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Abstract

This document presents the implementation of several methods for geo-spatial
analysis of river networks and watersheds for runoff routing and solute trans-
port in R in order to contribute in a comprehensive hydrological modelling to
the current framework of the R package ”hydromad”.

The main aim of the study is to develop R routines to coupled the outputs of
the hydrological framework of the R package ”hydromad” to the selected solute
transport model looking forward better simulation of water-quality determinants
transport at watershed scale.

Following the research scheme presented in this proposal it is possible to
prove the hypothesis behind the study. The simulation of solute transport at
specific places of the river network was improved by implementing a runoff
routing method at watershed-scale, the ”hydromad” package, and by coupling
it into a suitable modeling framework for representing solute transport processes.

The developed package, ”watersheds”, allows geo-spatial river network anal-
ysis and makes use of the Catchments and Rivers Network System (ECRINS)
version 1.1, which constitutes the hydrographical system currently in use at the
European Environment Agency as well as widely serving as the reference sys-
tem for the Water Information System for Europe (WISE). The versatility of the
code generated lets to implement geo-spatial analysis in any watershed included
into the ECRINS, as a consequence, watersheds along entire Europe could be
analyzed. This constitutes an important fact because several institutions or
scientific community related with the WISE system could take advantage of the
package and this document.
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1 Introduction

In a comprehensive environmental modelling in the water resources domain,
is of paramount importance to understand the interaction between the mate-
rial flows to coastal waters that are constrained by catchment boundaries and
the human activities therein, and those materials that are tied to trade and
other trans-boundary processes (e.g. residence time, transport and fate of phys-
ical, chemical and microbiological water-quality determinants) and their global
implications on preserving the quality of the natural environment.

In a similar sense, applications in river and environmental engineering, specif-
ically related with hydrological modelling, are related to the analysis of rainfall
and hydrometric time series in order to implement rainfall-runoff models as a
conceptual mathematical basis in flood risk management e.g. the study of the
probable maximum precipitation and probable maximum flood for basin water
resources management. In this case, the modelling framework is for creating the
conceptual basis to simulate flood events in probable scenarios of storm events.

The present document has the purpose of illustrating the implementation of
the spatial analysis and the runoff routing and solute transport in the framework
of the ECRINS river network a reference system for hydrological and climate
change modelling in order to contribute in a comprehensive modelling framework
by means of the understanding and representation of the flow celerities dynamics
and spatial distribution in the river network at the watershed scale.

In the following sections are presented the justification of the proposal (Sec-
tion 1.1), the hypothesis behind the study (Section 1.2) and the objectives
(Section 1.3). Also, in the Section 2, the preliminary review of literature is
introduced; the software and datasets required, and the methods to follow are
presented in Section 3. The Section 4 presents the results of the study. The
conclusions (Section 5) and some considerations for further work are presented
(Section 6). Finally, references and appendices (Section 7) are presented.

1.1 Justification

The ultimate aim of flow prediction using models must be to improve deci-
sion making e.g. in water resources planning, flood protection and mitigation
of contamination (K. J. Beven, 2012). From the Millenium Development Goals
(MDGs) point of view (United Nations - UN, 2012), to secure water-quality and
predict floods have an impact on reducing child mortality (Goal 4) and ensure
environmental sustainability (Goal 7). Currently, UN (2012) also recognizes
that improving monitoring systems is paramount due to reliable, timely and
internationally comparable data on the MDG indicators are crucial for devis-
ing appropriate policies and interventions needed to achieve the MDGs and for
holding the international community to account. In this sense, rainfall-runoff
models are a primary component in the monitoring system for real-time flow
and water-quality prediction.

In the literature exists several hydrological models for rainfall-runoff mod-
elling. However, there are few studies that attempt to model both flow and
water-quality in a totally consistent way because before is required to represent
adequately the complexity of the system e.g. the dynamics of celerities and the
complete distribution of water pore velocities (K. J. Beven, 2012). Some studies
that points toward this direction are provided by Botter et al. (2009, 2010) and
Duffy (2010).
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Moreover, for addressing a comprehensive hydrological modelling, specifi-
cally looking forward on the validation of the hydrological cycle, and the trans-
port and fate of sediments and solutes in surface water resources, it is paramount
to recognize that in environmental modelling all model structures, regardless of
their complexity, are to some extent in error (K. J. Beven, 1989; Grayson et al.,
1992; Freer et al., 2004).

Therefore, model comparison in structure, calibration methods and simu-
lation events, is essential for choosing objectively the suitable configuration of
the model for addressing a specific task related with hydrological modelling.
To accomplish this, a novel, versatile, and open source application is provided
with the R Project for Statistical Computing (Ihaka & Gentleman, 1996; R
Development Core Team, 2013). R more than a statistical software is a model-
ing framework that provides for standardised tests and comparisons of models.
Also, the R environment allows the reproducibility of methods and results, as is
often required by science and research.

The implementation of a method for runoff routing in the river network
contributes to the existing hydrological modelling framework and intends for
the representation of the solute transport in the river network at the watershed-
scale domain.

1.2 Hypothesis

The simulation of solute transport at specific places of the river network
(measurement stations) could be improved by implementing a runoff routing
method at watershed-scale and by coupling it into a suitable modeling frame-
work for representing transport processes.

1.3 Objectives

• Primary objective

– To coupled the selected runoff routing model to R for representing
solute transport in the river network at the watershed-scale domain.

• Secondary objectives

– To implement several methods for geo-spatial analysis of river net-
works in R.

– To implement the selected runoff routing in R.

– To define a simulation configuration for testing.

2 Literature review

2.1 Hydrological modelling

Several applications in river and environmental engineering and science, re-
lated with hydrological modelling are related to the analysis of rainfall and
hydrometric time series in order to implement rainfall-runoff and water-quality
models as a conceptual mathematical basis for solute transport and fate as-
sessment. Similarly, such applications and models are common in basin water
resources and flood risk management e.g. in the study of the probable maxi-
mum precipitation and probable maximum flood. In this case, the application

2



Figure 1: The modelling framework in the hydromad package.

From F. Andrews (2011).

of hydrological models is done as the conceptual basis to simulate flood events
in probable scenarios of storm events (Torres & Pebesma, 2013).

Regarding to the challenges for modern hydrological and environmental re-
search as it is depicted in current researches –e.g. McDonnell et al. (2010);
Swaney et al. (2011)– is essential to understand and develop a comprehensive
modelling framework that includes as an important step the uncertainty anal-
ysis in order to identify primary physical controls, and henceforth for coupling,
in a most suitable way, inland hydrological models with the coastal system at
regional, transboundary and global scales.

Henceforth, in hydrological applications a main aim is to consider a suit-
able and reproducible modelling framework that takes into account data input,
spatial interpolation, calibration and simulation, and includes geospatial capa-
bilities for querying, updating, sharing and visualization of data, methods and
results (Torres & Pebesma, 2013). This focus is addressed in the following
subsections where is presented in a succinct manner the existing open source
software hydromad a R package for hydrological modelling.

hydromad is an interesting hydrological modelling framework presented by
F. T. Andrews, Croke, and Jakeman (2011). The framework is based loosely
on the unit hydrograph theory of rainfall-runoff modelling. The documentation
of the methods in hydromad could be found in the web page of the project
(http://hydromad.catchment.org). The Figure 1 illustrates the work-flow of
the modelling framework in the hydromad package and the following subsections
present a description of the three main components of the hydromad package:
the Soil Moisture Accounting (Section 2.1.1), the routing models (Section 2.1.2)
and the calibration methods (Section 2.1.3). The Figure 2 resumes the compo-
nents and structure of the package hydromad (F. Andrews, 2011).

