (BfG):

• water level, cm

• water temperature, degree Celsius

• conductivity, µS/cm

• pH, pH units

• oxygen content, mg/l

• turbidity, TE/F

3.1.3 River discharge stations

The data for flow level and discharge are also available at Department of Hy-
drometry and Hydrological Survey of the German Federal Institute of Hydrol-
ogy. The Table 1 presents the details of the nine stations analyzed in this study
and Figure 6 shows their location.

More stations in Germany could be used for implementing the methods for
runoff routing and solute transport analysis. Figure 7 presents the available
measurement stations in Germany, and Figures 8 and 9 show, as an example,
the river Rhein level retrieved at Köeln station and Düsseldorf, respectively.

3.1.4 Further datasets available

• The world-wide repository of river discharge data and associated metadata
of the Global Runoff Data Centre - GRDC (2013).

• Water levels data at selected gauging stations on German federal water-
ways from the German Federal Institute of Hydrology - BfG (2013).

• The land cover dataset from European Environment Agency - EAA (1995).
This data project is part of the CORINE programme and is intended to
provide consistent localized geographical information on the land cover of
the Member States of the European Community.

• Climate data for Germany from the Federal Ministry of Transport, Build-
ing and Urban Development http://www.dwd.de/. From this is created
the layer ”dwd PrecipitationStations” and the ODS spreadsheet
”DWD precipitation stations.csv-ODS”

13

http://www.dwd.de/

0

200

400

600

800

4200000 4250000 4300000 4350000

31
50
00
0

32
00
00
0

32
50
00
0

33
00
00
0

HANN.-MUENDEN

WAHMBECK
KARLSHAFEN

BODENWERDER

VLOTHO

PORTA

LIEBENAU

DOERVERDEN

INTSCHEDE

Elevation

Sub-basins
River Weser
Station

Sub-basins
River Weser
Station

Figure 6: Flow and level stations on river Weser

3.2 Methodology

The Catchments and Rivers Network System (ECRINS) version 1.1. from
the EAA (2012) is the hydrographical system currently in use at the European
level as well as widely serving as the reference system for the Water Information
System (WISE).

According with the EuropeanWater Framework Directive (WFD), the small-
est unitary catchment suggested is 10 Km2. The overall aim of ECRINS, how-
ever, is to centre the watersheds between 50 km2 and 100 km2, since such a
small area is not compatible with production constraints and the source data
available. The FEC, or Functional Elementary Catchment, stands as the cen-
tral element of ECRINS. FEC refers to the smallest catchment identified as an
ECRINS elementary catchment. A FEC is built via aggregating elementary
CCM (Catchment Characterisation and Modelling) catchments. It could be ei-
ther a ’continental FEC’ when built by aggregating elementary CCM catchments
from a non-coastal basin, or a ’coastal FEC’ when elementary CCM catchments
belong to a coastal basin (EAA, 2012, p. 49).

The average area of possible FEC building from basins at Strahler 3 level
is 39 Km2, which is compatible with both this WFD threshold and specific
requirements; using basins at level 4 would not allow small enough FECs (EAA,
2012, p. 49). The Figure 10 presents an illustration of the Stralher stream order
1 to 4.

The database access and manipulation of the ECRINS dataset, which basi-
cally has been delivery in different layers and ancillary tables in MS Access R�

14

Figure 7: Flow and level stations at Germany available in the BfG portal

Figure 8: River Rhein level at Köeln station

15

Figure 9: River Rhein level at Düsseldorf station

Figure 10: Strahler stream order. Illustration.

Personal GeoDatabases (PGDBs) format (a Microsoft R� proprietary format,
handed with both MS Access R� and ArcGIS R�), is done by using open source
GIS methods and database managers. In this sense, R packages as foreign
(R Core Team et al., 1999-2013) for importing a .dbf file into a R dataframe,
and the S4 methods for manipulating spatial data provided by sp (Pebesma &
Bivand, 2005-2012) was applied.

The followed methodology was to create a R package (”Waterssheds”) for
geospatial analysis of the ECRINS river network for runoff routing and water-
shed aggregation based on the order of contribution of tributaries watersheds
(accordingly Strahler order) in the basin of the river Weser, Germany. Although
the site of study is defined in the package, it is possible to implement similar
analysis for other places contained into the ECRINS dataset (European level).

After implementing the geospatial analysis a method for runoff routing and
solute transport is developed based on the solution of the advection-dispersion
equation in one dimension and steady state for routing and trace a water quality
determinant (e.g. organic carbon, OC) between two stations along the river
Weser. Beyond the focus of this work, numerical homologous frameworks could
be developed for the cases of bi- and three-dimensional frameworks, for example
for simulating pollutants dispersion in a estuary, a lake or the ocean. Also, the
case of unsteady state could be implemented.

16

3.3 Site study: river Weser basin, Germany

The site study is presented along with the package ”Watersheds”. The pack-
age has an example dataset of the ECRINS database for the river Weser basin,
Germany. The European Environment Agency (EEA) has been developed the
Catchments and Rivers Network System (ECRINS) version 1.1. The ECRINS
is the hydrographical system currently in use at the European level as well
as widely serving as the reference system for the Water Information System
(WISE). The current version of ECRINS is based on previous work carried out
by the Joint Research Centre (JRC) Catchment Characterisation and Mod-
elling (CCM) and the EEA (European Lakes, Dams and Reservoirs Database
(Eldred2), European Rivers and Catchments (ERICA), (EAA, 2012).

3.3.1 Subsets

The dataset contains the following subsets:

• basin: an object SpatialPolygonsDataFrame as is defined in package sp
that represents the river Weser basin. The data slot contains 6 variables
as attributes of 1 observation.

• ctry: an object SpatialPolygonsDataFrame as is defined in package sp
that represents the administrative boundary of Germany. The data slot
contains 6 variables as attributes of 1 observation.

• node: an object SpatialPointsDataFrame as is defined in package sp
that represents the nodes of the ECRINS river network of the river Weser
basin. The data slot contains 13 variables as attributes of 3882 observa-
tions.

• rAller an object SpatialLinesDataFrame as is defined in package sp
that represents the basin of the river Aller, a major tributary of the river
Weser. The data slot contains 74 variables as attributes of 88 observations.

• rDiemel an object SpatialLinesDataFrame as is defined in package sp
that represents the basin of the river Diemel, a major tributary of the river
Weser. The data slot contains 74 variables as attributes of 39 observations.

• rFulda an object SpatialLinesDataFrame as is defined in package sp
that represents the basin of the river Fulda, a major tributary of the river
Weser. The data slot contains 74 variables as attributes of 82 observations.

• rHunte an object SpatialLinesDataFrame as is defined in package sp
that represents the basin of the river Hunte, a major tributary of the river
Weser. The data slot contains 74 variables as attributes of 34 observations.

17

• river an object SpatialLinesDataFrame as is defined in package sp that
represents the ECRINS river network of the river Weser basin. The data
slot contains 52 variables as attributes of 3874 observations.

• rWerra an object SpatialLinesDataFrame as is defined in package sp
that represents the basin of the river Werra, a major tributary of the river
Weser. The data slot contains 74 variables as attributes of 120 observa-
tions.

• rWeser an object SpatialLinesDataFrame as is defined in package sp
that represents the basin of the river Weser. The data slot contains 74
variables as attributes of 104 observations.

• rWiumme an object SpatialLinesDataFrame as is defined in package sp
that represents the basin of the river Wiumme, a major tributary of the
river Weser. The data slot contains 74 variables as attributes of 18 obser-
vations.

• station an object SpatialPoints as is defined in package sp that rep-
resents a point of interest for which the watershed will be aggregated an
ordered. Could be a point with the coordinates of a measurement station.

• subbasin an object SpatialPolygonsDataFrame as is defined in package
sp that represents the subbasins of the tributaries of the river Weser. The
data slot contains 4 variables as attributes of 4 observations.

• zhyd an object SpatialPolygonsDataFrame as is defined in package sp
that contains the primary hydrological units of the river Weser basin ac-
cordingly with ECRINS. The data slot contains 50 variables as attributes
and 915 observations.

Some examples for visualising the dataset are presented in the following
Figures. Figure 11 illustrates the River Weser basin location into the German
territory. The river Weser is formed after the confluence of the rivers Werra
and Fulda. The Figure 12 presents the River Weser subbasin and its main
tributaries: the rivers Wümme, Aller, Hunte and Diemel, and its former rivers
Werra and Fulda. The Figure 14 shows the River Weser and its intersecting
zhyd subbasins along its trajectory, which represent the primary hydrological
units that contribute with the runoff toward the main course.

The Figure 14 presents all the zhyd subbasins in the entire basin of the
river Weser and the Figure 15 shows the entire river network of the river Weser
basin. From these last two Figures it is possible to understand the necessity
for developing a spatial analysis of tributary zhyd (primary hydrological units
in the terminology of the ECRINS dataset) units, identifying the current zhyd
under analysis and its subsequent zhyd tributaries and defining the inlet and

18

Figure 11: River Weser basin

outlet nodes of each zhyd and the river network inside them. This is the main
effort for developing the package ”Watersheds” a contribution for geo-spatial
analysis of the river network of one zhyd unit.

4 Results

This section presents the data acquired for the research and their meaning
and analysis. The Section 4.1 include some examples for illustrating the capa-
bility of geo-spatial analysis in the river network before applying the technique
of solute transport in the desired stretch of river. Here are presented the func-
tionality of the Watersheds object and the Watersheds.Order method, the
Watersheds.Order2 method and the functions Watershed. ,IOR1, IOR2,
IOR3, IOR4.

Posteriorly, in Section 4.2 is presented the result of the precipitation time
series management; in Section 4.3 is presented the flow time series management;
in Section 4.4 the Runoff routing and hydrological modelling setup is presented;
and finally in Section 4.5 are presented the result of applying the numerical
approximation of the Advection-Dispersion Equation as the main component of
the solute transport modelling.

4.1 Geo-spatial analysis of zhyd subbasins

The FEC or Functional Elementary Catchment Stands as the central element
of ECRINS. FEC refers to the smallest catchment identified as an ECRINS el-

19

Figure 12: River Weser subbasin and tributaries

Figure 13: River Weser and intersecting zhyd subbasins

20

Figure 14: River Weser and all zhyd subbasins

Figure 15: River Weser and river network

21

Figure 16: River Weser and all zhyd subbasins

ementary catchment. A FEC is built via aggregating elementary CCM (Catch-
ment Characterisation and Modelling) catchments. It could be either a ’con-
tinental FEC’ when built by aggregating elementary CCM catchments from a
non-coastal basin, or a ’coastal FEC’ when elementary CCM catchments be-
long to a coastal basin (EAA, 2012). The FECs database contains feature class
C Zhyd, hereinafter zhyd, which is the most important data set in ECRINS
because it constitutes the primary hydrological unit. The structure of zhyd
is reported in EAA (2012), Annex 1. This table sets out the FEC IDs (field
ZHYD) and all the required IDs of the useful data sets: aggregation water-
sheds and reference watersheds, the connection between FECs and sources of
information.

Some examples done via the package ”Watersheds” with the application of
the method Watershed.Order and the functions Watershed. ,IOR1, IOR2,
IOR3, IOR4 are presented in the next subsections.

As a guide to follow the process followed by the package Watersheds the
Figure 17 presents a flow chart of the package. In this flow chart the input
actors are illustrated as ellipsoidal red boxes, the operations are presented as
blue boxes and the functions or methods are presented as green boxes. The
decision nodes are shown as blue diamond boxes. The flow chart is composed
by 11 levels: the first one the ”ECRINS dataset” as input from the European

22

Environmental Agency (EAA) and the last one the evaluation of the ”Water-
sheds.IOR4” method and the ”stop” node.

After the definition of the ”ECRINS dataset” there are three important
task to be developed. These task are the ”identification of the measurement
station”, ”the identification of the current zhyd object” and the ”identification
of the probable inlet and outlet nodes”, and corresponds to the levels 2 to 4 of
the flow chart, respectively.

In the level 5 of the flow chart is created the object ”Watersheds” as is illus-
trated in the Section 4.1.1. Subsequently, in the level 6 is executed the method
”Watershed.Order” which constitutes the core of the algorithm because through
this method are invoked the ”Watersheds. IOR1, IOR2, IOR3 or IOR4” func-
tions (level 8 to 11). Each one of these functions constitute a decision node
where is checked if the inlet and outlet stretches of the river network inside the
current zhyd are of length 1 to 4, respectively. Each one of these functions per-
forms the different spatial operations for identifying the inlet and outlet nodes
and stretches of river inside and around the current zhyd. Subsequently after the
definition of the inlet and outlet object (nodes and stretches of river) in the level
8 right side of the flow chart, is executed the method ”Watershed.tributary”,
which performs the spatial operations for identifying the tributary nodes and
subsequently the tributary zhyd watersheds of the current zhyd.

Finally after being applied the ”Watershed.Tributary” method, is checked
in the level 9, right side of the flow chart, if the object ”Station” from ”Wa-
tershed.Tributary” is of length equal to 2, which means that two tributary
catchments contributes to the current zhyd watershed. In this positive case
is executed the method ”Watershed.Order2” which internally calls the method
”Watershed.Order” for identifying the structure of the inlet and outlet objects
(nodes and stretches of river) in each one of the tributary zhyd watersheds. In
the negative case, the object ”Station” from ”Watershed.Tributary” is length
equal to 1, which mean that just one zhyd watershed is tributary to the current
zhyd and as a consequence the method ”Watershed.Order” is invoked again (see
right side of the level 9 of the flow chart that return to level 6) for determining
the inlet and outlet nodes and stretches of river and the river network of this
tributary watershed.

In Appendix 7.10 is presented the user manual of the developed package
”Watersheds”.

4.1.1 The Watersheds object

The packageWatersheds contains a class "Watershed" for representing "Watershed"
objects. In the following lines is presented an example for the definition of a
"Watershed" object.

definition of the current station point

station1 = WatershedsData["station"][[1]]

definition of the current subbasin of study. IN thi case the river Weser

basin

subbasin1 = WatershedsData["subbasin"][[1]]

definition of the zhyd1 object which contains all the zhyds inside the

23

ECRINS Dataset
(river network)EEA

identify mea-
surement station

identify current
zhyd object

identify prob-
able inlet and
outlet nodes

”Watersheds” object

”Watershed.Order”
Method

Has been applied
”Watersheds.

IOR...” method
update model

(riverIO)==1”Watersheds.IOR1”
Method

(riverIO)==2”Watersheds.IOR2”
Method

(riverIO)==3

”Watershed.Tributary”
method

”Station” == 2

”Watershed.Order2”
method

”Watersheds.IOR3”
Method

(riverIO)==4”Watersheds.IOR4”
Method

stop

Level 1

Level 2

Level 3

Level 4

Level 5

Level 6

Level 7

Level 8

Level 9

Level 10

Level 11

no

yes

yes

yes

no

yes

no

yes

no

yes
no

no

Figure 17: Flow chart of the Watersheds package. Red=data input; blue rectangle = process;
green rectangle = algorithm; diamond shape = decision.