2.1.1 Soil Moisture Accounting models

hydromad counts with 11 Soil Moisture Accounting (SMA) models (F. Andrews,
2014): 1) the Catchment Moisture Deficit (CMD) an effective rainfall model for
IHACRES. It is a conceptual-type model, where input rainfall is partitioned ex-
plicitly into drainage, evapo-transpiration, and changes in catchment moisture;
2) the Catchment Wetness Index (CWI) effective rainfall model for IHACRES.
This is the classic model of Jakeman and Hornberger (1993), with the exten-
sions to ephemeral catchments of Ye et al. (1997); 3) the GR4J model (mode’le
du Ge´nie Rural a’ 4 parame’tres Journalier); 4) the Australian Water Balance
Model (AWBM): simple 3 bucket model; 5) bucket: the Single-bucket Soil Mois-
ture Accounting models with saturated/unsaturated zones and interception; 6)

3
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Figure 2: Overview of the hydromad package.

Adapted from F. Andrews (2014).

the Sacramento Soil Moisture Accounting model. Developed by the US National
Weather Service; 7) snow: a simple degree day factor snow model coupled with
IHACRES CMD soil moisture model; 8) scalar: a simple constant runoff pro-
portion: a constant fraction of rainfall reaches the stream; 9) intensity: Runoff
as rainfall to a power. This allows an increasing fraction of runoff to be gener-
ated by increasingly intense/large rainfall events (for power > 0). The fraction
increases up to a full runoff level at maxP; 10) runoffratio: simple time-varying
runoff proportion. Rainfall is scaled by the runoff coefficient estimated in a
moving window; and 11) dbm: Typical initial model used in Data-Based Mech-
anistic modelling. Rainfall is scaled by corresponding streamflow values raised
to a power.

The models 10 and 11 use streamflow data, so can not be used for prediction.

2.1.2 Routing models

hydromad counts with 6 routing models (F. Andrews, 2014): 1) armax: the
ARMAX linear transfer functions with a single input and single output se-
ries. Can be used as a general Unit Hydrograph transfer function, defined by
Auto-Regressive and Moving Average coefficients; 2) expuh: A unit hydrograph
(linear transfer function) defined as a system of exponentially receding compo-
nents. Each component is defined by its time constant and fractional volume,
and if there are multiple (up to 3) such components they may be in a paral-
lel and/or series configuration; 3) lambda: Lambda unit hydrograph. Transfer
function with two exponential components and variable partitioning; 4) powuh:
a power-law form of unit hydrograph (transfer function); 5) leakyExpStore: an
exponential store (linear transfer function) which has a loss term, produces no
flow when the store drops below a level, and can therefore model longer-term dis-
connection of a store from streamflow.; and 6) expuh3s: a unit hydrograph with
a quickflow pathway and two layered slow-flow pathways modelling recharge to
groundwater in order to allow modelling of long-term disconnection of slow-flow
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stores from streamflow.

2.1.3 Calibration methods

Accordingly with F. Andrews (2011), currently implemented calibration meth-
ods in hydromad include simple sampling schemes (fitBySampling), general op-
timisation methods with multistart or presampling (fitByOptim) and the more
sophisticated Shuffled Complex Evolution (fitBySCE) and Differential Evolu-
tion (fitByDE) methods. All attempt to maximise a given objective function.
Other 8 calibration algorithms are available (see F. Andrews (2014)).

Accordingly to F. Andrews (2014) the ”fitBySampling” method fit a hy-
dromad model by sampling the parameter space. Returns best result from
sampling in parameter ranges using random, latin hypercube sampling, or a
uniform grid (all combinations). The function also retains the parameter sets
and objective function values, which can be used to define a feasible parame-
ter set. The ”fitByOptim” method fits a hydromad model using R’s optim or
nlminb functions. Has multi-start and pre-sampling options. The ”fitBySCE”
fit a hydromad model using the SCE (Shuffled Complex Evolution) algorithm,
and finally, the ”fitByDE” fit a hydromad model using the DE (Differential
Evolution) algorithm.

2.2 Geo-spatial and Geo-temporal capabilities

Several packages developed in the programming language R Project for Sta-
tistical Computing (Ihaka & Gentleman, 1996; R Development Core Team,
2013) are available for Geo-spatial and Geo-temporal analysis. The packages
sp (Pebesma & Bivand, 2005-2012), rgeos (Bivand & Rundel, 2012), rgdal
(Bivand et al., 2003-2013), maptools (Lewin-Koh & Bivand, 2012), raster
(Hijmans, 2014), Lattice (Sarkar, 2012), multicore (Urbanek, 2013) and Watersheds
was used in the present study and are described in the following subsections.

The present subsection has the purpose of introducing the packages devel-
oped in the programming language R available for Geo-spatial and Geo-temporal
analysis and used and implemented in the present work.

2.2.1 sp

The package sp (Pebesma & Bivand, 2005-2012), provides classes and methods
for spatial data. The classes document where the spatial location information
resides, for 2D or 3D data. Utility functions are provided, e.g. for plotting
data as maps, spatial selection, as well as methods for retrieving coordinates,
for subsetting, print, and summary.

The package has i.a. the class SpatialPolygons which is a data object
equivalent to an ESRI polygon shapefile containing information for polygons,
and additional similar definitions for spatial points and lines are defined through
the objects SpatialPoints and SpatialLines, respectively.

2.2.2 rgeos

This package developed by Bivand and Rundel (2012), is an interface to Geom-
etry Engine - Open Source (GEOS) using the C API for topology operations on
geometries. The packages provides methods and functions for geospatial analysis
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i.a. garea, gBoundary, gBuffer, gCentroid, gContains, gConvexHull, gCrosses,
gDifference, gDistance, gEnvelope, gEquals, gIntersection, gIntersects,
gRelate, gSimplify, gSymdifference, gTouches, gUnion, SpatialCollections,
SpatialRings.

2.2.3 rgdal

A binding package for the Frank Warmerdam’s Geospatial Data Abstraction
Library (GDAL, http://www.gdal.org) is available in R through the package
rgdal (Bivand et al., 2003-2013). It allows to deploy multiple classes defined
in the sp package and access to the projection/transformation operations from
the PROJ.4 library (https://trac.osgeo.org/proj/) and to the OGR library.
The OGR Simple Features Library is a C++ open source library for reading, and
in some cases writing, a variety of vector file formats including ESRI Shapefiles
and PGDBs .mdb files via ODBC (Warmerdam, 2013). Therefore, using rgdal
both GDAL raster and OGR vector map data can be imported into R and
exported, and the ECRINS database could be handled properly.

2.2.4 maptools

The maptools package (Lewin-Koh & Bivand, 2012) is a set of tools for ma-
nipulating and reading geographic data, in particular ESRI shape- files; C code
used from shapelib. It includes binary access to GSHHS shoreline files. The
package also provides interface wrappers for exchanging spatial objects with
packages such as PBSmap- ping, spatstat, maps, RArcInfo, Stata tmap, Win-
BUGS, Mondrian, and others.

2.2.5 raster

The raster package (Hijmans, 2014) has capabilities for reading, writing, ma-
nipulating, analyzing and modeling of gridded spatial data. The package im-
plements basic and high-level functions and processing of very large files is
supported.

2.2.6 lattice

Lattice (Sarkar, 2012), is a powerful and elegant high-level data visualization
system, with an emphasis on multivariate data, that is sufficient for typical
graphics needs, and is also flexible enough to handle most nonstandard require-
ments.

2.2.7 multicore

This package (Urbanek, 2013) provides a way of running parallel computations
in R on machines with multiple cores or CPUs. Jobs can share the entire initial
workspace and it provides methods for results collection.

6

http://www.gdal.org
https://trac.osgeo.org/proj/


2.2.8 Watersheds

The package Watersheds developed by the author for the present work, allows
spatial analysis for watersheds aggregation and ordering accordingly to an outlet
point and size of tributary watershed of the current watershed. Also, enables
spatial drainage networks analysis inside the aggregated watersheds. It makes
use of the functionalities of the spatial classes, functions and methods of the R
package sp (Pebesma & Bivand, 2005-2012). Also is build on the capabilities of
the R packages rgeos, maptools, lattice, splancs, and multicore.