24

subbasin

zhyd1 = WatershedsData["zhyd"][[1]]

definition of the river network inside the subbasin

river1 = WatershedsData["river"][[1]]

definition of the nodes of the river network

node1 = WatershedsData["node"][[1]]

definition of the 'Watersheds' object:

station1 = SpatialPoints(station1, proj4string = slot(subbasin1, "proj4string"))
watershed = new("Watershed", station = station1, subbasin = subbasin1, zhyd = zhyd1,

river = river1, c1 = subbasin1, node = node1)
class(watershed)

4.1.2 The Watersheds.Order method

The Method for function Watershed.Order allows definition of the properties
of the current zhyd watershed over Watershed objects.

The function takes the object of class Watershed and identifies the subbasin
that contains the current station (class SpatialPoints) and subsets the zhyd
object to subbasin and extract the current zhy object that contains station.
Posteriorly, identifies the inlet and outlet stretches and probable inlet and outlet
nodes of the zhyd. Then, runs the functions Watershed .IOR1, .IOR2, .IOR3,
or .IOR4 for determining the actual inlet and outlet nodes. Finally, the method
executes the S4 method Watershed.Tributary for defining tributary nodes and
tributary catchments of the current zhyd watershed. As orientation, the method
is located in the level 6 of the flow chart presented in Figure 17.

An example of the application of the method Watershed.Order is presented
in Figure 18. In this Figure it is possible to see the primary zhyd object num-
bered as 1. The inlet node (green dot) and the outlet node (red dot) are pre-
sented. The tributary watersheds to 1 are labeled as 1.1 and 1.2. Finally the
river network is presented in blue stretches. The R-code for reproducing the
Figure and illustrating the method is presented in Appendix 7.1.

25

4315000 4320000 4325000 4330000 4335000 4340000

31
10
00
0

31
15
00
0

31
20
00
0

31
25
00
0

31
30
00
0

31
35
00
0

0

100

200

300

400

500

600

1

1.1

1.2

200

154156

162162
165

Current zhyd watershed (1)

First order tributary watersheds (1.1, 1.2)

Station
Input node
Output node
Current zhyd
Tributary zhyd
River network Elevation (m)

0 1 2
2.5 km

N

Figure 18: Current zhyd watershed (1) and first order tributary watersheds (1.1 , 1.2)

4.1.3 The Watersheds.Order2 method

The S4 Method for function Watershed.Order2 is a definition of the tributary
zhyd watersheds of the current zhyd watershed.

The method takes the object of class Watershed when object node trib is
length 2. The method identifies the zhyd watershed that contains the current
station (class SpatialPoints) and apply the method Watershed.Order on
each point of node trib returning a list of objects Watershed.Order. The
computation is done via parallel processes for optimizing and take advance of
multicore functionalities.

The Figure 19 is an illustration of the method Watershed.Order2 and the
corresponding code is presented in Appendix 7.2. Also as orientation, the
method is located in the right side of the level 10 of the flow chart presented in
Figure 17.

26

4320000 4330000 4340000 4350000 4360000 437000031
30
00
0
31
40
00
0
31
50
00
0
31
60
00
0
31
70
00
0
31
80
00
0
31
90
00
0

0

200

400

600

800

Current zhyd watershed and
 1st and 2nd order tributary watersheds

Station
Current zhyd
Tributary zhyd, 1st order
Tributary zhyd, 2nd order
River network

Elevation (m)

0 1 2
5 km

N

Figure 19: Current zhyd watershed and 1st and 2nd order tributary watersheds

4.1.4 The Watersheds.IOR1 function

The Watersheds.IOR1 function means Watershed inlet and outlet nodes: case 1.
This function determines the inlet and outlet nodes for zhyd watershed objects.
This case 1 is for those watersheds that its river inlet and outlet object is length 1
(length(riverIO)==1). The Figure 20 is an illustration of the Watersheds.IOR1
function and the R-code for producing it is presented in Appendix 7.3. As an
orientation, the function is located in the left side of the level 8 of the flow chart
presented in Figure 17.

27

4210000 4220000 4230000 4240000 4250000

32
90
00
0

33
00
00
0

33
10
00
0

33
20
00
0

33
30
00
0

0

20

40

60

2

Watershed outlet, case I

Station
outlet node
Current zhyd
River network

Elevation (m)

0 1 2
5 km

N

Figure 20: Spatial analysis of watershed outlet, case I

4.1.5 The Watersheds.IOR2 function

The Watersheds.IOR2 function means Watershed inlet and outlet nodes: case 2.
The function determines the inlet and outlet nodes for zhyd watershed objects.
This case 2 is for those watersheds that its river inlet and outlet object is length
2 (length(riverIO)=2). The Figure 21 is an illustration of the method and the
R-code for reproducing it is presented in the Appendix 7.4. As an orientation,
the function is located in the left side of the level 9 of the flow chart presented
in Figure 17.

28

4280000 4290000 4300000 4310000

31
60
00
0

31
70
00
0

31
80
00
0

31
90
00
0

100

200

300

400

500

126

Watershed outlet, case II

Station
outlet node
Current zhyd
River network

Elevation (m)

0 1 2
2.5 km

N

Figure 21: Spatial analysis of watershed outlet, case II

4.1.6 The Watersheds.IOR3 function

The Watersheds.IOR3 function means: Watershed inlet and outlet nodes: case
3. The function determines the inlet and outlet nodes for zhyd watershed ob-
jects. This case 3 is for those watersheds that its river inlet and outlet object is
length 3 (length(riverIO)=3). An illustration of the Watersheds.IOR3 function
is presented in the Figure 22 and the R-code for reproducing it is presented in
Appendix 7.5. As orientation, the function is located in the left side of the level
10 of the flow chart presented in Figure 17.

29

4180000 4190000 4200000 4210000 4220000 4230000

33
30
00
0

33
40
00
0

33
50
00
0

33
60
00
0

33
70
00
0

33
80
00
0

-10

0

10

20

30

40

50

0

0

Watershed outlet and inlet, case III

Station
inlet node
outlet node
Current zhyd
River network

Elevation (m)

0 1 2
5 km

N

Figure 22: Spatial analysis of watershed inlet and outlet, case III

4.1.7 The Watersheds.IOR4 function

The Watersheds.IOR4 function means Watershed inlet and outlet nodes: case 4.
The function determines the inlet and outlet nodes for zhyd watershed objects.
This case 4 is for those watersheds that its river inlet and outlet object is length
4 (length(riverIO)=4). The Figure 23 is an illustration of the method and the
corresponding R-code is presented in Appendix 7.6. As an orientation, the
function is located in the left side of the level 11 of the flow chart presented in
Figure 17.

30

4345000 4355000 4365000 4375000

32
60
00
0

32
70
00
0

32
80
00
0

32
90
00
0

0

20

40

60

80

100

120

55

52

Watershed outlet and inlet, case IV

Station
inlet node
outlet node
Current zhyd
River network

Elevation (m)

0 1 2
5 km

N

Figure 23: Spatial analysis of watershed inlet and outlet, case IV

4.1.8 The Karlshafen and Wahmbeck Stations watersheds

Previously in Section 3.1.3 and Figure 6, the details and location of the nine
stations analyzed in this study for retrieving data for flow level and discharge
was presented and also summarized in Table 1. From this data, the major
attention is on two main stations: the Karlshafen station, which its tributary
watershed is the watershed of the station Wahmbeck. Figure 24 presents the
location and the river network of this two stations after applied the Watersheds
flow chart presented in Figure 17 and the corresponding code in R for performing
the spatial analysis and reproducing the Figure is presented in Appendix 7.7.

31

4275000 4280000 4285000 4290000 4295000

31
60
00
0

31
65
00
0

31
70
00
0

31
75
00
0

31
80
00
0

0

200

400

600

800

95

103

95

95

Karlshafen and Wahmbeck Stations watersheds

Station Wahmbeck
Station Karlshafen
inlet node
outlet node
Current zhyd
River network

4275000 4280000 4285000 4290000 4295000

31
60
00
0

31
65
00
0

31
70
00
0

31
75
00
0

31
80
00
0

0 1 2
2.5 km

N

Elevation (m)

Figure 24: The Karlshafen and Wahmbeck Stations watersheds

4.2 Precipitation time series management

The primary data source of precipitation data are gridded daily precipita-
tion time series obtained from the gridded dataset from ENSEMBLES (E-OBS)
dataset for precipitation, temperature and sea level pressure in Europe and
provided by the European Climate Assessment & Dataset (ECA&D) project
(Haylock et al., 2008). This project presents information on changes in weather
and climate extremes, as well as the daily dataset needed to monitor and anal-
yse these extremes. A resolution of 0.25o (21 Kilometres east, 28 Kilometres
north) precipitation gridded data is used. The gridded datasets is available for
downloading from the web page of the ENSEMBLES project (ECA&D (2012),
http://eca.knmi.nl).

The format of the gridded data is NetCDF (network Common Data Form)
which is a set of interfaces for array-oriented data access and a freely-distributed
collection of data access libraries for C, Fortran, C++, Java, and other lan-
guages. The netCDF libraries support a machine-independent format for rep-
resenting scientific data (Unidata, 2012). The Open Geospatial Consortium
membership has approved the Enhanced Data Model Extension to the OGC
Network Common Data Form (netCDF) Core Encoding Standard http://www
.unidata.ucar.edu/blogs/news/entry/ogc adopts netcdf enhanced data.

In addition, the NetCDF format is the current precipitation data format of
the ECRINS which is a remarkable climate project of the European Comunity.

The access to NetCDF files for reading data into R and for creating new
netCDF dimensions, variables, and files, or manipulating existing netCDF files

32

http://eca.knmi.nl
http://www.unidata.ucar.edu/blogs/news/entry/ogc_adopts_netcdf_enhanced_data
http://www.unidata.ucar.edu/blogs/news/entry/ogc_adopts_netcdf_enhanced_data

from R, was possible through the ncdf package (Pierce, 2013). The data down-
loaded was 1.29 GB as a consequence for reading and working whit the file
is necessary to subset the retrieval of information, in this case were retrieved
1096 attributes (precipitation) which represents the precipitation time series
from netCDF for Wahmbeck station (9.875◦E , 51.625◦N) between the dates
01.01.1995 and 31.12.1997. The original file was downloaded directly from the
European Climate Assessment & Dataset repository and comprises data from
01.01.1995 to 12.31.2013. The Figure 25 presents the time series extracted
from the netCDF for the Wahmbeck station in the time window 01.01.1995 and
31.12.1997.

1995 1996 1997 1998

0
5

10
15

20
25

30
35

time

D
ai

ly
 p

re
ci

pi
ta

tio
n

(m
m

)

Figure 25: Precipitation time series at Wahmbeck Station

4.3 Flow time series management

Data for flow level and discharge are also available at Department of Hy-
drometry and Hydrological Survey of the German Federal Institute of Hydrology
was used. In the Table 1 was presented the details of the nine stations analyzed
in this study and in Figure 6 was showed their location.

In order to compose the hydrological framework for simulation the daily
precipitation from 01.01.1995 to 31.12.1997 we use the time series of flow at
Wahmbeck station. The Figure 26 presents the time series for the flow in cubic
meter per second in the specified time interval.

33

1995 1996 1997 1998

0
20
0

40
0

60
0

80
0

10
00

Time

Fl
ow

 (m
cs

)

Figure 26: Precipitation time series at Wahmbeck Station

4.4 Runoff routing and hydrological modelling

An important contribution in hydrological modelling is done by F. T. An-
drews et al. (2011) with the R package hydromad (http://hydromad.catchment
.org). It is based loosely on the unit hydrograph theory of rainfall-runoff mod-
elling. More than a single hydrological model hydromad is a framework with
several options of configurations that includes different Soil Moisture Account-
ing (SMA) models and objective calibration methodologies. In consequence, it
can be used cohesively with workflows based on R. Two areas of focus for the
package are discrete event separation and the design of fit statistics, and how
event-based data analysis can be useful in a modelling context (F. T. Andrews
et al., 2011).

For this case, the model will be calibrated using the fitBy- Optim function,
which accordingly to F. Andrews (2011) performs parameter sampling over the
pre-specified ranges, selecting the best of these, and then runs an optimisation
algorithm from that starting point.

After the calibration process two parameters are returned for the SMA (Soil
Moisture Accounting) component: 1) rrthresh, a theshold value of the runoff
ratio, below which there is no effective rainfall; and 2) scale, a constant multiplier
of the result, for mass balance. If this parameter is set to NA (as it is by default)
in hydromad it will be set by mass balance calculation.

Also, 2 parameters are returned regarding the routing method, in this case
the exponential components transfer function models ”expuh”. The parameters
calibrated are 1) tau s that represents time constants (tau) for the exponential
components; and 2) v s that represents fractional volumes (v) for the exponential

34

http://hydromad.catchment.org
http://hydromad.catchment.org

Table 2: Parameter definition

SMA Parameters:
lower upper

rrthresh 0 0.2
scale NA NA

Routing Parameters:
lower upper

tau s 2 100
v s 0 1

Table 3: Parameter calibration results

Hydromad model with
”runoffratio” SMA and ”expuh” routing:
Start = 1995-01-01, End = 1998-01-01

SMA Parameters:
rrthresh scale
0.1152 1.1191

Routing Parameters
tau s v s
14.77 1.00

TF Structure: single store:
Poles:0.9345
Fit: ($fit.result)
fitByOptim(MODEL = modx)
128 function evaluations in 28.09 seconds

components.
A quick way to view the modelled and observed streamflow time series to-

gether is to call xyplot() on the model object, as in Figure 27.

Time

0
1

2
3

4

streamflow

0
10

20
30

1995−07 1996−01 1996−07 1997−01 1997−07 1998−01

rainfall

observed
modelled

Figure 27: Modelled and observed streamflow time series

35

In summary, the Figure 28 presents the flow chart of the process of hydrolog-
ical modelling discussed before. The flow chart presents in the initial level the
input data that is the ECRINS dataset, in the first and second level are repre-
sented the geospatial analysis performed by the package ”Watersheds” (see flow
chart in Figure 17). In the third and fourth level is represented the hydrological
modelling framework executed within the package ”hydromad” with input data
from the EOBS dataset (time series of precipitation) and the BfG (flow time
series).

ECRINS Dataset
(river network)EEA

Geospatial
Analysis

”Watersheds” package

Hydrological
modelling

”Hydromad” package

Precipitation
time series

EOBS

Flow time seriesBfG

Level 0

Level 1

Level 2

Level 3

Level 4

Figure 28: Flow chart of the hydrological modelling. Red=data input; blue rectangle =
process; green rectangle = algorithm

4.5 Routing and solute transport modelling

After have been done the hydrological routing, is applied the numerical ap-
proximation of the Advection Dispersion Equation, an application is performed
for transporting and decaying of organic carbon (OC) in the river Weser, in a
widening stretch at Wahmbeck station as upstream boundary and Karlshafen
station as downstream boundary. Two scenarios are simulated: the baseline
includes only input of organic matter upstream. The second scenario simulates
the input of an important side river half way the river. The theoretical descrip-
tion of the numerical approximation of the Advection Dispersion Equation was
presented in Section 2.3.

The Table 4 presents the boundaries conditions for simulating the solute
transport (organic carbon) for the first five days of the year 1995, where ”flow.up”
is the flow in upper boundary, ”factor” is a scalar for internal computations,
”flow.lat.0” is the inflow in the stretch, ”F.OC” is the concentration of organic
carbon in the upper boundary, ”F.lat.0” is the concentration of organic carbon
in the inflow and ”k” is the reaction rate of organic carbon.

The resulting code in R is adapted from Soetaert and Meysman (2012) and
is presented in the Appendix 7.9 for the conditions on river Weser between the
stations Wahmbeck and Kalshafen on 01.01.1995, similar code is generated for
each one of the fifth first days of 1995 year as illustrated in the Figures 29 to
33.

36

Table 4: Initializing parameter and boundary conditions

flow.up [mcs] factor flow.lat.0 [mcs] F.OC [mol s−1] F.lat.0 [mol s−1] k [s−1]
Q1 63 2.85 63 63 63 3.17E-007
Q3 59 3.06 59 59 59 3.17E-007
Q4 55 3.28 55 55 55 3.17E-007
Q5 51 3.51 51 51 51 3.17E-007

0 1 2 3 4 5 6

1.
00
3

1.
00
5

1.
00
7

Organic carbon decay in the river on 01.01.1995

distance [km]

O
C

 C
on

ce
nt

ra
tio

n
[m

M
]

0 1 2 3 4 5 6

50
60

70
80

90

Longitudinal change in the water flow rate on 01.01.1995

distance [km]

Fl
ow

 ra
te

 [m
3

s-
1] baseline

+ side river input

Figure 29: Simulation time series of OC and flow between the Wahmbeck and Kalshafen
stations on 01.01.1995

37

0 1 2 3 4 5 6
0.
99
88

0.
99
94

1.
00
00

Organic carbon decay in the river on 02.01.1995

distance [km]

O
C

 C
on

ce
nt

ra
tio

n
[m

M
]

0 1 2 3 4 5 6

70
90

11
0

Longitudinal change in the water flow rate on 02.01.1995

distance [km]

Fl
ow

 ra
te

 [m
3

s-
1] baseline

+ side river input

Figure 30: Simulation time series of OC and flow between the Wahmbeck and Kalshafen
stations on 02.01.1995

0 1 2 3 4 5 6

0.
99
88

0.
99
94

1.
00
00

Organic carbon decay in the river on 03.01.1995

distance [km]

O
C

 C
on

ce
nt

ra
tio

n
[m

M
]

0 1 2 3 4 5 6

60
80

10
0

12
0

Longitudinal change in the water flow rate on 03.01.1995

distance [km]

Fl
ow

 ra
te

 [m
3

s-
1] baseline

+ side river input

Figure 31: Simulation time series of OC and flow between the Wahmbeck and Kalshafen
stations on 03.01.1995

38

0 1 2 3 4 5 6
0.
99
86

0.
99
92

0.
99
98

Organic carbon decay in the river on 04.01.1995

distance [km]

O
C

 C
on

ce
nt

ra
tio

n
[m

M
]

0 1 2 3 4 5 6

60
80

10
0

Longitudinal change in the water flow rate on 04.01.1995

distance [km]

Fl
ow

 ra
te

 [m
3

s-
1] baseline

+ side river input

Figure 32: Simulation time series of OC and flow between the Wahmbeck and Kalshafen
stations on 04.01.1995

0 1 2 3 4 5 6

0.
99
86

0.
99
92

0.
99
98

Organic carbon decay in the river on 05.01.1995

distance [km]

O
C

 C
on

ce
nt

ra
tio

n
[m

M
]

0 1 2 3 4 5 6

50
70

90

Longitudinal change in the water flow rate on 05.01.1995

distance [km]

Fl
ow

 ra
te

 [m
3

s-
1] baseline

+ side river input

Figure 33: Simulation time series of OC and flow between the Wahmbeck and Kalshafen
stations on 05.01.1995

In summary, the Figure 34 presents the flow chart of the process of hydro-
logical modelling plus routing for solute transport simulation discussed before.
Until level 4, the flow chart is the same than that presented previously in Fig-
ure 28) and described at the end of Section 4.4. Additionally, this flow chart
includes the decision of performing solute transport simulation represented as

39

ECRINS Dataset
(river network)EEA

Geospatial
Analysis

”Watersheds” package

Hydrological
modelling

”Hydromad” package

Precipitation
time series

EOBS

Flow time seriesBfG

solute transport

Flow simulation

R routines for so-
lute transport

Flow simulation

Solute transport
simulation

Level 0

Level 1

Level 2

Level 3

Level 4

Level 5

Level 6

Level 7

no

yes

Figure 34: Flow chart of the solute transport simulation. Red=data input; blue rectangle
= process; green rectangle = algorithm; diamond shape = decision.

the decision diamond in the level 5, the ”no” route concludes with only flow
simulation (level 6) as the result of the process of hydrological modelling, the
”yes” route enables an additional processes (level 7) related with the routing
for solute transport via the R routines implemented through the R packages
discussed in Section 2.4. This additional process deploys new functionality of
a typical model in hydromad by adding the capabilities for solute transport
simulation which constitutes one of the major aims of the present work.

5 Conclusions

Has been presented the implementation of several methods for geo-spatial
analysis of river networks and watersheds for runoff routing and solute transport
in R in order to contribute in a comprehensive hydrological modelling to the
current framework of the R package ”hydromad”.

The main aim of the study is fulfilled because the versatile code developed
lets to coupled the outputs of the hydrological framework of the R package
”hydromad” to the selected solute transport model looking forward better sim-
ulation of water-quality determinants transport at watershed scale.

Following the research scheme presented in this proposal it is possible to

40

prove the hypothesis behind the study. The simulation of solute transport at
specific places of the river network was improved by implementing a runoff
routing method at watershed-scale, the ”hydromad” package, and by coupling
it into a suitable modeling framework for representing solute transport processes.

The developed package, ”watersheds”, allows geo-spatial river network anal-
ysis and makes use of the Catchments and Rivers Network System (ECRINS)
version 1.1, which constitutes the hydrographical system currently in use at the
European Environment Agency as well as widely serving as the reference sys-
tem for the Water Information System for Europe (WISE). The versatility of the
code generated lets to implement geo-spatial analysis in any watershed included
into the ECRINS. As a consequence, watersheds along entire Europe could be
analyzed, this constitutes an important fact because several institutions or sci-
entific community related with the WISE system could take advantage of the
package and this document.

6 Further work

Further development for hydrograph and solute transport calibration may
be done through a versatile open source, multiple platform programming lan-
guage as R. A useful tool for model calibration and sensitivity analysis processes
in R is the hydroPSO package (Zambrano-Bigiarini & Rojas, 2013). This pack-
age implements several state-of-the-art enhancements and fine-tuning options
to the Particle Swarm Optimisation (PSO) algorithm. hydroPSO interfaces the
calibration engine to different model codes through ASCII files and/or R wrap-
per functions for exchanging information on the calibration parameters. The
optimisation is based on evaluating the goodness-of-fit functions until a maxi-
mum number of iterations or a convergence criterion are met. The evaluation
of the calibration process is supported by plotting functions that facilitate the
interpretation of results (Zambrano-Bigiarini & Rojas, 2013).

In the near future the methodology presented could be upgraded substan-
tially by integrating Sensor Observations Services for retrieving the hydrolog-
ical data for the modelling processes, therefore real-time simulation and pre-
diction could be done. In this sense, applications developed in the framework
of the 52 oNorth SOS implementation are advisable (http://52north.org/
communities/sensorweb/sos/).

41

http://52north.org/communities/sensorweb/sos/
http://52north.org/communities/sensorweb/sos/

References

Andrews, F. (2011, June). Hydromad tutorial [Computer software manual].
Andrews, F. (2014, February). Hydromad: Hydrological Model Assessment and Development.

Internet. Retrieved from http://hydromad.catchment.org/
Andrews, F. T., Croke, B. F. W., & Jakeman, A. J. (2011). An open software environment

for hydrological model assessment and development. Environmental Modelling and
Software, 26 . Retrieved from http://hydromad.catchment.org/ doi: doi:10.1016/
j.envsoft.2011.04.006

Beven, K., Lamb, R., Quinn, P., Romanowicz, R., & Freer, J. (1995). TOPMODEL. In
V. P. Sing (Ed.), Computer models of watershed hydrology. Water Resources Publica-
tions, Colorado. pp. 627-668.

Beven, K. J. (1989). Changing ideas in hydrology. the case of physically-based models. Journal
of Hydrology, 105 (1-2), 157-172.

Beven, K. J. (1997). Distributed hydrological modelling: Applications of the TOPMODEL
Concept. Wiley.

Beven, K. J. (2012). Rainfall-runoff modelling: The Primer (Second ed.). Wiley-Blackwell.
(Lancaster University, UK)

Bivand, R., Keitt, T., Rowlingson, B., Pebesma, E., Sumner, M., & Hijmans, R. (2003-2013,
May). Package ”rgdal”: Bindings for the Geospatial Data Abstraction Library (.8-9
ed.) [Computer software manual].

Bivand, R., & Rundel, C. (2012, June). Package ”rgeos”: Interface to Geometry Engine -
Open Source (GEOS) (.2-7 ed.) [Computer software manual].

Botter, G., Bertuzzo, E., & Rinaldo, A. (2010). Transport in the hydrologic response: Travel
time distributions, soil moisture dynamics, and the old water paradox. Water Resources
Research, 46 , 1-18. doi: 10.1029/2009WR008371

Botter, G., Milan, E., Bertuzzo, E., Zanardo, S., Marani, M., & Rinaldo, A. (2009). Inferences
from catchment-scale tracer circulation experiments. Journal of Hydrology, 369 , 368-
380. doi: 10.1016/j.jhydrol.2009.02.012

Buytaert, W. (2012, February). Package ’topmodel’ [Computer software manual].
Chaudhry, M. H. (2008). Open-channel flow. Springer.
Duffy, C. J. (2010). Dynamical modelling of concentration-age-discharge in watersheds. Hy-

drological Processes, 24 , 1711-1718. doi: 10.1002/hyp.7691
EAA. (2012). EEA catchments and rivers network system, ECRINS v1.1. rationales, building

and improving for widening uses to Water Accounts and WISE applications (EEA
Technical report No. 7/2012). Copenhagen: European Environment Agency - EAA.
(Luxembourg: Publications Office of the European Union)

ECA&D. (2012). E-obs datafiles 1950-01-01 until 2012-06-30. Retrieved from http://
eca.knmi.nl/download/ensembles/download.php

European Environment Agency - EAA. (1995). CORINE land cover (Tech. Rep.). Commission
of the European Communities: Commission of the European Communities.

Freer, J. E., McMillan, H., McDonnell, J. J., & Beven, K. J. (2004). Constraining dynamic
TOPMODEL responses for imprecise water table information using fuzzy rule based
performance measures. Journal of Hydrology, 291 , 254-277.

German Federal Institute of Hydrology - BfG. (2013). Water levels - data from selected
gauging stations on german federal waterways. Retrieved from http://www.bafg.de/
(Retrieved on 20.06.2013)

Global Runoff Data Centre - GRDC. (2013). The GRDC world-wide repository of river
discharge data and associated metadata. Retrieved from http://www.bafg.de/GRDC/
(Retrieved on 20.06.2013)

Gong, L., Widén-Nilsson, E., Halldin, S., & Xu, C.-Y. (2009). Large-scale runoff rout-
ing with an aggregated network-response function. Journal of Hydrology, 368 ,
237 - 250. Retrieved from http://www.sciencedirect.com/science/article/pii/
S0022169409000857 doi: http://dx.doi.org/10.1016/j.jhydrol.2009.02.007

Grayson, R. B., Moore, I. D., & McMahon, T. A. (1992). Physically based hydrologic
modelling 2. is the concept realistic. Water Resources Research, 28 (10), 2659-2666.

Haylock, M. R., Hofstra, N., Tank, A. M. G. K., Klok, E. J., Jones, P. D., & New, M.
(2008). A European daily high-resolution gridded data set of surface temperature and
precipitation for 1950-2006. Journal of Geophysical Research, 113 . doi: 10.1029/
2008JD010201

Hijmans, R. J. (2014, January). Package ”raster”: Geographic data analysis and modeling
(2.2-5 ed.) [Computer software manual].

42

http://hydromad.catchment.org/
http://hydromad.catchment.org/
http://eca.knmi.nl/download/ensembles/download.php
http://eca.knmi.nl/download/ensembles/download.php
http://www.bafg.de/
http://www.bafg.de/GRDC/
http://www.sciencedirect.com/science/article/pii/S0022169409000857
http://www.sciencedirect.com/science/article/pii/S0022169409000857

Ihaka, R., & Gentleman, R. (1996). R: a languague for data analysis and graphics. Journal
of Computational and Graphical Statistics, 5 , 299-314.

Kouwen, N. (1988). WATFLOOD: A micro-computer based flood forecasting system based on
real-time weather radar. Canadian Water Resources Journal , 13(1), 62-77. Retrieved
from http://www.civil.uwaterloo.ca/watflood/Manual/01 1.htm (User manual on-
line)

Lewin-Koh, N. J., & Bivand, R. (2012). Package ”maptools”: Tools for reading and handling
spatial objects (.8-16 ed.) [Computer software manual].

McDonnell, J. J., McGuire, K., Aggarwal, P., Beven, K. J., Biondi, D., Destouni, G., . . .
Wrede, S. (2010). How old is streamwater? Open questions in catchment transit time
conceptualization, modelling and analysis. Hydrological Processes, 24 , 1745-1754.

Neitsch, S., Arnold, J., Kiniry, J., & J.R., W. (2011). Soil and Water Assessment Tool,
theoretical documentation, version 2009 [Computer software manual].

Pebesma, E., & Bivand, R. (2005-2012, May). Package ”sp”: classes and methods for spatial
data (.9-99 ed.) [Computer software manual].

Pereira, L. M. (2009). Modelagem hidrologica dinamica distribuida para estimativa do escoa-
mento superficiail em uma microbacia urbana. Master dissertation, Instituto Nacional
de Pesquisas Espaciais - INPE.