The Watersheds package allows creation and handling of objects class Water-
shed for identifying the subbasin that contains the current station (class
Spatial- Points) and subsets the zhyd object to subbasin and extract the
current zhy object that contains station via the S4 method Watershed.Order.
Identification of the inlet and outlet stretches and inlet and outlet nodes of
the zhyd. Implementation of the functions Watershed.IOR1, .IOR2, .IOR3,
and .IOR4 for determining the actual inlet and outlet nodes. S4 methods
Watershed.Order2 and Watershed.Tributary for defining tributary nodes and
tributary catchments of the current zhyd watershed.

2.3 Runoff routing and solute transport

A large-scale runoff routing with an aggregated network-response function
is presented by Gong et al. (2009). A scale dependency of routing dynamics is
evaluated, as well as the flow velocities and the routing performance at different
spatial resolutions. Also, some limitations of aggregated networks are evaluated.

An example of runoff routing at large scales that involves development of
low-resolution flow networks, with spatial resolutions of which range from 1 Km
is presented with the model HYDRO1k (USGS, 1996).

Regarding to identify different schemes of runoff routing in the river network,
some distributed and semi-distributed models could be evaluated i. a. WAT-
FLOOD (Kouwen, 1988); TOPMODEL (K. Beven et al., 1995; K. J. Beven,
1997; Buytaert, 2012); SASHI (Sistema de Análise de Simulação Hidrológica,
INPE, Rennó (2003)); SCS-TerraMe (INPE, Pereira (2009)); LISFLOOD (van
der Knijff et al., 2010); SWAT (Soil Water Assessment Tool Model, Neitsch
et al. (2011)); WaSiM (Water balance Simulation Model, Schulla (2012)); and
aggregated models as the Hydrological Modeling System HEC-HMS (USACE,
HEC, 2006).

2.3.1 General reaction transport equation in 1-Dimension

Accordingly with Soetaert and Meysman (2012), the general 1-D reaction-
transport equation in multi-phase environments and for shapes with variable
geometry is:

∂ξC

∂t
= − 1

A
· ∂ (A · J)

∂x
+ reac (1)

where 1

• t is time
1here the units are M for Mass, L for Length and t for time
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Figure 3: An illustration of multiple phases in ReacTran. From Soetaert and Meysman
(2012), Figure 1

• x is space

• C is concentration of a substance in its respective phase

• ξ is the volume fraction (-), i.e. the fraction of a phase in the bulk volume
(see Figure 3). In most of cases, when one phase is considered ξ = 1. For
sediments, ξ would be porosity (solutes), or 1-porosity (solids)

• A is the total surface area (L2)

• J are fluxes (ML−2t−1)

The Fluxes, J , are estimated per unit of total surface, and represents a
dispersive and a advective component:

J = −ξD · ∂C
∂x

+ ξu · C (2)

where:

• D is the diffusion (or dispersion) coefficient (L2t−1)

• u is the advection velocity (Lt−1)

2.3.2 Boundary conditions in 1-D models

Accordingly with Soetaert and Meysman (2012), the boundaries at the extremes
of the model domain e.g. at x = 0 could be one of the following options:

• A concentration boundary, C|x=0= C0

• A diffusive + advective flux boundary, Jx=0 = J0

• A boundary layer convective exchange flux boundary Jx=0 = abl·(Cbl − C0)
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2.3.3 Numerical approximation of the Advection Dispersion Equa-
tion

Following Soetaert and Meysman (2012), the reaction-transport formula is a
partial differential equation (PDE), as a consequence it is solve by approximating
the spatial gradients using the numerical differences by the method-of-lines,
MOL, approach. This converts the PDE into ordinary differential equations
(ODE).

Thus, the model is divided into a number of grid cells, and for each grid cell
i is writen:

dξiCi

∂t
= − 1

A
· ∆i (A · J)

∆xi
+ reaci (3)

where ∆i denotes that the flux gradient is to be taken over box i, and ∆xi

is the thickness of the box i:

∆i (A · J) = Ai,i+1 · Ji,i+1 − (Ai−1,i · Ji−1,i) (4)

where i, i+ 1 denotes the interface between box i and i+ 1.
The fluxes at the box interfaces are discretized as:

Ji−1,i = −ξi−1,iDi−1,i ·
Ci − Ci−1

∆xi−1,i
+ξi−1,iui−1,i ·(ϑi−1,i · Ci−1 + (1− ϑi−1,i) · Ci)

(5)
where ∆xi−1,i is the distance between the centre of the grid cells i− 1 and

i, and ϑ the upstream weighing coefficients for the advective term.

2.3.4 1-D finite difference grids and properties in ReacTran

the spatial discretization grid could be generated with the function setup.grid.1D
of the package ReacTran. The generated grid comprises several zones:

setup.grid.1D = function(x.up = 0,x.down = NULL, L = NULL, N = NULL,
dx.1 = NULL, p.dx.1 = rep(1,length(L)), max.dx.1 = L,
dx.N = NULL, p.dx.N = rep(1,length(L)), max.dx.N = L)

with the following arguments:

• x.up, the position of the upstream boundary

• x.down, the position of the downstream boundaries in each zone

• L, N, the thickness and the number of grid cells in each zone.

• dx.1, p.dx.1, max.dx.1, the size of the first grid cell, the factor of increase
near upstream boundary, and maximal grid cell size in the upstream half
of each zone

• dx.N, p.dx.N, max.dx.N, the size of the last grid cell, the factor of in-
crease near the downstream boundary, and maximal grid cell size in the
downstream half of each zone
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Figure 4: Spatial 1-D discretization in ReacTran. From Soetaert and Meysman (2012),
Figure 2

The function returns an element of class grid.1D that contains the following
elements (units L) (see Figure 4):

• x.up, x.down, the position of the upstream and downstream boundary

• x.int, the position of the grid cell interfaces, where the fluxes are specified,
a vector of length N+1

• x.mid, the position of the grid cell centres, where the concentrations are
specified, a vector of length N. This is equivalent to ∆xi−1,i

• dx, the thickness of boxes, i.e. the distance between the grid cell interfaces,
a vector of length N. Equivalent to ∆xi

• dx.aux, the distance between the points where the concentrations are spec-
ified, a vector of length N+1. This is equivalent to ∆xi−1,i

For example, to represent a subdivision of a river streach of 100 Km long
into 50 boxes, with the first box size of 1 Km, is established by:

grid = setup.grid.1D(L=90, dx.1=1, N=50)

and the grid is plotted with the command:

plot(grid)

2.3.5 Stability

The stability criteria followed for determining the relation between the temporal
interval and the residence time in a finite volume is given by the Courant number
(Chaudhry, 2008, p. 375):
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Figure 5: Exponential grid cell size in ReacTran. From Soetaert and Meysman (2012),
Figure 3

C =
∆t
∆x

u

= u
∆t

∆x
(6)

where:

• C is the Courant number

• ∆t is the time interval

• ∆x is the space interval

• u is velocity

2.4 R Packages for routing and solute transport modelling

2.4.1 ReacTran

The R package ReacTran contains routines that enable the development of re-
active transport models in aquatic systems (rivers, lakes, oceans), porous media
(floc aggregates, sediments,...) and even idealized organisms (spherical cells,
cylindrical worms,...) (Soetaert & Meysman, 2012).