Pierce, D. (2013, August). Package ”ncdf” (1.6.6 ed.) [Computer software manual].
R Core Team, Bivand, R., Carey, V. J., DebRoy, S., Eglen, S., Guha, R., . . . Free Software

Foundation, Inc. (1999-2013, May). Package ”foreign”: Read Data Stored by Minitab,
S, SAS, SPSS, Stata, Systat, dBase,... (.8-54 ed.) [Computer software manual].

R Development Core Team. (2013). R: A Language and Environment for Statistical Com-
puting. Vienna, Austria. Retrieved from http://www.R-project.org/

Rennó, C. D. (2003). Construção de um sistema de análise e simulação hidrológica: Aplicação
a bacias hidrográficas. Tese de doutorado do curso da pós-graduação e sensoriamento
remoto, Instituto Nacional de Pesquisas Espaciais (INPE).

Sarkar, D. (2012, March). Package lattice: Lattice graphics [Computer software manual].
Schulla, J. (2012). Model description wasim (water balance simulation model) [Computer

software manual]. Retrieved from http://www.wasim.ch/the model.html
Soetaert, K. (2014, January). Package ”rootsolve” [Computer software manual].
Soetaert, K., & Meysman, F. (2012). R-package ReacTran : Reactive Transport Modelling in

R [Computer software manual]. Royal Netherlands Institute of Sea Research (NIOZ).
Soetaert, K., Petzoldt, T., & Setzer, R. W. (2013, September). Package ”desolve” [Computer

software manual].
Swaney, D., Humborg, C., Emeis, K., Kannen, A., Silvert, W., Tett, P., . . . Nicholls, R.

(2011). Five critical questions of scale for the coastal zone. Estuarine, Coastal and
Shelf Science, xxx(2011), 1-13.

Torres, J. A., & Pebesma, E. J. (2013, September 16-17). State of R in hydrological modeling.
In 2nd open water symposium. Brussels, Belgium.

Unidata. (2012). NetCDF FAQ. Retrieved from http://www.unidata.ucar.edu/software/
netcdf/docs/faq.html#whatisit

United Nations - UN. (2012). The Millennium Development Goals Report (Technical Re-
port). New York: Author. Retrieved from http://www.un.org/millenniumgoals/
reports.shtml

Urbanek, S. (2013, February). Package ”multicore”: Parallel processing of R code on machines
with multiple cores or CPUs (.1-7 ed.) [Computer software manual].

USACE, HEC. (2006). Hydrologic modelling system HEC-HMS: User’s manual [Computer
software manual].

van der Knijff, J. M., Younis, J., & Roo, A. P. J. D. (2010, February). LISFLOOD: a
GIS-based distributed model for river basin scale water balance and flood simulation.
International Journal of Geographical Information Science, 24 (2), 189-212. doi: 10
.1080/13658810802549154

Warmerdam, F. (2013). GDAL - Geospatial Data Abstraction Library. Internet. Retrieved
from http://www.gdal.org/index.html (Consulted in 24.05.2013)

Zambrano-Bigiarini, M., & Rojas, R. (2013). hydroPSO: A Model-independent Particle Swarm
Optimization Software for Model Calibration. Environmental Modelling & Software,
43 , 5-25.

43

http://www.civil.uwaterloo.ca/watflood/Manual/01_1.htm
http://www.R-project.org/
http://www.wasim.ch/the_model.html
http://www.unidata.ucar.edu/software/netcdf/docs/faq.html#whatisit
http://www.unidata.ucar.edu/software/netcdf/docs/faq.html#whatisit
http://www.un.org/millenniumgoals/reports.shtml
http://www.un.org/millenniumgoals/reports.shtml
http://www.gdal.org/index.html

7 Appendices

7.1 The Watersheds.Order method

library(Watersheds)
data(WatershedsData)

station1 = WatershedsData["station"][[1]]
subbasin1 = WatershedsData["subbasin"][[1]]
zhyd1 = WatershedsData["zhyd"][[1]]
river1 = WatershedsData["river"][[1]]
node1 = WatershedsData["node"][[1]]

station1 = SpatialPoints(coords = cbind(4328448.74, 3118576.86), proj4string = slot(subbasin1,
"proj4string"))

watershed = new("Watershed", station = station1, subbasin = subbasin1, zhyd = zhyd1,
river = river1, c1 = subbasin1, node = node1)

a = Watershed.Order(watershed)
c1 = a[[1]]
c1_inlet = a[[2]]
c1_outlet = a[[3]]
c2 = a[[4]]
c3 = a[[5]]
node_trib = a[[6]]
sb1 = a[[7]]
riverIO = a[[8]]
nodeIO = a[[9]]
c1_river = a[[10]]
c1_node = a[[11]]

bbox1 = slot(c1, "bbox")
bbox = matrix(0, 2, 2)
bbox[, 1] = bbox1[, 1] * 0.998
bbox[, 2] = bbox1[, 2] * 1.002

library(raster)
r1 = brick("dem_grid_todo1_Weser.tif")
plot(r1, col = (topo.colors(255)), xlim = bbox[1,], ylim = bbox[2,])
plot(r1, col=(topo.colors(255)), xlim=bbox[1,], ylim=bbox[2,], add=T)

plot(c1, xlim = bbox[1,], ylim = bbox[2,], border = "Sienna", col = "transparent",
add = TRUE)

plot(c2, border = "gray25", col = "transparent", add = TRUE)
plot(c3, border = "gray25", col = "transparent", add = TRUE)

plot(slot(watershed, "station"), pch = 24, bg = "orange", add = TRUE)
plot.PolyLineAttribute(c1, "order", 450, 0.8)
plot.PolyLineAttribute(c2, "order", 450, 0.8)
plot.PolyLineAttribute(c3, "order", 450, 0.8)

44

plot(c1_river, col = "blue", lw = 2, add = TRUE)
plot(c1_node, pch = 21, bg = "blue", cex = 0.8, add = TRUE)
plot(nodeIO, pch = 21, bg = "blue", cex = 0.8, add = TRUE)
plot(c1_inlet, pch = 21, bg = "green", add = TRUE)
plot(c1_outlet, pch = 21, bg = "red", add = TRUE)
plot.PointAttribute(nodeIO, "ELEV", 600, 0.7)
title(main = "Current zhyd watershed (1)", sub = "First order tributary watersheds (1.1, 1.2)")

legend

legend("topleft", legend = c("Station", "Input node", "Output node", "Current zhyd",
"Tributary zhyd", "River network"), pch = c(24, 21, 21, NA, NA, NA), lty = c(NA,
NA, NA, 1, 1, 1), col = c("orange", "green", "red", "Sienna", "gray25",
"blue"), bg = "white")

axis axis(1); axis(2)

labeling the color bar

par(xpd = TRUE) #allow for plotting outside the plot

text(x = 4343000, y = 3129000, labels = "Elevation (m)", srt = 0)
par(xpd = FALSE)

map scale

library(maps)
map.scale(xc = 4317500, yc = 3112500, len = 5000, units = "2.5 km", ndivs = 2)

north arrow

library(GISTools)
north.arrow(xb = 4317500, yb = 3115000, len = 750, lab = "N")

45

7.2 The Watersheds.Order2 method

library(Watersheds)
data(WatershedsData)

station1 = SpatialPoints(coords = cbind(4328650, 3174450), proj4string = slot(subbasin1,
"proj4string"))

watershed = new("Watershed", station = station1, subbasin = subbasin1, zhyd = zhyd1,
river = river1, c1 = subbasin1, node = node1)

a = Watershed.Order(watershed)
c1 = a[[1]]
node_trib = a[[6]]
c1_river = a[[10]]
class(c1_river)

watershed2 = new("Watershed", station = node_trib, subbasin = subbasin1, zhyd = zhyd1,
river = river1, c1 = c1, node = node1)

c23 = Watershed.Order2(watershed2)
c2 = c23[[1]]
c3 = c23[[2]]

c2.0 = c2[[1]]
c2_inlet = c2[[2]]
c2_outlet = c2[[3]]
c2.1 = c2[[4]]
c2.2 = c2[[5]]
c2_node_trib = c2[[6]]
c2_sb1 = c2[[7]]
c2_riverIO = c2[[8]]
c2_nodeIO = c2[[9]]
c2_river = c2[[10]]
c2_node = c2[[11]]

c3.0 = c3[[1]]
c3_inlet = c3[[2]]
c3_outlet = c3[[3]]
c3.1 = c3[[4]]
c3.2 = c3[[5]]
c3_node_trib = c3[[6]]
c3_sb1 = c3[[7]]
c3_riverIO = c3[[8]]
c3_nodeIO = c3[[9]]
c3_river = c3[[10]]
c3_node = c3[[11]]

subsetting river networks

id = list(gIntersects(c2.1, WatershedsData$river, byid = TRUE))
c21_river = SpDF_Subset(id, WatershedsData$river)

46

id = list(gIntersects(c2.2, WatershedsData$river, byid = TRUE))
c22_river = SpDF_Subset(id, WatershedsData$river)

id = list(gIntersects(c3.1, WatershedsData$river, byid = TRUE))
c31_river = SpDF_Subset(id, WatershedsData$river)

id = list(gIntersects(c3.2, WatershedsData$river, byid = TRUE))
c32_river = SpDF_Subset(id, WatershedsData$river)

plots

bbox1 = slot(c3.2, "bbox")
bbox = matrix(0, 2, 2)
bbox[, 1] = bbox1[, 1] * 0.995
bbox[, 2] = bbox1[, 2] * 1.005

library(raster)
r1 = brick("dem_grid_todo1_Weser.tif")
plot(r1, col = (topo.colors(255)), xlim = bbox[1,], ylim = bbox[2,])

plot(c1, border = "Sienna", lw = 2, xlim = bbox[1,], ylim = bbox[2,], add = T)
plot(c2.0, border = "gray55", lw = 2, add = TRUE)
plot(c3.0, border = "gray55", lw = 2, add = TRUE)
plot(c2.1, border = "coral", lw = 2, add = TRUE)
plot(c2.2, border = "coral", lw = 2, add = TRUE)
plot(c3.1, border = "coral", lw = 2, add = TRUE)
plot(c3.2, border = "coral", lw = 2, add = TRUE)

plot(c1_river, col = "cyan", lw = 1, add = TRUE)
plot(c2_river, col = "cyan", add = TRUE)
plot(c3_river, col = "cyan", add = TRUE)
plot(c21_river, col = "cyan", add = TRUE)
plot(c22_river, col = "cyan", add = TRUE)
plot(c31_river, col = "cyan", add = TRUE)
plot(c32_river, col = "cyan", add = TRUE)

plot(station1, col = "orange", pch = 24, bg = "orange", add = T)

title(main = "Current zhyd watershed and \n 1st and 2nd order tributary watersheds")

legend

legend("bottomright", legend = c("Station", "Current zhyd", "Tributary zhyd, 1st order",
"Tributary zhyd, 2nd order", "River network"), pch = c(24, NA, NA, NA, NA,
NA), lty = c(NA, 1, 1, 1, 1), col = c("orange", "Sienna", "gray55", "coral",
"cyan"), bg = "white")

axis axis(1); axis(2)

labeling the color bar

par(xpd = TRUE) #allow for plotting outside the plot

47

text(x = 4385000, y = 3179000, labels = "Elevation (m)", srt = 0)
par(xpd = FALSE)

map scale

library(maps)
map.scale(xc = 4320000, yc = 3140000, len = 10000, units = "5 km", ndivs = 2)

north arrow

library(GISTools)
north.arrow(xb = 4320000, yb = 3145000, len = 750, lab = "N")

48

7.3 The Watersheds.IOR1 function

library(Watersheds)
data(WatershedsData)

station1 = SpatialPoints(coords = cbind(4232972, 3327634), proj4string = slot(subbasin1,
"proj4string"))

watershed = new("Watershed", station = station1, subbasin = subbasin1, zhyd = zhyd1,
river = river1, c1 = subbasin1, node = node1)

a = Watershed.Order(watershed)
c1 = a[[1]]
nodeIO = a[[9]]
c1_river = a[[10]]

determining inlet and outlet watershed nodes determining distances of

nodeIO to c1

boundary = gBoundary(c1)
dist = gDistance(nodeIO, boundary, byid = TRUE)
a = Watershed.IOR1(x = nodeIO, dist = dist)
c1_inlet = a["inlet"][[1]]
c1_inlet
c1_outlet = a["outlet"][[1]]
c1_outlet

bbox1 = slot(c1, "bbox")
bbox = matrix(0, 2, 2)
bbox[, 1] = bbox1[, 1] * 0.998
bbox[, 2] = bbox1[, 2] * 1.002

library(raster)
r1 = brick("dem_grid_todo1_Weser.tif")
plot(r1, col = (topo.colors(255)), xlim = bbox[1,], ylim = bbox[2,])

plot(c1, border = "Sienna", add = T)
plot(station1, pch = 24, col = "orange", bg = "orange", add = TRUE)
plot(c1_river, col = "blue", add = TRUE)
plot(c1_outlet, pch = 21, col = "red", bg = "white", add = TRUE)
plot.PointAttribute(c1_outlet, "ELEV", 700, 0.8)

title(main = "Watershed outlet, case I")

legend

legend("topleft", legend = c("Station", "outlet node", "Current zhyd", "River network"),
pch = c(24, 21, NA, NA), lty = c(NA, NA, 1, 1), col = c("orange", "red",

"Sienna", "blue"), bg = "white")

49

axis axis(1); axis(2)

labeling the color bar

par(xpd = TRUE) #allow for plotting outside the plot

text(x = 4263000, y = 3326500, labels = "Elevation (m)", srt = 0)
par(xpd = FALSE)

map scale

library(maps)
map.scale(xc = 4220000, yc = 3300000, len = 10000, units = "5 km", ndivs = 2)

north arrow

library(GISTools)
north.arrow(xb = 4220000, yb = 3303000, len = 750, lab = "N")

50

7.4 The Watersheds.IOR2 function

library(Watersheds)
data(WatershedsData)

station1 = SpatialPoints(coords = cbind(4301949, 3173053), proj4string = slot(subbasin1,
"proj4string"))

watershed = new("Watershed", station = station1, subbasin = subbasin1, zhyd = zhyd1,
river = river1, c1 = subbasin1, node = node1)

a = Watershed.Order(watershed)
c1 = a[[1]]
nodeIO = a[[9]]
c1_river = a[[10]]
c1_node = a[[11]]

determining inlet and outlet watershed nodes determining distances of

nodeIO to c1

boundary = gBoundary(c1)
dist = gDistance(nodeIO, boundary, byid = TRUE)
a = Watershed.IOR2(x = nodeIO, dist = dist, node = c1_node)
c1_inlet = a["inlet"][[1]]
c1_inlet
c1_outlet = a["outlet"][[1]]
c1_outlet

bbox1 = slot(c1, "bbox")
bbox = matrix(0, 2, 2)
bbox[, 1] = bbox1[, 1] * 0.998
bbox[, 2] = bbox1[, 2] * 1.002

library(raster)
r1 = brick("dem_grid_todo1_Weser.tif")
plot(r1, col = (topo.colors(255)), xlim = bbox[1,], ylim = bbox[2,])

plot(c1, border = "Sienna", add = T)
plot(station1, pch = 24, col = "orange", bg = "white", add = TRUE)
plot(c1_river, col = "cyan", add = TRUE)
plot(c1_outlet, pch = 21, col = "red", bg = "white", add = TRUE)
plot.PointAttribute(c1_outlet, "ELEV", 700, 0.8)

title(main = "Watershed outlet, case II")

legend

legend("topright", legend = c("Station", "outlet node", "Current zhyd", "River network"),
pch = c(24, 21, NA, NA), lty = c(NA, NA, 1, 1), col = c("orange", "red",

"Sienna", "cyan"), bg = "white")

51

axis axis(1); axis(2)

labeling the color bar

par(xpd = TRUE) #allow for plotting outside the plot

text(x = 4319000, y = 3186000, labels = "Elevation (m)", srt = 0)
par(xpd = FALSE)

map scale

library(maps)
map.scale(xc = 4287500, yc = 3163000, len = 5000, units = "2.5 km", ndivs = 2)

north arrow

library(GISTools)
north.arrow(xb = 4287500, yb = 3166000, len = 375, lab = "N")

52

7.5 The Watersheds.IOR3 function

library(Watersheds)
data(WatershedsData)

station1 = SpatialPoints(coords = cbind(4217199.42, 3353511.83), proj4string = slot(subbasin1,
"proj4string"))

watershed = new("Watershed", station = station1, subbasin = subbasin1, zhyd = zhyd1,
river = river1, c1 = subbasin1, node = node1)

a = Watershed.Order(watershed)
c1 = a[[1]]
riverIO = a[[8]]
nodeIO = a[[9]]
c1_river = a[[10]]

determining inlet and outlet watershed nodes determining distances of

nodeIO to c1

boundary = gBoundary(c1)
dist = gDistance(nodeIO, boundary, byid = TRUE)
a = Watershed.IOR3(x = nodeIO, y = riverIO, dist = dist)
c1_inlet = a["inlet"][[1]]
c1_inlet
c1_outlet = a["outlet"][[1]]
c1_outlet

bbox1 = slot(c1, "bbox")
bbox = matrix(0, 2, 2)
bbox[, 1] = bbox1[, 1] * 0.998
bbox[, 2] = bbox1[, 2] * 1.002

library(raster)
r1 = brick("dem_grid_todo1_Weser.tif")
plot(r1, col = (topo.colors(255)), xlim = bbox[1,], ylim = bbox[2,])

plot(c1, border = "Sienna", lwd = 2, add = T)

plot(station1, pch = 24, col = "orange", bg = "white", add = TRUE)
plot(c1_river, col = "cyan", add = TRUE)
plot(c1_outlet, pch = 21, col = "red", bg = "white", add = TRUE)
plot(c1_inlet, pch = 21, col = "green", bg = "white", add = TRUE)
plot.PointAttribute(c1_outlet, "ELEV", 1000, 0.8)
plot.PointAttribute(c1_inlet, "ELEV", 1000, 0.8)
title(main = "Watershed outlet and inlet, case III")

legend

legend("topleft", legend = c("Station", "inlet node", "outlet node", "Current zhyd",
"River network"), pch = c(24, 21, 21, NA, NA), lty = c(NA, NA, NA, 1, 1),

53

col = c("orange", "green", "red", "Sienna", "cyan"), bg = "white")

axis axis(1); axis(2)

labeling the color bar

par(xpd = TRUE) #allow for plotting outside the plot

text(x = 4239000, y = 3370000, labels = "Elevation (m)", srt = 0)
par(xpd = FALSE)

map scale

library(maps)
map.scale(xc = 4185000, yc = 3340000, len = 10000, units = "5 km", ndivs = 2)

north arrow

library(GISTools)
north.arrow(xb = 4185000, yb = 3343000, len = 750, lab = "N")

54

7.6 The Watersheds.IOR4 function

library(Watersheds)
data(WatershedsData)

station1 = SpatialPoints(coords = cbind(4357947, 3284525), proj4string = slot(subbasin1,
"proj4string"))

watershed = new("Watershed", station = station1, subbasin = subbasin1, zhyd = zhyd1,
river = river1, c1 = subbasin1, node = node1)

a = Watershed.Order(watershed)
c1 = a[[1]]
riverIO = a[[8]]
nodeIO = a[[9]]
c1_river = a[[10]]

determining inlet and outlet watershed nodes determining distances of

nodeIO to c1

boundary = gBoundary(c1)
dist = gDistance(nodeIO, boundary, byid = TRUE)
a = Watershed.IOR4(x = nodeIO, y = riverIO, dist = dist)
c1_inlet = a["inlet"][[1]]
c1_inlet
c1_outlet = a["outlet"][[1]]
c1_outlet

bbox1 = slot(c1, "bbox")
bbox = matrix(0, 2, 2)
bbox[, 1] = bbox1[, 1] * 0.998
bbox[, 2] = bbox1[, 2] * 1.002

library(raster)
r1 = brick("dem_grid_todo1_Weser.tif")
plot(r1, col = (topo.colors(255)), xlim = bbox[1,], ylim = bbox[2,])

plot(c1, border = "sienna", add = T)

plot(station1, pch = 24, col = "orange", bg = "white", add = TRUE)
plot(c1_river, col = "blue", add = TRUE)
plot(c1_outlet, pch = 21, col = "red", bg = "white", add = TRUE)
plot(c1_inlet, pch = 21, col = "green", bg = "white", add = TRUE)
plot.PointAttribute(c1_outlet, "ELEV", 1000, 0.8)
plot.PointAttribute(c1_inlet, "ELEV", 1000, 0.8)

title(main = "Watershed outlet and inlet, case IV")

legend

legend("topleft", legend = c("Station", "inlet node", "outlet node", "Current zhyd",
"River network"), pch = c(24, 21, 21, NA, NA), lty = c(NA, NA, NA, 1, 1),

55

col = c("orange", "green", "red", "Sienna", "blue"), bg = "white")

axis axis(1); axis(2)

labeling the color bar

par(xpd = TRUE) #allow for plotting outside the plot

text(x = 4384000, y = 3289000, labels = "Elevation (m)", srt = 0)
par(xpd = FALSE)

map scale

library(maps)
map.scale(xc = 4347500, yc = 3270000, len = 10000, units = "5 km", ndivs = 2)

north arrow

library(GISTools)
north.arrow(xb = 4347500, yb = 3273000, len = 750, lab = "N")

56

7.7 The Karlshafen and Whambeck Stations watersheds

the Wahmbeck Station watershed

station1 = SpatialPoints(coords = cbind(4287441, 3168693), proj4string = slot(subbasin1,
"proj4string"))

watershed = new("Watershed", station = station1, subbasin = subbasin1, zhyd = zhyd1,
river = river1, c1 = subbasin1, node = node1)

a = Watershed.Order(watershed)
c1 = a[[1]]

the Karlshafen Station watershed

station2 = SpatialPoints(coords = cbind(4281860, 3170824), proj4string = slot(subbasin1,
"proj4string"))

watershed = new("Watershed", station = station2, subbasin = subbasin1, zhyd = zhyd1,
river = river1, c1 = subbasin1, node = node1)

aa = Watershed.Order(watershed)
c1a = aa[[1]]

defining common axis

(bbox = slot(c1, "bbox"))
(bboxa = slot(c1a, "bbox"))
(xmin = 0.999 * min(c(bbox[1], bboxa[1])))
(xmax = 1.001 * max(c(bbox[1, 2], bboxa[1, 2])))
(ymin = 0.999 * min(c(bbox[2, 1], bboxa[2, 1])))
(ymax = 1.001 * max(c(bbox[2, 2], bboxa[2, 2])))

plotting both stations

plot(station1, xlim = c(xmin, xmax), ylim = c(ymin, ymax))
plot(station2, add = T)
axis(1)
axis(2)

further parameters of the Wahmbeck Station watershed

riverIO = a[[8]]
nodeIO = a[[9]]
c1_river = a[[10]]

determining inlet and outlet watershed nodes determining distances of

nodeIO to c1

boundary = gBoundary(c1)
dist = gDistance(nodeIO, boundary, byid = TRUE)

57

a = Watershed.IOR4(x = nodeIO, y = riverIO, dist = dist)
c1_inlet = a["inlet"][[1]]
c1_inlet
c1_outlet = a["outlet"][[1]]
c1_outlet
plot(c1, border = "sienna", add = T)

library(raster)
r1 = brick("dem_grid_todo1_Weser.tif")
plot(r1, col = (topo.colors(255)), add = T)

plot(c1, border = "sienna", add = T)
plot(station1, pch = 24, col = "orange", bg = "white", add = TRUE)

plot(c1_river, col = "cyan", add = TRUE)
plot(c1_outlet, pch = 21, col = "red", bg = "white", add = TRUE)
plot(c1_inlet, pch = 21, col = "green", bg = "white", add = TRUE)
plot.PointAttribute(c1_outlet, "ELEV", 1000, 0.8)
plot.PointAttribute(c1_inlet, "ELEV", 1000, 0.8)

further parameters of the Karlshafen Station watershed

riverIOa = aa[[8]]
nodeIOa = aa[[9]]
c1_rivera = aa[[10]]

determining inlet and outlet watershed nodes determining distances of

nodeIO to c1

boundary = gBoundary(c1a)
dist = gDistance(nodeIOa, boundary, byid = TRUE)
a = Watershed.IOR3(x = nodeIOa, y = riverIOa, dist = dist)
c1_inlet = a["inlet"][[1]]
c1_inlet
c1_outlet = a["outlet"][[1]]
c1_outlet
plot(c1a, border = "sienna", add = T)

plot(station2, pch = 24, col = "orange", bg = "white", add = TRUE)

plot(station2, pch = 24, col = "red", bg = "white", add = TRUE)

plot(c1_rivera, col = "cyan", add = TRUE)

plot(c1_outlet, pch = 21, col = "red", bg = "white", add = TRUE)

plot(c1_inlet, pch = 21, col = "green", bg = "white", add = TRUE)

plot.PointAttribute(c1_outlet, "ELEV", 1000, 0.8)

58

plot.PointAttribute(c1_inlet, "ELEV", 1000, 0.8)

title(main = "Karlshafen and Wahmbeck Stations watersheds")

legend

legend("topleft", legend = c("Station Wahmbeck", "Station Karlshafen", "inlet node",
"outlet node", "Current zhyd", "River network"), pch = c(24, 24, 21, 21,
NA, NA), lty = c(NA, NA, NA, NA, 1, 1), col = c("orange", "red", "green",
"red", "Sienna", "cyan"), bg = "white")

axis

axis(1)
axis(2)

map scale

library(maps)
map.scale(xc = 4277500, yc = 3164000, len = 5000, units = "2.5 km", ndivs = 2)

north arrow

library(GISTools)
north.arrow(xb = 4277500, yb = 3165500, len = 300, lab = "N")

labeling the color bar

par(xpd = TRUE) #allow for plotting outside the plot

text(x = 4297000, y = 3179000, labels = "Elevation (m)", srt = 0)
par(xpd = FALSE)

59

7.8 Precipitation time series management

setwd("/Users/j_mata01/Documents/timeCapsule/documents/03_III_ifgi_Muenster/03_thesis/03_data/netCDF")

accesing ncdf file

library(ncdf)
nc = open.ncdf("rr_0.25deg_reg_1995-2013_v9.0.nc")

Converting the numeric vector to a 'Date' class object representing

calendar dates using as.Date.

First of all we need to know the units:

ncdimtime$units

extract the variable time

ti = get.var.ncdf(nc, varid = "time")
str(ti)

convert the time vector to dates

dates = as.Date(ti, origin = c("1950-01-01"))
str(dates)
range(dates)
class(dates)
length(dates)

recalling the Lon/Lat variables

lon = get.var.ncdf(nc, varid = "longitude")
lat = get.var.ncdf(nc, varid = "latitude")

Now the precip. data can be represented as a time series: tx =

get.var.ncdf(nc, varid='rr')

tx = get.var.ncdf(nc, varid = "rr", count = c(-1, -1, 1096)) #cut from 01.01.1995 to 31.12.1997 (1096 days)

tx = get.var.ncdf(nc, varid='rr', start=c(1,1,1000), count=c(-1,-1,1096))

str(tx)
dim(tx)

locating the coordinates for the current station

which(lon == 9.875)
ncdimlongitude$vals[202]
lon[202]

which(lat == 51.625)
ncdimlatitude$vals[106]
lat[106]

time serie definition ts = as.data.frame(matrix(0,365,2))

ts[,1]=dates[1:365] ts = as.data.frame(matrix(0,45,2)) ts[,1]=dates[1:45]

ts = as.data.frame(matrix(0, 1096, 2))

60

ts[, 1] = dates[1:1096]

ts[, 2] = tx[202, 106,]
plot(ts, ty = "l", col = "blue")
write.table(ts, "out_ts.csv", sep = "\t")

61

7.9 Routing and solute transport modelling

library(ReacTran)

Model formulation

river.model <- function(t = 0, OC, pars = NULL) {
tran <- tran.volume.1D(C = OC, F.up = F.OC, F.lat = F.lat, Disp = Disp,

flow = flow.up, flow.lat = flow.lat, V = Volume, full.output = TRUE)
reac <- -k * OC
return(list(dCdt = tran$dC + reac, Flow = tran$flow))

}

Parameter definition

Initialising river morphology:

nbox <- 500 # number of grid cells

lengthEstuary <- 5974 # length of estuary [m]

BoxLength <- lengthEstuary/nbox # [m]

Distance <- seq(BoxLength/2, by = BoxLength, len = nbox) # [m]

Int.Distance <- seq(0, by = BoxLength, len = (nbox + 1)) # [m]

Cross sectional area: wide river [m2]

CrossArea = 40
Volume of boxes (m3)

(Volume <- CrossArea * BoxLength)

Transport coefficients

Disp <- 1000 # m3/s, bulk dispersion coefficient

flow.up <- 180/3.83 # m3/s, main river upstream inflow

flow.up <- as.numeric(xx_fit[, 1][1]) # m3/s, main river upstream inflow

class(flow.up)

flow.lat.0 <- 180/3.83 # m3/s, side river inflow

F.OC <- 180/3.83 # input organic carbon [mol s-1]

F.lat.0 <- 180/3.83 # lateral input organic carbon [mol s-1]

k <- 10/(365 * 24 * 3600) # decay constant organic carbon [s-1]

Model solution

scenario 1: without lateral input

F.lat <- rep(0, length.out = nbox)
length(F.lat)
flow.lat <- rep(0, length.out = nbox)
Conc1 <- steady.1D(runif(nbox), fun = river.model, nspec = 1, name = "OC")
str(Conc1)

62

scenario 2: with lateral input

F.lat <- F.lat.0 * dnorm(x = Distance/lengthEstuary, mean = Distance[nbox/2]/lengthEstuary,
sd = 1/20, log = FALSE)/nbox

flow.lat <- flow.lat.0 * dnorm(x = Distance/lengthEstuary, mean = Distance[nbox/2]/lengthEstuary,
sd = 1/20, log = FALSE)/nbox

Conc2 <- steady.1D(runif(nbox), fun = river.model, nspec = 1, name = "OC")
str(Conc2)

Plotting output

use S3 plot method

plot(Conc1, Conc2, grid = Distance/1000, which = "OC", mfrow = c(2, 1), lwd = 2,
xlab = "distance [km]", main = "Organic carbon decay in the river on 01.01.1995",
ylab = "OC Concentration [mM]")

plot(Conc1, Conc2, grid = Int.Distance/1000, which = "Flow", mfrow = NULL, lwd = 2,
xlab = "distance [km]", main = "Longitudinal change in the water flow rate on 01.01.1995",
ylab = "Flow rate [m3 s-1]")

legend("topright", lty = 1:2, col = 1:2, lwd = 2, c("baseline", "+ side river input"))

63

7.10 The ”Watersheds” package: user manual

64

Package ‘Watersheds’

February 25, 2014

Type Package

Title Spatial watershed aggregation and spatial drainage network analysis

Version 1.0

Date 2013-08-10

Author J.A. Torres

Maintainer J. A. Torres <arturo.torres@uni-muenster.de>

Description A package for watersheds aggregation and spatial drainage network analysis.