The geometry of the model domain is either one-dimensional, two-dimensional
or three-dimensional. The package contains (Soetaert & Meysman, 2012):

• Functions to setup a finite-difference grid (1D or 2D)

• Functions to attach parameters and properties to this grid (1D or 2D)
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• Functions to calculate the advective-diffusive transport term over the grid
(1D, 2D, 3D)

2.4.2 deSolve

Citing Soetaert, Petzoldt, and Setzer (2013) from the users manual, the pack-
age deSolve provides ”Functions that solve initial value problems of a system
of first-order ordinary differential equations (ODE), of partial differential equa-
tions (PDE), of differential algebraic equations (DAE), and of delay differential
equations. The functions provide an interface to the FORTRAN functions lsoda,
lsodar, lsode, lsodes of the ODEPACK collection, to the FORTRAN functions
dvode and daspk and a C-implementation of solvers of the Runge-Kutta fam-
ily with fixed or variable time steps. The package contains routines designed
for solving ODEs resulting from 1-D, 2-D and 3-D partial differential equations
(PDE) that have been converted to ODEs by numerical differencing”.

2.4.3 rootSolve

Accordingly Soetaert (2014) from the users manual, the package rootSolve
provides ”routines to find the root of nonlinear functions, and to perform steady-
state and equilibrium analysis of ordinary differential equations (ODE). Includes
routines that: (1) generate gradient and Jacobian matrices (full and banded),(2)
find roots of non-linear equations by the Newton-Raphson method,(3) estimate
steady-state conditions of a system of (differential) equations in full, banded or
sparse form, using the Newton-Raphson method, or by dynamically running, (4)
solve the steady-state conditions for uni-and multicomponent 1-D, 2-D, and 3-D
partial differential equations, that have been converted to ODEs by numerical
differencing (using the method-of-lines approach).”

3 Materials and methods

This section presents a summary of the specific techniques used in the study,
procedures, statistical design, and data collection and analysis.

3.1 Datasets

Primary datasets for the present study are defined in the following subsec-
tions.

3.1.1 The ECRINS dataset

The European Environment Agency (EAA) has been developed the Catchments
and Rivers Network System (ECRINS) version 1.1 (EAA, 2012). The ECRINS
is the hydrographical system currently in use at the EEA as well as widely
serving as the reference system for the Water Information System for Europe
(WISE)(EAA, 2012, p. 49).

3.1.2 Water quality determinants

The following physical and water quality determinants are available at Depart-
ment of Hydrometry and Hydrological Survey of the Federal Institute of Hy-
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Table 1: Flow and level measurement stations, river Weser

GRDC Number National ID River Station name Latitude Longitude Area Altitude
6337400 43100109 WESER HANN.-MUENDEN 51.426 9.641 12442 114.95
6337519 43900105 WESER WAHMBECK 51.625 9.52 12996 98
6337516 45100100 WESER KARLSHAFEN 51.648 9.438 14794 94.05
6337514 45300200 WESER BODENWERDER 51.973 9.516 15924 69.39
6337100 45900208 WESER VLOTHO 52.176 8.862 17618 41.66
6337518 47100100 WESER PORTA 52.249 8.922 19162 37.04
6337517 47500200 WESER LIEBENAU 52.594 9.113 19910 20
6337515 47900209 WESER DOERVERDEN 52.852 9.211 22110 7.99
6337200 49100101 WESER INTSCHEDE 52.964 9.125 37720 4.79

drology (BfG):

• water level, cm

• water temperature, degree Celsius

• conductivity, µS/cm

• pH, pH units

• oxygen content, mg/l

• turbidity, TE/F

3.1.3 River discharge stations

The data for flow level and discharge are also available at Department of Hy-
drometry and Hydrological Survey of the German Federal Institute of Hydrol-
ogy. The Table 1 presents the details of the nine stations analyzed in this study
and Figure 6 shows their location.

More stations in Germany could be used for implementing the methods for
runoff routing and solute transport analysis. Figure 7 presents the available
measurement stations in Germany, and Figures 8 and 9 show, as an example,
the river Rhein level retrieved at Köeln station and Düsseldorf, respectively.

3.1.4 Further datasets available

• The world-wide repository of river discharge data and associated metadata
of the Global Runoff Data Centre - GRDC (2013).

• Water levels data at selected gauging stations on German federal water-
ways from the German Federal Institute of Hydrology - BfG (2013).

• The land cover dataset from European Environment Agency - EAA (1995).
This data project is part of the CORINE programme and is intended to
provide consistent localized geographical information on the land cover of
the Member States of the European Community.

• Climate data for Germany from the Federal Ministry of Transport, Build-
ing and Urban Development http://www.dwd.de/. From this is created
the layer ”dwd PrecipitationStations” and the ODS spreadsheet
”DWD precipitation stations.csv-ODS”

13

http://www.dwd.de/


0

200

400

600

800

4200000 4250000 4300000 4350000

31
50
00
0

32
00
00
0

32
50
00
0

33
00
00
0

HANN.-MUENDEN

WAHMBECK
KARLSHAFEN

BODENWERDER

VLOTHO

PORTA

LIEBENAU

DOERVERDEN

INTSCHEDE

Elevation

Sub-basins
River Weser
Station

Sub-basins
River Weser
Station

Figure 6: Flow and level stations on river Weser

3.2 Methodology

The Catchments and Rivers Network System (ECRINS) version 1.1. from
the EAA (2012) is the hydrographical system currently in use at the European
level as well as widely serving as the reference system for the Water Information
System (WISE).

According with the EuropeanWater Framework Directive (WFD), the small-
est unitary catchment suggested is 10 Km2. The overall aim of ECRINS, how-
ever, is to centre the watersheds between 50 km2 and 100 km2, since such a
small area is not compatible with production constraints and the source data
available. The FEC, or Functional Elementary Catchment, stands as the cen-
tral element of ECRINS. FEC refers to the smallest catchment identified as an
ECRINS elementary catchment. A FEC is built via aggregating elementary
CCM (Catchment Characterisation and Modelling) catchments. It could be ei-
ther a ’continental FEC’ when built by aggregating elementary CCM catchments
from a non-coastal basin, or a ’coastal FEC’ when elementary CCM catchments
belong to a coastal basin (EAA, 2012, p. 49).

The average area of possible FEC building from basins at Strahler 3 level
is 39 Km2, which is compatible with both this WFD threshold and specific
requirements; using basins at level 4 would not allow small enough FECs (EAA,
2012, p. 49). The Figure 10 presents an illustration of the Stralher stream order
1 to 4.

The database access and manipulation of the ECRINS dataset, which basi-
cally has been delivery in different layers and ancillary tables in MS Access R�
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Figure 7: Flow and level stations at Germany available in the BfG portal

Figure 8: River Rhein level at Köeln station
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Figure 9: River Rhein level at Düsseldorf station

Figure 10: Strahler stream order. Illustration.

Personal GeoDatabases (PGDBs) format (a Microsoft R� proprietary format,
handed with both MS Access R� and ArcGIS R�), is done by using open source
GIS methods and database managers. In this sense, R packages as foreign
(R Core Team et al., 1999-2013) for importing a .dbf file into a R dataframe,
and the S4 methods for manipulating spatial data provided by sp (Pebesma &
Bivand, 2005-2012) was applied.

The followed methodology was to create a R package (”Waterssheds”) for
geospatial analysis of the ECRINS river network for runoff routing and water-
shed aggregation based on the order of contribution of tributaries watersheds
(accordingly Strahler order) in the basin of the river Weser, Germany. Although
the site of study is defined in the package, it is possible to implement similar
analysis for other places contained into the ECRINS dataset (European level).

After implementing the geospatial analysis a method for runoff routing and
solute transport is developed based on the solution of the advection-dispersion
equation in one dimension and steady state for routing and trace a water quality
determinant (e.g. organic carbon, OC) between two stations along the river
Weser. Beyond the focus of this work, numerical homologous frameworks could
be developed for the cases of bi- and three-dimensional frameworks, for example
for simulating pollutants dispersion in a estuary, a lake or the ocean. Also, the
case of unsteady state could be implemented.
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3.3 Site study: river Weser basin, Germany

The site study is presented along with the package ”Watersheds”. The pack-
age has an example dataset of the ECRINS database for the river Weser basin,
Germany. The European Environment Agency (EEA) has been developed the
Catchments and Rivers Network System (ECRINS) version 1.1. The ECRINS
is the hydrographical system currently in use at the European level as well
as widely serving as the reference system for the Water Information System
(WISE). The current version of ECRINS is based on previous work carried out
by the Joint Research Centre (JRC) Catchment Characterisation and Mod-
elling (CCM) and the EEA (European Lakes, Dams and Reservoirs Database
(Eldred2), European Rivers and Catchments (ERICA), (EAA, 2012).