License GPL (>= 2)

Depends R (>= 2.10), methods, sp, maptools, rgeos, lattice, splancs

R topics documented:

Watersheds-package . 2
plot.PointAttribute-methods . 2
plot.PolyLineAttribute-methods . 3
RiverStation . 3
SpDF_Subset . 4
SpDF_Touch . 5
Watershed . 6
Watershed.IOR1 . 7
Watershed.IOR2 . 9
Watershed.IOR3 . 10
Watershed.IOR4 . 12
Watershed.Order-methods . 13
Watershed.Order2-methods . 15
Watershed.Tributary-methods . 17
WatershedsData . 19

Index 22

1

2 plot.PointAttribute-methods

Watersheds-package Spatial watershed aggregation and spatial drainage network analysis

Description

Spatial analysis for watersheds aggregation and ordering accordingly to an outlet point and size of
tributary watershed of the current watershed. Spatial drainage networks analysis inside the aggre-
gated watersheds.

Details

Package: Watersheds
Type: Package
Version: 1.0
Date: 2013-08-10
License: GPL (>= 2)
Depends: R (>= 2.10), methods, sp, maptools, rgeos, lattice, splancs, multicore

Creation and handling of objects class Watershed for identifying the subbasin that contains the
current station (class SpatialPoints) and subsets the zhyd object to subbasin and extract the
current zhy object that contains station via the S4 method Watershed.Order. Identification of
the inlet and outlet stretches and inlet and outlet nodes of the zhyd. Implementation of functions
Watershed. ,IOR1, IOR2, IOR3, and IOR4 for determining the actual inlet and outlet nodes. S4
methods Watershed.Order2 and Watershed.Tributary for defining tributary nodes and tributary
catchments of the current zhyd watershed.

Author(s)

J.A. Torres

Maintainer: J.A. Torres <arturo.torres@uni-muenster.de>

See Also

See Also the class Watershed and the methods Watershed.Order, Watershed.Order2 and Watershed.Tributary.

plot.PointAttribute-methods
Plotting attributes of SpatialPointsDataFrame objects

Description

S4 Method for plotting attributes of SpatialPointsDataFrame objects.

plot.PolyLineAttribute-methods 3

Methods

signature(x = "SpatialPointsDataFrame", y = "character", dist = "numeric", cex = "numeric")

x A "SpatialPointsDataFrame" object from where the coordinates of the attribute will be re-
trieved.

y A "character" with the name of the attribute.
dist A "numeric" with the distance from the coordinate to plot the attribute text.
cex A "numeric" with the relative size to plot the attribute text.

plot.PolyLineAttribute-methods
Plot attributes of Spatial-Lines,Polygons-DataFrame objects.

Description

S4 Method for plotting attributes of SpatialLinesDataFrame and SpatialPolygonsDataFrame
objects.

Methods

signature(x = "SpatialPolygonsDataFrame", y = "character", dist = "numeric", cex = "numeric")

x "SpatialPointsDataFrame" or "SpatialPointsDataFrame" object from where the coordi-
nates of the attribute will be retrieved.

y "character" with the name of the attribute.
dist "numeric" with the distance from the coordinate to plot the attribute text.
cex "numeric" with the relative size to plot the attribute text.

RiverStation Intersection of SpatialPoints and SpatialLinesDataFrame

Description

The function intersects objects SpatialPoints and SpatialLinesDataFrame. Identyfies the closer
stretch(es) to a station. The SpatialPoints must be length 1.

Usage

RiverStation(x, y, window = 1��)

Arguments

x An object of class SpatialPoints as is defined in package sp and length 1.
y An object of class SpatialLinesDataFrame as is defined in package sp.
window A numeric value that represents the size of the square (window) around the x

object.

4 SpDF_Subset

Details

window value magnifies the object x in order to certainly secure the intersection with the object y.
The greater value the more intersection area is defined.

Value

An object SpatialLinesDataFrame that is a subsect of th object x that represents the current inter-
section withe object x.

Author(s)

J.A. Torres

Examples

library(Watersheds)
data(WatershedsData)

station1 = WatershedsData$station
river1 = WatershedsData$river

tributary = RiverStation(station1, river1)
plot(tributary, col="blue")
plot(station1,pch=21,bg="red",cex=.8,add=TRUE)
plot.PolyLineAttribute(x=tributary, y="OBJECTID", dist=1��, cex=.8)
title(main="Point station and tributary rivers")

SpDF_Subset Subsetting spatial dataframe objects

Description

Given and list x of logical values, the function subsets the object z accordingly the TRUE values of
x.

Usage

SpDF_Subset(x, y)

Arguments

x A list of logical values where TRUE values indicates the index of the subset.

y A spatial object as is defined in package sp from extracting the subset.

Value

A spatial object of the same class of y.

Author(s)

J.A. Torres

SpDF_Touch 5

Examples

library(Watersheds)
data(WatershedsData)

subsetting the river Werra subbasin
id = list(gIntersects(WatershedsData$rWerra, WatershedsData$subbasin,byid=TRUE))
subbasin_rWerra = SpDF_Subset(id,WatershedsData$subbasin)
plot(subbasin_rWerra)

subsetting the river Werra zhyd watersheds
id = list(gIntersects(WatershedsData$rWerra, WatershedsData$zhyd,byid=TRUE))
zhyd_rWerra = SpDF_Subset(id,WatershedsData$zhyd)
plot(WatershedsData$rWerra,col="blue",lwd=1,add=TRUE)
plot(zhyd_rWerra,col="green3",add=TRUE)
title("Subbasin River Weser and primary zhyd watersheds")

subsetting the river Werra river drainage watersheds
id = list(gIntersects(subbasin_rWerra, WatershedsData$river,byid=TRUE))
river_rWerra = SpDF_Subset(id,WatershedsData$river)
plot(subbasin_rWerra)
plot(WatershedsData$rWerra,col="blue",lwd=3,add=TRUE)
plot(river_rWerra,col="blue1",add=TRUE)
title("Subbasin River Weser and drainage network")

SpDF_Touch Touch function for spatial objects

Description

The SpatialDataFrame Touch function. Identifies which nodes has touching lines and retrives a list
with two elements.

Usage

SpDF_Touch(x, y)

Arguments

x An spatial object as is described in package sp.
y An spatial object as is described in package sp.

Value

A list with two elements:

comp1 A matrix with the OBJECTID of the node (column 1), the maximum number
of lines that are touching the node (column 2), and the elevation of that node
(column 3).

comp2 A matrix with the OBJECTID of the lines that are touching the node.

Author(s)

J.A. Torres

6 Watershed

Examples

library(Watersheds)
data(WatershedsData)

station1 = WatershedsData$station
subbasin1 = WatershedsData$subbasin
zhyd1 = WatershedsData$zhyd
river1 = WatershedsData$river
node1 = WatershedsData$node

station1 = SpatialPoints(coords=cbind(4328448.74, 3118576.86),
proj4string=slot(subbasin1,"proj4string"))
watershed = new("Watershed",station=station1,subbasin=subbasin1,
zhyd=zhyd1,river=river1,c1=subbasin1,node=node1)

a = Watershed.Order(watershed)
c1 = a[[1]]
riverIO = a[[8]]
nodeIO = a[[9]]

touch = SpDF_Touch(nodeIO, riverIO)
touch1 = touch[[1]]; touch1

Watershed Class "Watershed"

Description

A S4 class "Watershed" for representing "Watershed" objects.

Objects from the Class

Objects can be created by calls of the form new("Watershed", ...).

Slots

station: Object of class "SpatialPoints" of length 1. Represents a point from which aggrega-
tion fo watersheds will occur.

subbasin: Object of class "SpatialPolygonsDataFrame" of length 1. Represents the current
boundary of the hydrological units or zhyd objects.

zhyd: Object of class "SpatialPolygonsDataFrame". Represents the current hydrological units
(zhyd accordingly to ECRINS (EAA, 2012)) to be analized inside the subbasin boundary.

river: Object of class "SpatialLinesDataFrame" that represents the current river network to be
analised inside the subbasin boundary.

c1: Object of class "SpatialPolygonsDataFrame" of lentgh 1. Represents the curren zhyd object
of analysis.

node: Object of class "SpatialPointsDataFrame". Represents the current nodes of the river
network to be analised inside the subbasin boundary.

Watershed.IOR1 7

Methods

Watershed.Order signature(x = "Watershed"): ...
Watershed.Order2 signature(watershed = "Watershed"): ...
Watershed.Tributary signature(x = "SpatialPointsDataFrame", xo = "SpatialPointsDataFrame", y = "SpatialLinesDataFrame", z = "SpatialPointsDataFrame", zhyd = "SpatialPolygonsDataFrame", c1 = "SpatialPolygonsDataFrame")

Author(s)

J.A. Torres

References

European Environment Agency - EAA. (2012). EEA catchments and rivers network system, ECRINS
v1.1. rationales, building and improving for widening uses to Water Accounts and WISE applica-
tions (EEA Technical report No. 7/2012). (Luxembourg: Publications Office of the European
Union).

See Also

See Also as the functions Watershed.IOR1, Watershed.IOR2, Watershed.IOR3, Watershed.IOR4,
or the S4 methods Watershed.Order, Watershed.Order2, Watershed.Tributary

Examples

data(WatershedsData)
station1 = WatershedsData$station
subbasin1 = WatershedsData$subbasin
zhyd1 = WatershedsData$zhyd
river1 = WatershedsData$river
node1 = WatershedsData$node

station1 = SpatialPoints(coords=slot(station1,"coords"),
proj4string=slot(subbasin1,"proj4string"))
watershed = new("Watershed",station=station1,subbasin=subbasin1,
zhyd=zhyd1,river=river1,c1=subbasin1,node=node1)

Watershed.IOR1 Watershed inlet and outlet nodes: case 1

Description

The function determines the inlet and outlet nodes for zhyd watershed objects. This case 1 is for
those watersheds that its river inlet and outlet object is length 1 (length(riverIO)=1).

Usage

Watershed.IOR1(x, dist)

Arguments

x An object "SpatialPointsDataFrame" as is described in package sp over the
function will search the inlet and outlet nodes of the watershed.

dist A vector with the distances of each point in x to the current zhyd boundary.

8 Watershed.IOR1

Value

A list of length 2:

inlet A "SpatialPointsDataFrame" that represents the inlet node of the current
zhyd.

outlet A "SpatialPointsDataFrame" that represents the outlet node of the current
zhyd.

Note

If there are not inlet or outlet node of the current zhyd, 0 is returned.

Author(s)

J.A. Torres

See Also

See Also the functions Watershed.IOR2, Watershed.IOR3, Watershed.IOR4.

Examples

library(Watersheds)
data(WatershedsData)

station1 = WatershedsData$station
subbasin1 = WatershedsData$subbasin
zhyd1 = WatershedsData$zhyd
river1 = WatershedsData$river
node1 = WatershedsData$node

station1 = SpatialPoints(coords=cbind(4232972,3327634),
proj4string=slot(subbasin1,"proj4string"))
watershed = new("Watershed",station=station1,subbasin=subbasin1,
zhyd=zhyd1,river=river1,c1=subbasin1,node=node1)

a = Watershed.Order(watershed)
c1 = a[[1]]
nodeIO = a[[9]]
c1_river = a[[1�]]

determining inlet and outlet watershed nodes
determining distances of nodeIO to c1
boundary = gBoundary(c1)
dist = gDistance(nodeIO, boundary, byid =TRUE)
a = Watershed.IOR1(x=nodeIO, dist=dist)
c1_inlet = a$inlet; c1_inlet
c1_outlet = a$outlet; c1_outlet

plot(c1,col="gray5�")
plot(station1,pch=24, bg="blue",add= TRUE)
plot(c1_river, col="blue", add=TRUE)
plot(c1_outlet,pch=21, bg="red",add= TRUE)
plot.PointAttribute(c1_outlet,"ELEV",7��,�.8)
title(main="Watershed outlet, case I")

Watershed.IOR2 9

Watershed.IOR2 Watershed inlet and outlet nodes: case 2

Description

The function determines the inlet and outlet nodes for zhyd watershed objects. This case 2 is for
those watersheds that its river inlet and outlet object is length 2 (length(riverIO)=2).

Usage

Watershed.IOR2(x, dist, node)

Arguments

x An object "SpatialPointsDataFrame" or "SpatialPoints" as are described
in package sp over the function will search the inlet and outlet nodes of the
watershed.

dist A vector with the distances of each point in x to the current zhyd boundary.

node An object "SpatialPointsDataFrame" as are described in package sp over the
function will search the inlet and outlet nodes of the watershed. It must be the
entire node search object.

Value

A list of length 2:

inlet A "SpatialPointsDataFrame" that represents the inlet node of the current
zhyd.

outlet A "SpatialPointsDataFrame" that represents the outlet node of the current
zhyd.

Note

If there are not inlet or outlet node of the current zhyd is returned 0.

Author(s)

J.A. Torres

See Also

See Also the functions Watershed.IOR1, Watershed.IOR3, Watershed.IOR4.