3.3.1 Subsets

The dataset contains the following subsets:

• basin: an object SpatialPolygonsDataFrame as is defined in package sp
that represents the river Weser basin. The data slot contains 6 variables
as attributes of 1 observation.

• ctry: an object SpatialPolygonsDataFrame as is defined in package sp
that represents the administrative boundary of Germany. The data slot
contains 6 variables as attributes of 1 observation.

• node: an object SpatialPointsDataFrame as is defined in package sp
that represents the nodes of the ECRINS river network of the river Weser
basin. The data slot contains 13 variables as attributes of 3882 observa-
tions.

• rAller an object SpatialLinesDataFrame as is defined in package sp
that represents the basin of the river Aller, a major tributary of the river
Weser. The data slot contains 74 variables as attributes of 88 observations.

• rDiemel an object SpatialLinesDataFrame as is defined in package sp
that represents the basin of the river Diemel, a major tributary of the river
Weser. The data slot contains 74 variables as attributes of 39 observations.

• rFulda an object SpatialLinesDataFrame as is defined in package sp
that represents the basin of the river Fulda, a major tributary of the river
Weser. The data slot contains 74 variables as attributes of 82 observations.

• rHunte an object SpatialLinesDataFrame as is defined in package sp
that represents the basin of the river Hunte, a major tributary of the river
Weser. The data slot contains 74 variables as attributes of 34 observations.
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• river an object SpatialLinesDataFrame as is defined in package sp that
represents the ECRINS river network of the river Weser basin. The data
slot contains 52 variables as attributes of 3874 observations.

• rWerra an object SpatialLinesDataFrame as is defined in package sp
that represents the basin of the river Werra, a major tributary of the river
Weser. The data slot contains 74 variables as attributes of 120 observa-
tions.

• rWeser an object SpatialLinesDataFrame as is defined in package sp
that represents the basin of the river Weser. The data slot contains 74
variables as attributes of 104 observations.

• rWiumme an object SpatialLinesDataFrame as is defined in package sp
that represents the basin of the river Wiumme, a major tributary of the
river Weser. The data slot contains 74 variables as attributes of 18 obser-
vations.

• station an object SpatialPoints as is defined in package sp that rep-
resents a point of interest for which the watershed will be aggregated an
ordered. Could be a point with the coordinates of a measurement station.

• subbasin an object SpatialPolygonsDataFrame as is defined in package
sp that represents the subbasins of the tributaries of the river Weser. The
data slot contains 4 variables as attributes of 4 observations.

• zhyd an object SpatialPolygonsDataFrame as is defined in package sp
that contains the primary hydrological units of the river Weser basin ac-
cordingly with ECRINS. The data slot contains 50 variables as attributes
and 915 observations.

Some examples for visualising the dataset are presented in the following
Figures. Figure 11 illustrates the River Weser basin location into the German
territory. The river Weser is formed after the confluence of the rivers Werra
and Fulda. The Figure 12 presents the River Weser subbasin and its main
tributaries: the rivers Wümme, Aller, Hunte and Diemel, and its former rivers
Werra and Fulda. The Figure 14 shows the River Weser and its intersecting
zhyd subbasins along its trajectory, which represent the primary hydrological
units that contribute with the runoff toward the main course.

The Figure 14 presents all the zhyd subbasins in the entire basin of the
river Weser and the Figure 15 shows the entire river network of the river Weser
basin. From these last two Figures it is possible to understand the necessity
for developing a spatial analysis of tributary zhyd (primary hydrological units
in the terminology of the ECRINS dataset) units, identifying the current zhyd
under analysis and its subsequent zhyd tributaries and defining the inlet and
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Figure 11: River Weser basin

outlet nodes of each zhyd and the river network inside them. This is the main
effort for developing the package ”Watersheds” a contribution for geo-spatial
analysis of the river network of one zhyd unit.

4 Results

This section presents the data acquired for the research and their meaning
and analysis. The Section 4.1 include some examples for illustrating the capa-
bility of geo-spatial analysis in the river network before applying the technique
of solute transport in the desired stretch of river. Here are presented the func-
tionality of the Watersheds object and the Watersheds.Order method, the
Watersheds.Order2 method and the functions Watershed. ,IOR1, IOR2,
IOR3, IOR4.

Posteriorly, in Section 4.2 is presented the result of the precipitation time
series management; in Section 4.3 is presented the flow time series management;
in Section 4.4 the Runoff routing and hydrological modelling setup is presented;
and finally in Section 4.5 are presented the result of applying the numerical
approximation of the Advection-Dispersion Equation as the main component of
the solute transport modelling.

4.1 Geo-spatial analysis of zhyd subbasins

The FEC or Functional Elementary Catchment Stands as the central element
of ECRINS. FEC refers to the smallest catchment identified as an ECRINS el-
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Figure 12: River Weser subbasin and tributaries

Figure 13: River Weser and intersecting zhyd subbasins
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Figure 14: River Weser and all zhyd subbasins

Figure 15: River Weser and river network
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Figure 16: River Weser and all zhyd subbasins

ementary catchment. A FEC is built via aggregating elementary CCM (Catch-
ment Characterisation and Modelling) catchments. It could be either a ’con-
tinental FEC’ when built by aggregating elementary CCM catchments from a
non-coastal basin, or a ’coastal FEC’ when elementary CCM catchments be-
long to a coastal basin (EAA, 2012). The FECs database contains feature class
C Zhyd, hereinafter zhyd, which is the most important data set in ECRINS
because it constitutes the primary hydrological unit. The structure of zhyd
is reported in EAA (2012), Annex 1. This table sets out the FEC IDs (field
ZHYD) and all the required IDs of the useful data sets: aggregation water-
sheds and reference watersheds, the connection between FECs and sources of
information.

Some examples done via the package ”Watersheds” with the application of
the method Watershed.Order and the functions Watershed. ,IOR1, IOR2,
IOR3, IOR4 are presented in the next subsections.

As a guide to follow the process followed by the package Watersheds the
Figure 17 presents a flow chart of the package. In this flow chart the input
actors are illustrated as ellipsoidal red boxes, the operations are presented as
blue boxes and the functions or methods are presented as green boxes. The
decision nodes are shown as blue diamond boxes. The flow chart is composed
by 11 levels: the first one the ”ECRINS dataset” as input from the European
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Environmental Agency (EAA) and the last one the evaluation of the ”Water-
sheds.IOR4” method and the ”stop” node.

After the definition of the ”ECRINS dataset” there are three important
task to be developed. These task are the ”identification of the measurement
station”, ”the identification of the current zhyd object” and the ”identification
of the probable inlet and outlet nodes”, and corresponds to the levels 2 to 4 of
the flow chart, respectively.

In the level 5 of the flow chart is created the object ”Watersheds” as is illus-
trated in the Section 4.1.1. Subsequently, in the level 6 is executed the method
”Watershed.Order” which constitutes the core of the algorithm because through
this method are invoked the ”Watersheds. IOR1, IOR2, IOR3 or IOR4” func-
tions (level 8 to 11). Each one of these functions constitute a decision node
where is checked if the inlet and outlet stretches of the river network inside the
current zhyd are of length 1 to 4, respectively. Each one of these functions per-
forms the different spatial operations for identifying the inlet and outlet nodes
and stretches of river inside and around the current zhyd. Subsequently after the
definition of the inlet and outlet object (nodes and stretches of river) in the level
8 right side of the flow chart, is executed the method ”Watershed.tributary”,
which performs the spatial operations for identifying the tributary nodes and
subsequently the tributary zhyd watersheds of the current zhyd.

Finally after being applied the ”Watershed.Tributary” method, is checked
in the level 9, right side of the flow chart, if the object ”Station” from ”Wa-
tershed.Tributary” is of length equal to 2, which means that two tributary
catchments contributes to the current zhyd watershed. In this positive case
is executed the method ”Watershed.Order2” which internally calls the method
”Watershed.Order” for identifying the structure of the inlet and outlet objects
(nodes and stretches of river) in each one of the tributary zhyd watersheds. In
the negative case, the object ”Station” from ”Watershed.Tributary” is length
equal to 1, which mean that just one zhyd watershed is tributary to the current
zhyd and as a consequence the method ”Watershed.Order” is invoked again (see
right side of the level 9 of the flow chart that return to level 6 ) for determining
the inlet and outlet nodes and stretches of river and the river network of this
tributary watershed.

In Appendix 7.10 is presented the user manual of the developed package
”Watersheds”.

4.1.1 The Watersheds object

The packageWatersheds contains a class "Watershed" for representing "Watershed"
objects. In the following lines is presented an example for the definition of a
"Watershed" object.

# definition of the current station point

station1 = WatershedsData["station"][[1]]

# definition of the current subbasin of study. IN thi case the river Weser

# basin

subbasin1 = WatershedsData["subbasin"][[1]]

# definition of the zhyd1 object which contains all the zhyds inside the
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Figure 17: Flow chart of the Watersheds package. Red=data input; blue rectangle = process;
green rectangle = algorithm; diamond shape = decision.
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# subbasin

zhyd1 = WatershedsData["zhyd"][[1]]

# definition of the river network inside the subbasin

river1 = WatershedsData["river"][[1]]

# definition of the nodes of the river network

node1 = WatershedsData["node"][[1]]

# definition of the 'Watersheds' object:

station1 = SpatialPoints(station1, proj4string = slot(subbasin1, "proj4string"))
watershed = new("Watershed", station = station1, subbasin = subbasin1, zhyd = zhyd1,

river = river1, c1 = subbasin1, node = node1)
class(watershed)

4.1.2 The Watersheds.Order method

The Method for function Watershed.Order allows definition of the properties
of the current zhyd watershed over Watershed objects.

The function takes the object of class Watershed and identifies the subbasin
that contains the current station (class SpatialPoints) and subsets the zhyd
object to subbasin and extract the current zhy object that contains station.
Posteriorly, identifies the inlet and outlet stretches and probable inlet and outlet
nodes of the zhyd. Then, runs the functions Watershed .IOR1, .IOR2, .IOR3,
or .IOR4 for determining the actual inlet and outlet nodes. Finally, the method
executes the S4 method Watershed.Tributary for defining tributary nodes and
tributary catchments of the current zhyd watershed. As orientation, the method
is located in the level 6 of the flow chart presented in Figure 17.

An example of the application of the method Watershed.Order is presented
in Figure 18. In this Figure it is possible to see the primary zhyd object num-
bered as 1. The inlet node (green dot) and the outlet node (red dot) are pre-
sented. The tributary watersheds to 1 are labeled as 1.1 and 1.2. Finally the
river network is presented in blue stretches. The R-code for reproducing the
Figure and illustrating the method is presented in Appendix 7.1.
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Figure 18: Current zhyd watershed (1) and first order tributary watersheds (1.1 , 1.2)

4.1.3 The Watersheds.Order2 method

The S4 Method for function Watershed.Order2 is a definition of the tributary
zhyd watersheds of the current zhyd watershed.

The method takes the object of class Watershed when object node trib is
length 2. The method identifies the zhyd watershed that contains the current
station (class SpatialPoints) and apply the method Watershed.Order on
each point of node trib returning a list of objects Watershed.Order. The
computation is done via parallel processes for optimizing and take advance of
multicore functionalities.

The Figure 19 is an illustration of the method Watershed.Order2 and the
corresponding code is presented in Appendix 7.2. Also as orientation, the
method is located in the right side of the level 10 of the flow chart presented in
Figure 17.
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Figure 19: Current zhyd watershed and 1st and 2nd order tributary watersheds

4.1.4 The Watersheds.IOR1 function

The Watersheds.IOR1 function means Watershed inlet and outlet nodes: case 1.
This function determines the inlet and outlet nodes for zhyd watershed objects.
This case 1 is for those watersheds that its river inlet and outlet object is length 1
(length(riverIO)==1). The Figure 20 is an illustration of the Watersheds.IOR1
function and the R-code for producing it is presented in Appendix 7.3. As an
orientation, the function is located in the left side of the level 8 of the flow chart
presented in Figure 17.
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Figure 20: Spatial analysis of watershed outlet, case I

4.1.5 The Watersheds.IOR2 function

The Watersheds.IOR2 function means Watershed inlet and outlet nodes: case 2.
The function determines the inlet and outlet nodes for zhyd watershed objects.
This case 2 is for those watersheds that its river inlet and outlet object is length
2 (length(riverIO)=2). The Figure 21 is an illustration of the method and the
R-code for reproducing it is presented in the Appendix 7.4. As an orientation,
the function is located in the left side of the level 9 of the flow chart presented
in Figure 17.
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Figure 21: Spatial analysis of watershed outlet, case II

4.1.6 The Watersheds.IOR3 function

The Watersheds.IOR3 function means: Watershed inlet and outlet nodes: case
3. The function determines the inlet and outlet nodes for zhyd watershed ob-
jects. This case 3 is for those watersheds that its river inlet and outlet object is
length 3 (length(riverIO)=3). An illustration of the Watersheds.IOR3 function
is presented in the Figure 22 and the R-code for reproducing it is presented in
Appendix 7.5. As orientation, the function is located in the left side of the level
10 of the flow chart presented in Figure 17.
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Figure 22: Spatial analysis of watershed inlet and outlet, case III

4.1.7 The Watersheds.IOR4 function

The Watersheds.IOR4 function means Watershed inlet and outlet nodes: case 4.
The function determines the inlet and outlet nodes for zhyd watershed objects.
This case 4 is for those watersheds that its river inlet and outlet object is length
4 (length(riverIO)=4). The Figure 23 is an illustration of the method and the
corresponding R-code is presented in Appendix 7.6. As an orientation, the
function is located in the left side of the level 11 of the flow chart presented in
Figure 17.
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Figure 23: Spatial analysis of watershed inlet and outlet, case IV

4.1.8 The Karlshafen and Wahmbeck Stations watersheds

Previously in Section 3.1.3 and Figure 6, the details and location of the nine
stations analyzed in this study for retrieving data for flow level and discharge
was presented and also summarized in Table 1. From this data, the major
attention is on two main stations: the Karlshafen station, which its tributary
watershed is the watershed of the station Wahmbeck. Figure 24 presents the
location and the river network of this two stations after applied the Watersheds
flow chart presented in Figure 17 and the corresponding code in R for performing
the spatial analysis and reproducing the Figure is presented in Appendix 7.7.
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Figure 24: The Karlshafen and Wahmbeck Stations watersheds

4.2 Precipitation time series management

The primary data source of precipitation data are gridded daily precipita-
tion time series obtained from the gridded dataset from ENSEMBLES (E-OBS)
dataset for precipitation, temperature and sea level pressure in Europe and
provided by the European Climate Assessment & Dataset (ECA&D) project
(Haylock et al., 2008). This project presents information on changes in weather
and climate extremes, as well as the daily dataset needed to monitor and anal-
yse these extremes. A resolution of 0.25o (21 Kilometres east, 28 Kilometres
north) precipitation gridded data is used. The gridded datasets is available for
downloading from the web page of the ENSEMBLES project (ECA&D (2012),
http://eca.knmi.nl).