Examples

library(Watersheds)
data(WatershedsData)

station1 = WatershedsData$station
subbasin1 = WatershedsData$subbasin
zhyd1 = WatershedsData$zhyd
river1 = WatershedsData$river

10 Watershed.IOR3

node1 = WatershedsData$node

station1 = SpatialPoints(coords=cbind(433�341.36,3284797.�6),
proj4string=slot(subbasin1,"proj4string"))
watershed = new("Watershed",station=station1,subbasin=subbasin1,
zhyd=zhyd1,river=river1,c1=subbasin1,node=node1)

a = Watershed.Order(watershed)
c1 = a[[1]]
nodeIO = a[[9]]
c1_river = a[[1�]]
c1_node = a[[11]]

determining inlet and outlet watershed nodes
determining distances of nodeIO to c1
boundary = gBoundary(c1)
dist = gDistance(nodeIO, boundary, byid =TRUE)
a = Watershed.IOR2(x=nodeIO, dist=dist, node=c1_node)
str(a)
c1_inlet = a$inlet; c1_inlet
c1_outlet = a$outlet; c1_outlet

plot(c1,col="gray6�")
plot(station1,pch=24, bg="blue",add= TRUE)
plot(c1_river, col="blue", add=TRUE)
plot(c1_outlet,pch=21, bg="red",add= TRUE)
plot.PointAttribute(c1_outlet,"ELEV",7��,�.8)
title(main="Watershed outlet, case II")

Watershed.IOR3 Watershed inlet and outlet nodes: case 3

Description

The function determines the inlet and outlet nodes for zhyd watershed objects. This case 3 is for
those watersheds that its river inlet and outlet object is length 3 (length(riverIO)=3).

Usage

Watershed.IOR3(x, y, dist)

Arguments

x An object "SpatialPointsDataFrame" as is described in package sp over them
the function will search the inlet and outlet nodes of the watershed.

y An object "SpatialLinesDataFrame" as is described in package sp that repre-
sents the inlet and outlet rivers of the watershed.

dist A vector with the distances of each point in x to the current zhyd boundary.

Value

inlet A "SpatialPointsDataFrame" that represents the inlet node of the current
zhyd.

outlet A "SpatialPointsDataFrame" that represents the outlet node of the current
zhyd.

Watershed.IOR3 11

Note

If there are not inlet or outlet node of the current zhyd is returned 0.

Author(s)

J.A. Torres

See Also

See Also the functions Watershed.IOR1, Watershed.IOR2, Watershed.IOR4.

Examples

library(Watersheds)
data(WatershedsData)

station1 = WatershedsData$station
subbasin1 = WatershedsData$subbasin
zhyd1 = WatershedsData$zhyd
river1 = WatershedsData$river
node1 = WatershedsData$node

station1 = SpatialPoints(coords=cbind(4217199.42,3353511.83),
proj4string=slot(subbasin1,"proj4string"))
watershed = new("Watershed",station=station1,subbasin=subbasin1,
zhyd=zhyd1,river=river1,c1=subbasin1,node=node1)

a = Watershed.Order(watershed)
c1 = a[[1]]
riverIO = a[[8]]
nodeIO = a[[9]]
c1_river = a[[1�]]

determining inlet and outlet watershed nodes
determining distances of nodeIO to c1
boundary = gBoundary(c1)
dist = gDistance(nodeIO, boundary, byid =TRUE)
a = Watershed.IOR3(x=nodeIO, y=riverIO, dist=dist)
c1_inlet = a$inlet; c1_inlet
c1_outlet = a$outlet; c1_outlet

plot(c1,col="gray6�")
plot(station1,pch=24, bg="blue",add= TRUE)
plot(c1_river, col="blue", add=TRUE)
plot(c1_outlet,pch=21, bg="red",add= TRUE)
plot(c1_inlet,pch=21, bg="green",add= TRUE)
plot.PointAttribute(c1_outlet,"ELEV",1���,�.8)
plot.PointAttribute(c1_inlet,"ELEV",1���,�.8)
title(main="Watershed outlet and inlet, case III")

12 Watershed.IOR4

Watershed.IOR4 Watershed inlet and outlet nodes: case 4

Description

The function determines the inlet and outlet nodes for zhyd watershed objects. This case 4 is for
those watersheds that its river inlet and outlet object is length 4 (length(riverIO)=4).

Usage

Watershed.IOR4(x, y, dist)

Arguments

x An object "SpatialPointsDataFrame" as is described in package sp over them
the function will search the inlet and outlet nodes of the watershed.

y An object "SpatialLinesDataFrame" as is described in package sp that repre-
sents the inlet and outlet rivers of the watershed.

dist A vector with the distances of each point in x to the current zhyd boundary.

Value

inlet A "SpatialPointsDataFrame" that represents the inlet node of the current
zhyd.

outlet A "SpatialPointsDataFrame" that represents the outlet node of the current
zhyd.

Note

If there are not inlet or outlet node of the current zhyd is returned 0.

Author(s)

J.A. Torres

See Also

See Also the functions Watershed.IOR1, Watershed.IOR2, Watershed.IOR3.

Examples

library(Watersheds)
data(WatershedsData)

station1 = WatershedsData$station
subbasin1 = WatershedsData$subbasin
zhyd1 = WatershedsData$zhyd
river1 = WatershedsData$river
node1 = WatershedsData$node

station1 = SpatialPoints(coords=cbind(4357947,3284525),
proj4string=slot(subbasin1,"proj4string"))

Watershed.Order-methods 13

watershed = new("Watershed",station=station1,subbasin=subbasin1,
zhyd=zhyd1,river=river1,c1=subbasin1,node=node1)

a = Watershed.Order(watershed)
c1 = a[[1]]
riverIO = a[[8]]
nodeIO = a[[9]]
c1_river = a[[1�]]

determining inlet and outlet watershed nodes
determining distances of nodeIO to c1
boundary = gBoundary(c1)
dist = gDistance(nodeIO, boundary, byid =TRUE)
a = Watershed.IOR4(x=nodeIO, y=riverIO, dist=dist)
c1_inlet = a$inlet; c1_inlet
c1_outlet = a$outlet; c1_outlet

plot(c1,col="gray6�")
plot(station1,pch=24, bg="blue",add= TRUE)
plot(c1_river, col="blue", add=TRUE)
plot(c1_outlet,pch=21, bg="red",add= TRUE)
plot(c1_inlet,pch=21, bg="green",add= TRUE)
plot.PointAttribute(c1_outlet,"ELEV",1���,�.8)
plot.PointAttribute(c1_inlet,"ELEV",1���,�.8)
title(main="Watershed outlet and inlet, case IV")

Watershed.Order-methods
S4 Method for Function Watershed.Order

Description

S4 Method for function Watershed.Order. Definition of the properties of the current zhyd water-
shed.

Value

The method returns a list of 11 objects:

c1 An object SpatialPolygonsDataFrame of length 1 that represents the current
zhyd watershed object.

c1_inlet An object SpatialPointsDataFrame of length 1 that represents the current inlet
node of the zhyd watershed object.

c1_outlet An object SpatialPointsDataFrame of length 1 that represents the current out-
let node of the zhyd watershed object.

c2 An object SpatialPolygonsDataFrame of length 1 that represents the greater
watershed tributary of the current zhyd watershed object.

c3 An object SpatialPolygonsDataFrame of length 1 that represents the second
watershed tributary of the current zhyd watershed object.

node_trib An object SpatialPointsDataFrame of length 2 that represents the station
points of the tributary watershed objects.

14 Watershed.Order-methods

sb1 An object SpatialPointsDataFrame of length 1 that represents the subbasin
that contains the current zhyd watershed object.

riverIO An object SpatialLinesDataFrame that represents the inlet (I) and outlet (O)
rivers that crosses the boundary of the current zhyd watershed object.

nodeIO An object SpatialPointsDataFrame that represents the nodes of the inlet (I)
and outlet (O) rivers that crosses the boundary of the current zhyd watershed
object.

c1_river An object SpatialLinesDataFrame that represents the river network inside the
current zhyd watershed object.

c1_node An object SpatialPointsDataFrame that represents the node network inside
the current zhyd watershed object.

Methods

signature(x = "Watershed") The function takes the object of class Watershed and identifies
the subbasin that contains the current station (class SpatialPoints) and subsets the zhyd
object to subbasin and extract the current zhy object that contains station. Posteriorly, iden-
tifies the inlet and outlet stretches and probable inlet and outlet nodes of the zhyd. Then, runs
the functions Watershed. ,IOR1, IOR2, IOR3, or IOR4 for determining the actual inlet and
outlet nodes. Finally, the method executes the S4 method Watershed.Tributary for defining
tributary nodes and tributary catchments of the current zhyd watershed.

See Also

See Also the class Watershed and the methods Watershed.Order2 and Watershed.Tributary.

Examples

library(Watersheds)
data(WatershedsData)

station1 = WatershedsData$station
subbasin1 = WatershedsData$subbasin
zhyd1 = WatershedsData$zhyd
river1 = WatershedsData$river
node1 = WatershedsData$node

station1 = SpatialPoints(coords=cbind(4328448.74, 3118576.86),
proj4string=slot(subbasin1,"proj4string"))
watershed = new("Watershed",station=station1,subbasin=subbasin1,
zhyd=zhyd1,river=river1,c1=subbasin1,node=node1)

a = Watershed.Order(watershed)
c1 = a[[1]]
c1_inlet = a[[2]]
c1_outlet = a[[3]]
c2 = a[[4]]
c3 = a[[5]]
node_trib = a[[6]]
sb1 = a[[7]]
riverIO = a[[8]]
nodeIO = a[[9]]
c1_river = a[[1�]]

Watershed.Order2-methods 15

c1_node = a[[11]]

bbox1 = slot(c1, "bbox")
bbox = matrix(�,2,2)
bbox[,1] = bbox1[,1]*.998
bbox[,2] = bbox1[,2]*1.��2

plot(c1, xlim=bbox[1,], ylim=bbox[2,],col="gray5�")
plot(c2, col="gray75", add=TRUE)
plot(c3, col="gray85", add=TRUE)
plot(slot(watershed,"station"),pch=24, bg="blue",add= TRUE)
plot.PolyLineAttribute(c1, "order", 45�, �.8)
plot.PolyLineAttribute(c2, "order", 45�, �.8)
plot.PolyLineAttribute(c3, "order", 45�, �.8)
plot(c1_river, col="blue", add=TRUE)
plot(c1_node,pch=21,bg="blue",cex=.5,add=TRUE)
plot(nodeIO,pch=21,bg="blue",cex=.5,add=TRUE)
plot(c1_inlet, pch=21, bg="green",add= TRUE)
plot(c1_outlet,pch=21, bg="red",add= TRUE)
plot.PointAttribute(nodeIO,"ELEV",6��,�.7)
title(main="Current zhyd watershed (1)",
sub="First order tributary watersheds (1.1, 1.2)")

Watershed.Order2-methods
S4 Method for Function Watershed.Order2

Description

S4 Method for function Watershed.Order2. Definition of the tributary zhyd watersheds of the
current zhyd watershed.

Value

The method returns a list of 2 objects:

c2 An object with the output of the method Watershed.Order of length 11 for one
of the points of node_trib. The properties of the greater tributary watershed of
the current zhyd watershed.

c3 An object with the output of the method Watershed.Order of length 11 for the
other points of node_trib. The properties of the second tributary watershed of
the current zhyd watershed.

Methods

signature(watershed = "Watershed") The method takes the objec of class Watershed when
object node_trib is length 2. The method identifies the zhyd watershed that contaions the
current station (class SpatialPoints) and apply the method Watershed.Order on each
point of node_trib returning a list of objects Watershed.Order. The computation is done
via parallel processes for optimizing and take advance of multicore functionalities.

See Also

See Also the class Watershed and the methods Watershed.Order and Watershed.Tributary.

16 Watershed.Order2-methods

Examples

library(Watersheds)
data(WatershedsData)

station1 = WatershedsData$station
subbasin1 = WatershedsData$subbasin
zhyd1 = WatershedsData$zhyd
river1 = WatershedsData$river
node1 = WatershedsData$node

station1 = SpatialPoints(coords=cbind(432865�,317445�),
proj4string=slot(subbasin1,"proj4string"))
watershed = new("Watershed",station=station1,subbasin=subbasin1,
zhyd=zhyd1,river=river1,c1=subbasin1,node=node1)

a = Watershed.Order(watershed)
c1 = a[[1]]
node_trib = a[[6]]
c1_river = a[[1�]]

watershed2 = new("Watershed", station=node_trib, subbasin=subbasin1, zhyd=zhyd1, river=river1, c1=c1,node=node1)
c23 = Watershed.Order2(watershed2)
c2 = c23[[1]]
c3 = c23[[2]]

c2.� = c2[[1]]
c2_inlet = c2[[2]]
c2_outlet = c2[[3]]
c2.1 = c2[[4]]
c2.2 = c2[[5]]
c2_node_trib = c2[[6]]
c2_sb1 = c2[[7]]
c2_riverIO = c2[[8]]
c2_nodeIO = c2[[9]]
c2_river = c2[[1�]]
c2_node = c2[[11]]

c3.� = c3[[1]]
c3_inlet = c3[[2]]
c3_outlet = c3[[3]]
c3.1 = c3[[4]]
c3.2 = c3[[5]]
c3_node_trib = c3[[6]]
c3_sb1 = c3[[7]]
c3_riverIO = c3[[8]]
c3_nodeIO = c3[[9]]
c3_river = c3[[1�]]
c3_node = c3[[11]]

subsetting river networks
id = list(gIntersects(c2.1, WatershedsData$river,byid=TRUE))
c21_river = SpDF_Subset(id,WatershedsData$river)

id = list(gIntersects(c2.2, WatershedsData$river,byid=TRUE))
c22_river = SpDF_Subset(id,WatershedsData$river)

Watershed.Tributary-methods 17

id = list(gIntersects(c3.1, WatershedsData$river,byid=TRUE))
c31_river = SpDF_Subset(id,WatershedsData$river)

id = list(gIntersects(c3.2, WatershedsData$river,byid=TRUE))
c32_river = SpDF_Subset(id,WatershedsData$river)

plots
bbox1 = slot(c3.2, "bbox")
bbox = matrix(�,2,2)
bbox[,1] = bbox1[,1]*.995
bbox[,2] = bbox1[,2]*1.��5

plot(c1, col="gray5�", xlim=bbox[1,], ylim=bbox[2,])
plot(c2.�, col = "gray95", add=TRUE)
plot(c3.�, col="gray79", add=TRUE)
plot(c2.1, col="gray78", add=TRUE)
plot(c2.2, col="gray85", add=TRUE)
plot(c3.1, col="gray53", add=TRUE)
plot(c3.2, col="gray63", add=TRUE)

plot(c1_river, col="blue",add=TRUE)
plot(c2_river, col="blue",add=TRUE)
plot(c3_river, col="blue",add=TRUE)
plot(c21_river, col="blue",add=TRUE)
plot(c22_river, col="blue",add=TRUE)
plot(c31_river, col="blue",add=TRUE)
plot(c32_river, col="blue",add=TRUE)

Watershed.Tributary-methods
S4 Method for Function Watershed.Tributary

Description

S4 Method for function Watershed.Tributary. Definition of the order of tributary zhyd water-
sheds of the current zhyd watershed.