The format of the gridded data is NetCDF (network Common Data Form)
which is a set of interfaces for array-oriented data access and a freely-distributed
collection of data access libraries for C, Fortran, C++, Java, and other lan-
guages. The netCDF libraries support a machine-independent format for rep-
resenting scientific data (Unidata, 2012). The Open Geospatial Consortium
membership has approved the Enhanced Data Model Extension to the OGC
Network Common Data Form (netCDF) Core Encoding Standard http://www
.unidata.ucar.edu/blogs/news/entry/ogc adopts netcdf enhanced data.

In addition, the NetCDF format is the current precipitation data format of
the ECRINS which is a remarkable climate project of the European Comunity.

The access to NetCDF files for reading data into R and for creating new
netCDF dimensions, variables, and files, or manipulating existing netCDF files
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from R, was possible through the ncdf package (Pierce, 2013). The data down-
loaded was 1.29 GB as a consequence for reading and working whit the file
is necessary to subset the retrieval of information, in this case were retrieved
1096 attributes (precipitation) which represents the precipitation time series
from netCDF for Wahmbeck station (9.875◦E , 51.625◦N) between the dates
01.01.1995 and 31.12.1997. The original file was downloaded directly from the
European Climate Assessment & Dataset repository and comprises data from
01.01.1995 to 12.31.2013. The Figure 25 presents the time series extracted
from the netCDF for the Wahmbeck station in the time window 01.01.1995 and
31.12.1997.
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Figure 25: Precipitation time series at Wahmbeck Station

4.3 Flow time series management

Data for flow level and discharge are also available at Department of Hy-
drometry and Hydrological Survey of the German Federal Institute of Hydrology
was used. In the Table 1 was presented the details of the nine stations analyzed
in this study and in Figure 6 was showed their location.

In order to compose the hydrological framework for simulation the daily
precipitation from 01.01.1995 to 31.12.1997 we use the time series of flow at
Wahmbeck station. The Figure 26 presents the time series for the flow in cubic
meter per second in the specified time interval.
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Figure 26: Precipitation time series at Wahmbeck Station

4.4 Runoff routing and hydrological modelling

An important contribution in hydrological modelling is done by F. T. An-
drews et al. (2011) with the R package hydromad (http://hydromad.catchment
.org). It is based loosely on the unit hydrograph theory of rainfall-runoff mod-
elling. More than a single hydrological model hydromad is a framework with
several options of configurations that includes different Soil Moisture Account-
ing (SMA) models and objective calibration methodologies. In consequence, it
can be used cohesively with workflows based on R. Two areas of focus for the
package are discrete event separation and the design of fit statistics, and how
event-based data analysis can be useful in a modelling context (F. T. Andrews
et al., 2011).

For this case, the model will be calibrated using the fitBy- Optim function,
which accordingly to F. Andrews (2011) performs parameter sampling over the
pre-specified ranges, selecting the best of these, and then runs an optimisation
algorithm from that starting point.

After the calibration process two parameters are returned for the SMA (Soil
Moisture Accounting) component: 1) rrthresh, a theshold value of the runoff
ratio, below which there is no effective rainfall; and 2) scale, a constant multiplier
of the result, for mass balance. If this parameter is set to NA (as it is by default)
in hydromad it will be set by mass balance calculation.

Also, 2 parameters are returned regarding the routing method, in this case
the exponential components transfer function models ”expuh”. The parameters
calibrated are 1) tau s that represents time constants (tau) for the exponential
components; and 2) v s that represents fractional volumes (v) for the exponential
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Table 2: Parameter definition

SMA Parameters:
lower upper

rrthresh 0 0.2
scale NA NA

Routing Parameters:
lower upper

tau s 2 100
v s 0 1

Table 3: Parameter calibration results

Hydromad model with
”runoffratio” SMA and ”expuh” routing:
Start = 1995-01-01, End = 1998-01-01

SMA Parameters:
rrthresh scale
0.1152 1.1191

Routing Parameters
tau s v s
14.77 1.00

TF Structure: single store:
Poles:0.9345
Fit: ($fit.result)
fitByOptim(MODEL = modx)
128 function evaluations in 28.09 seconds

components.
A quick way to view the modelled and observed streamflow time series to-

gether is to call xyplot() on the model object, as in Figure 27.
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Figure 27: Modelled and observed streamflow time series
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In summary, the Figure 28 presents the flow chart of the process of hydrolog-
ical modelling discussed before. The flow chart presents in the initial level the
input data that is the ECRINS dataset, in the first and second level are repre-
sented the geospatial analysis performed by the package ”Watersheds” (see flow
chart in Figure 17). In the third and fourth level is represented the hydrological
modelling framework executed within the package ”hydromad” with input data
from the EOBS dataset (time series of precipitation) and the BfG (flow time
series).

ECRINS Dataset
(river network)EEA

Geospatial
Analysis

”Watersheds” package

Hydrological
modelling

”Hydromad” package

Precipitation
time series

EOBS

Flow time seriesBfG

Level 0

Level 1

Level 2
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Level 4

Figure 28: Flow chart of the hydrological modelling. Red=data input; blue rectangle =
process; green rectangle = algorithm

4.5 Routing and solute transport modelling

After have been done the hydrological routing, is applied the numerical ap-
proximation of the Advection Dispersion Equation, an application is performed
for transporting and decaying of organic carbon (OC) in the river Weser, in a
widening stretch at Wahmbeck station as upstream boundary and Karlshafen
station as downstream boundary. Two scenarios are simulated: the baseline
includes only input of organic matter upstream. The second scenario simulates
the input of an important side river half way the river. The theoretical descrip-
tion of the numerical approximation of the Advection Dispersion Equation was
presented in Section 2.3.

The Table 4 presents the boundaries conditions for simulating the solute
transport (organic carbon) for the first five days of the year 1995, where ”flow.up”
is the flow in upper boundary, ”factor” is a scalar for internal computations,
”flow.lat.0” is the inflow in the stretch, ”F.OC” is the concentration of organic
carbon in the upper boundary, ”F.lat.0” is the concentration of organic carbon
in the inflow and ”k” is the reaction rate of organic carbon.

The resulting code in R is adapted from Soetaert and Meysman (2012) and
is presented in the Appendix 7.9 for the conditions on river Weser between the
stations Wahmbeck and Kalshafen on 01.01.1995, similar code is generated for
each one of the fifth first days of 1995 year as illustrated in the Figures 29 to
33.
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Table 4: Initializing parameter and boundary conditions

flow.up [mcs] factor flow.lat.0 [mcs] F.OC [mol s−1] F.lat.0 [mol s−1] k [s−1]
Q1 63 2.85 63 63 63 3.17E-007
Q3 59 3.06 59 59 59 3.17E-007
Q4 55 3.28 55 55 55 3.17E-007
Q5 51 3.51 51 51 51 3.17E-007
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Figure 29: Simulation time series of OC and flow between the Wahmbeck and Kalshafen
stations on 01.01.1995
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Figure 30: Simulation time series of OC and flow between the Wahmbeck and Kalshafen
stations on 02.01.1995
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Figure 31: Simulation time series of OC and flow between the Wahmbeck and Kalshafen
stations on 03.01.1995
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Figure 32: Simulation time series of OC and flow between the Wahmbeck and Kalshafen
stations on 04.01.1995
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Figure 33: Simulation time series of OC and flow between the Wahmbeck and Kalshafen
stations on 05.01.1995

In summary, the Figure 34 presents the flow chart of the process of hydro-
logical modelling plus routing for solute transport simulation discussed before.
Until level 4, the flow chart is the same than that presented previously in Fig-
ure 28) and described at the end of Section 4.4. Additionally, this flow chart
includes the decision of performing solute transport simulation represented as
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Figure 34: Flow chart of the solute transport simulation. Red=data input; blue rectangle
= process; green rectangle = algorithm; diamond shape = decision.

the decision diamond in the level 5, the ”no” route concludes with only flow
simulation (level 6) as the result of the process of hydrological modelling, the
”yes” route enables an additional processes (level 7) related with the routing
for solute transport via the R routines implemented through the R packages
discussed in Section 2.4. This additional process deploys new functionality of
a typical model in hydromad by adding the capabilities for solute transport
simulation which constitutes one of the major aims of the present work.