Value

The method returns a list of 4 objects:

c2c3 A list of length 2 with objects SpatialPolygonsDataFrame of length 1 ordered
that represents the greater watershed and second tributary of the current zhyd
watershed object.

c2 An object SpatialPolygonsDataFrame of length 1 ordered that represents the
greater watershed tributary of the current zhyd watershed object.

c3 An object SpatialPolygonsDataFrame of length 1 ordered that represents the
second watershed tributary of the current zhyd watershed object.

node_trib An object SpatialPointsDataFrame of length 2 that represents the station
points of the tributary watershed objects.

18 Watershed.Tributary-methods

Methods

signature(x = "SpatialPointsDataFrame", xo = "SpatialPointsDataFrame", y = "SpatialLinesDataFrame", z = "SpatialPointsDataFrame", zhyd = "SpatialPolygonsDataFrame", c1 = "SpatialPolygonsDataFrame")

See Also

See Also the class Watershed and the methods Watershed.Order and Watershed.Order2.

Examples

library(Watersheds)
data(WatershedsData)

station1 = WatershedsData$station
subbasin1 = WatershedsData$subbasin
zhyd1 = WatershedsData$zhyd
river1 = WatershedsData$river
node1 = WatershedsData$node

station1 = SpatialPoints(coords=cbind(4328448.74, 3118576.86),
proj4string=slot(subbasin1,"proj4string"))
watershed = new("Watershed",station=station1,subbasin=subbasin1,
zhyd=zhyd1,river=river1,c1=subbasin1,node=node1)

a = Watershed.Order(watershed)
c1 = a[[1]]
c1_inlet = a[[2]]
c1_outlet = a[[3]]
sb1 = a[[7]]
riverIO = a[[8]]
nodeIO = a[[9]]
c1_river = a[[1�]]
c1_node = a[[11]]

a = Watershed.Tributary(x=c1_inlet,xo= c1_outlet,y=riverIO,z=nodeIO,zhyd=zhyd1, c1=c1)
c2c3 = a[[1]]
c2 = a[[2]]
c3 = a[[3]]
node_trib = a[[4]]

bbox1 = slot(c2c3, "bbox")
bbox = matrix(�,2,2)
bbox[,1] = bbox1[,1]*.998
bbox[,2] = bbox1[,2]*1.��2

plot(c1, xlim=bbox[1,], ylim=bbox[2,],col="gray5�")
plot(c2, col="gray75", add=TRUE)
plot(c3, col="gray85", add=TRUE)
plot(slot(watershed,"station"),pch=24, bg="blue",add= TRUE)
plot.PolyLineAttribute(c1, "order", 45�, �.8)
plot.PolyLineAttribute(c2, "order", 45�, �.8)
plot.PolyLineAttribute(c3, "order", 45�, �.8)
plot(c1_river, col="blue", add=TRUE)
plot(node_trib,pch=21,bg="red",cex=.8,add=TRUE)
plot.PointAttribute(node_trib,"ELEV",6��,�.7)
title(main="Current zhyd watershed (1)",

WatershedsData 19

sub="First order tributary nodes (1.1, 1.2)")

WatershedsData A dataset of the ECRINS database for the river Weser basin, Germany.

Description

The European Environment Agency (EEA) has been developed the Catchments and Rivers Net-
work System (ECRINS) version 1.1. The ECRINS is the hydrographical system currently in use
at the European level as well as widely serving as the reference system for the Water Information
System (WISE) (EEA,2012). The current version of ECRINS is based on previous work carried
out by the Joint Research Centre (JRC) Catchment Characterisation and Modelling (CCM) and the
EEA (European Lakes, Dams and Reservoirs Database (Eldred2), European Rivers and Catchments
(ERICA)), (EEA,2012).

Usage

data(WatershedsData)

format

basin: an object SpatialPolygonsDataFrame as is defined in package sp that represents the river
Weser basin. The data slot contains 6 variables as attributes of 1 obaservation.

ctry: an object SpatialPolygonsDataFrame as is defined in package sp that represents the ad-
ministrative boundary of Germany. The data slot contains 6 variables as attributes of 1 obaser-
vation.

node: an object SpatialPointsDataFrame as is defined in package sp that represents the nodes
of the ECRINS river network of the river Weser basin. The data slot contains 13 variables as
attributes of 3882 obaservations.

rAller an object SpatialLinesDataFrame as is defined in package sp that represents the basin
of the river Aller, a major tributary of the river Weser. The data slot contains 74 variables as
attributes of 88 observations.

rDiemel an object SpatialLinesDataFrame as is defined in package sp that represents the basin
of the river Diemel, a major tributary of the river Weser. The data slot contains 74 variables
as attributes of 39 observations.

rFulda an object SpatialLinesDataFrame as is defined in package sp that represents the basin
of the river Fulda, a major tributary of the river Weser. The data slot contains 74 variables as
attributes of 82 observations.

rHunte an object SpatialLinesDataFrame as is defined in package sp that represents the basin
of the river Hunte, a major tributary of the river Weser. The data slot contains 74 variables as
attributes of 34 observations.

river an object SpatialLinesDataFrame as is defined in package sp that represents the ECRINS
river network of the river Weser basin. The data slot contains 52 variables as attributes of
3874 observations.

rWerra an object SpatialLinesDataFrame as is defined in package sp that represents the basin
of the river Werra, a major tributary of the river Weser. The data slot contains 74 variables as
attributes of 120 observations.

rWeser an object SpatialLinesDataFrame as is defined in package sp that represents the basin
of the river Weser. The data slot contains 74 variables as attributes of 104 observations.

20 WatershedsData

rWiumme an object SpatialLinesDataFrame as is defined in package sp that represents the basin
of the river Wiumme, a major tributary of the river Weser. The data slot contains 74 variables
as attributes of 18 observations.

station an object SpatialPoints as is defined in package sp that represents a point of interest
for which the watershed will be aggregated an ordered. Could be a point with the coordinates
of a measurement station.

subbasin an object SpatialPolygonsDataFrame as is defined in package sp that represents the
subbasins of the tributaries of the river Weser. The data slot contains 4 variables as attributes
of 4 observations.

zhyd an object SpatialPolygonsDataFrame as is defined in package sp that contains the primary
hydrological units of the river Weser basin accordingly with ECRINS. The data slot contains
50 variables as attributes and 915 observations.

References

European Environment Agency - EAA. (2012). EEA catchments and rivers network system, ECRINS
v1.1. rationales, building and improving for widening uses to Water Accounts and WISE applica-
tions (EEA Technical report No. 7/2012). (Luxembourg: Publications Office of the European
Union).

Examples

data(WatershedsData)

plotting river Weser basin
plot(WatershedsData$ctry)
plot(WatershedsData$basin, col="green4", add=TRUE)
title("River Weser basin, Germany")

plotting river Weser basin
plot(WatershedsData$ctry)
plot(WatershedsData$basin, col="green4", add=TRUE)
title("River Weser basin, Germany")

plotting subbasins river Weser basin
plot(WatershedsData$basin)
plot(WatershedsData$subbasin, col="green3",add=TRUE)
plot(WatershedsData$rWeser,col="blue",lwd=2,add=TRUE)
plot(WatershedsData$rAller,col="blue",lwd=1,add=TRUE)
plot(WatershedsData$rDiemel,col="blue",lwd=1,add=TRUE)
plot(WatershedsData$rFulda,col="blue",lwd=1,add=TRUE)
plot(WatershedsData$rHunte,col="blue",lwd=1,add=TRUE)
plot(WatershedsData$rWerra,col="blue",lwd=1,add=TRUE)
plot(WatershedsData$rWiumme,col="blue",lwd=1,add=TRUE)
title("Subbasins River Weser")

plotting primary zhyd watersheds and drainage network inside river Werra subbasin
subsetting the river Werra subbasin
id = list(gIntersects(WatershedsData$rWerra, WatershedsData$subbasin,byid=TRUE))
subbasin_rWerra = SpDF_Subset(id,WatershedsData$subbasin)
plot(subbasin_rWerra)

subsetting the river Werra zhyd watersheds
id = list(gIntersects(WatershedsData$rWerra, WatershedsData$zhyd,byid=TRUE))
zhyd_rWerra = SpDF_Subset(id,WatershedsData$zhyd)

WatershedsData 21

plot(WatershedsData$rWerra,col="blue",lwd=1,add=TRUE)
plot(zhyd_rWerra,col="green3",add=TRUE)
title("Subbasin River Weser and primary zhyd watersheds")

subsetting the river Werra river drainage watersheds
id = list(gIntersects(subbasin_rWerra, WatershedsData$river,byid=TRUE))
river_rWerra = SpDF_Subset(id,WatershedsData$river)
plot(subbasin_rWerra)
plot(WatershedsData$rWerra,col="blue",lwd=3,add=TRUE)
plot(river_rWerra,col="blue1",add=TRUE)
title("Subbasin River Weser and drainage network")

Index

∗Topic PointAttribute

plot.PointAttribute-methods, 2
∗Topic PolyLineAttribute

plot.PolyLineAttribute-methods, 3
∗Topic RiverStation

RiverStation, 3
∗Topic SpDF_Subset

SpDF_Subset, 4
∗Topic SpDF_Touch

SpDF_Touch, 5
∗Topic Subset

SpDF_Subset, 4
∗Topic Touch

SpDF_Touch, 5
∗Topic Watershed.IOR1

Watershed.IOR1, 7
∗Topic Watershed.IOR2

Watershed.IOR2, 9
∗Topic Watershed.IOR3

Watershed.IOR3, 10
Watershed.IOR4, 12

∗Topic Watershed.Order2

Watershed.Order2-methods, 15
∗Topic Watershed.Order

Watershed.Order-methods, 13
∗Topic Watershed.Tributary

Watershed.Tributary-methods, 17
∗Topic Watershed

Watershed, 6
∗Topic classes

Watershed, 6
∗Topic datasets

WatershedsData, 19
∗Topic methods

plot.PointAttribute-methods, 2
plot.PolyLineAttribute-methods, 3
Watershed.Order-methods, 13
Watershed.Order2-methods, 15
Watershed.Tributary-methods, 17

∗Topic package

Watersheds-package, 2
∗Topic plot.PointAttribute

plot.PointAttribute-methods, 2

∗Topic plot.PolyLineAttribute

plot.PolyLineAttribute-methods, 3

plot.PointAttribute
(plot.PointAttribute-methods),
2

plot.PointAttribute,SpatialPointsDataFrame,character,numeric,numeric-method
(plot.PointAttribute-methods),
2

plot.PointAttribute-methods, 2
plot.PolyLineAttribute

(plot.PolyLineAttribute-methods),
3

plot.PolyLineAttribute,SpatialLinesDataFrame,character,numeric,numeric-method
(plot.PolyLineAttribute-methods),
3

plot.PolyLineAttribute,SpatialPolygonsDataFrame,character,numeric,numeric-method
(plot.PolyLineAttribute-methods),
3

plot.PolyLineAttribute-methods, 3

RiverStation, 3

SpDF_Subset, 4
SpDF_Touch, 5

Watershed, 2, 6, 14, 15, 18
Watershed-class (Watershed), 6
Watershed.IOR1, 7, 7, 9, 11, 12
Watershed.IOR2, 7, 8, 9, 11, 12
Watershed.IOR3, 7–9, 10, 12
Watershed.IOR4, 7–9, 11, 12
Watershed.Order, 2, 7, 15, 18
Watershed.Order

(Watershed.Order-methods), 13
Watershed.Order,Watershed-method

(Watershed.Order-methods), 13
Watershed.Order-class

(Watershed.Order-methods), 13
Watershed.Order-methods, 13
Watershed.Order2, 2, 7, 14, 18
Watershed.Order2

(Watershed.Order2-methods), 15
Watershed.Order2,Watershed-method

(Watershed.Order2-methods), 15

22

INDEX 23

Watershed.Order2-class
(Watershed.Order2-methods), 15

Watershed.Order2-methods, 15
Watershed.Tributary, 2, 7, 14, 15
Watershed.Tributary

(Watershed.Tributary-methods),
17

Watershed.Tributary,SpatialPointsDataFrame,SpatialPointsDataFrame,SpatialLinesDataFrame,SpatialPointsDataFrame,SpatialPolygonsDataFrame,SpatialPolygonsDataFrame-method
(Watershed.Tributary-methods),
17

Watershed.Tributary-class
(Watershed.Tributary-methods),
17

Watershed.Tributary-methods, 17
Watersheds (Watersheds-package), 2
Watersheds-package, 2
WatershedsData, 19

	Introduction
	Justification
	Hypothesis
	Objectives

	Literature review
	Hydrological modelling
	Soil Moisture Accounting models
	Routing models
	Calibration methods

	Geo-spatial and Geo-temporal capabilities
	sp
	rgeos
	rgdal
	maptools
	raster
	lattice
	multicore
	 Watersheds

	Runoff routing and solute transport
	General reaction transport equation in 1-Dimension
	Boundary conditions in 1-D models
	Numerical approximation of the Advection Dispersion Equation
	1-D finite difference grids and properties in ReacTran
	Stability

	R Packages for routing and solute transport modelling
	ReacTran
	deSolve
	rootSolve

	Materials and methods
	Datasets
	The ECRINS dataset
	Water quality determinants
	River discharge stations
	Further datasets available

	Methodology
	Site study: river Weser basin, Germany
	Subsets

	Results
	Geo-spatial analysis of zhyd subbasins
	The Watersheds object
	The Watersheds.Order method
	The Watersheds.Order2 method
	The Watersheds.IOR1 function
	The Watersheds.IOR2 function
	The Watersheds.IOR3 function
	The Watersheds.IOR4 function
	The Karlshafen and Wahmbeck Stations watersheds

	Precipitation time series management
	Flow time series management
	Runoff routing and hydrological modelling
	Routing and solute transport modelling

	Conclusions
	Further work
	References
	Appendices
	The Watersheds.Order method
	The Watersheds.Order2 method
	The Watersheds.IOR1 function
	The Watersheds.IOR2 function
	The Watersheds.IOR3 function
	The Watersheds.IOR4 function
	The Karlshafen and Whambeck Stations watersheds
	Precipitation time series management
	Routing and solute transport modelling
	The "Watersheds" package: user manual