5 Conclusions

Has been presented the implementation of several methods for geo-spatial
analysis of river networks and watersheds for runoff routing and solute transport
in R in order to contribute in a comprehensive hydrological modelling to the
current framework of the R package ”hydromad”.

The main aim of the study is fulfilled because the versatile code developed
lets to coupled the outputs of the hydrological framework of the R package
”hydromad” to the selected solute transport model looking forward better sim-
ulation of water-quality determinants transport at watershed scale.

Following the research scheme presented in this proposal it is possible to
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prove the hypothesis behind the study. The simulation of solute transport at
specific places of the river network was improved by implementing a runoff
routing method at watershed-scale, the ”hydromad” package, and by coupling
it into a suitable modeling framework for representing solute transport processes.

The developed package, ”watersheds”, allows geo-spatial river network anal-
ysis and makes use of the Catchments and Rivers Network System (ECRINS)
version 1.1, which constitutes the hydrographical system currently in use at the
European Environment Agency as well as widely serving as the reference sys-
tem for the Water Information System for Europe (WISE). The versatility of the
code generated lets to implement geo-spatial analysis in any watershed included
into the ECRINS. As a consequence, watersheds along entire Europe could be
analyzed, this constitutes an important fact because several institutions or sci-
entific community related with the WISE system could take advantage of the
package and this document.

6 Further work

Further development for hydrograph and solute transport calibration may
be done through a versatile open source, multiple platform programming lan-
guage as R. A useful tool for model calibration and sensitivity analysis processes
in R is the hydroPSO package (Zambrano-Bigiarini & Rojas, 2013). This pack-
age implements several state-of-the-art enhancements and fine-tuning options
to the Particle Swarm Optimisation (PSO) algorithm. hydroPSO interfaces the
calibration engine to different model codes through ASCII files and/or R wrap-
per functions for exchanging information on the calibration parameters. The
optimisation is based on evaluating the goodness-of-fit functions until a maxi-
mum number of iterations or a convergence criterion are met. The evaluation
of the calibration process is supported by plotting functions that facilitate the
interpretation of results (Zambrano-Bigiarini & Rojas, 2013).

In the near future the methodology presented could be upgraded substan-
tially by integrating Sensor Observations Services for retrieving the hydrolog-
ical data for the modelling processes, therefore real-time simulation and pre-
diction could be done. In this sense, applications developed in the framework
of the 52 oNorth SOS implementation are advisable (http://52north.org/
communities/sensorweb/sos/).
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7 Appendices

7.1 The Watersheds.Order method

library(Watersheds)
data(WatershedsData)

station1 = WatershedsData["station"][[1]]
subbasin1 = WatershedsData["subbasin"][[1]]
zhyd1 = WatershedsData["zhyd"][[1]]
river1 = WatershedsData["river"][[1]]
node1 = WatershedsData["node"][[1]]

station1 = SpatialPoints(coords = cbind(4328448.74, 3118576.86), proj4string = slot(subbasin1,
"proj4string"))

watershed = new("Watershed", station = station1, subbasin = subbasin1, zhyd = zhyd1,
river = river1, c1 = subbasin1, node = node1)

a = Watershed.Order(watershed)
c1 = a[[1]]
c1_inlet = a[[2]]
c1_outlet = a[[3]]
c2 = a[[4]]
c3 = a[[5]]
node_trib = a[[6]]
sb1 = a[[7]]
riverIO = a[[8]]
nodeIO = a[[9]]
c1_river = a[[10]]
c1_node = a[[11]]

bbox1 = slot(c1, "bbox")
bbox = matrix(0, 2, 2)
bbox[, 1] = bbox1[, 1] * 0.998
bbox[, 2] = bbox1[, 2] * 1.002

library(raster)
r1 = brick("dem_grid_todo1_Weser.tif")
plot(r1, col = (topo.colors(255)), xlim = bbox[1, ], ylim = bbox[2, ])
# plot(r1, col=(topo.colors(255)), xlim=bbox[1,], ylim=bbox[2,], add=T)

plot(c1, xlim = bbox[1, ], ylim = bbox[2, ], border = "Sienna", col = "transparent",
add = TRUE)

plot(c2, border = "gray25", col = "transparent", add = TRUE)
plot(c3, border = "gray25", col = "transparent", add = TRUE)

plot(slot(watershed, "station"), pch = 24, bg = "orange", add = TRUE)
plot.PolyLineAttribute(c1, "order", 450, 0.8)
plot.PolyLineAttribute(c2, "order", 450, 0.8)
plot.PolyLineAttribute(c3, "order", 450, 0.8)
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plot(c1_river, col = "blue", lw = 2, add = TRUE)
plot(c1_node, pch = 21, bg = "blue", cex = 0.8, add = TRUE)
plot(nodeIO, pch = 21, bg = "blue", cex = 0.8, add = TRUE)
plot(c1_inlet, pch = 21, bg = "green", add = TRUE)
plot(c1_outlet, pch = 21, bg = "red", add = TRUE)
plot.PointAttribute(nodeIO, "ELEV", 600, 0.7)
title(main = "Current zhyd watershed (1)", sub = "First order tributary watersheds (1.1, 1.2)")

# legend

legend("topleft", legend = c("Station", "Input node", "Output node", "Current zhyd",
"Tributary zhyd", "River network"), pch = c(24, 21, 21, NA, NA, NA), lty = c(NA,
NA, NA, 1, 1, 1), col = c("orange", "green", "red", "Sienna", "gray25",
"blue"), bg = "white")

# axis axis(1); axis(2)

# labeling the color bar

par(xpd = TRUE) #allow for plotting outside the plot

text(x = 4343000, y = 3129000, labels = "Elevation (m)", srt = 0)
par(xpd = FALSE)

# map scale

library(maps)
map.scale(xc = 4317500, yc = 3112500, len = 5000, units = "2.5 km", ndivs = 2)

# north arrow

library(GISTools)
north.arrow(xb = 4317500, yb = 3115000, len = 750, lab = "N")
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7.2 The Watersheds.Order2 method

library(Watersheds)
data(WatershedsData)

station1 = SpatialPoints(coords = cbind(4328650, 3174450), proj4string = slot(subbasin1,
"proj4string"))

watershed = new("Watershed", station = station1, subbasin = subbasin1, zhyd = zhyd1,
river = river1, c1 = subbasin1, node = node1)

a = Watershed.Order(watershed)
c1 = a[[1]]
node_trib = a[[6]]
c1_river = a[[10]]
class(c1_river)

watershed2 = new("Watershed", station = node_trib, subbasin = subbasin1, zhyd = zhyd1,
river = river1, c1 = c1, node = node1)

c23 = Watershed.Order2(watershed2)
c2 = c23[[1]]
c3 = c23[[2]]

c2.0 = c2[[1]]
c2_inlet = c2[[2]]
c2_outlet = c2[[3]]
c2.1 = c2[[4]]
c2.2 = c2[[5]]
c2_node_trib = c2[[6]]
c2_sb1 = c2[[7]]
c2_riverIO = c2[[8]]
c2_nodeIO = c2[[9]]
c2_river = c2[[10]]
c2_node = c2[[11]]

c3.0 = c3[[1]]
c3_inlet = c3[[2]]
c3_outlet = c3[[3]]
c3.1 = c3[[4]]
c3.2 = c3[[5]]
c3_node_trib = c3[[6]]
c3_sb1 = c3[[7]]
c3_riverIO = c3[[8]]
c3_nodeIO = c3[[9]]
c3_river = c3[[10]]
c3_node = c3[[11]]

# subsetting river networks

id = list(gIntersects(c2.1, WatershedsData$river, byid = TRUE))
c21_river = SpDF_Subset(id, WatershedsData$river)
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id = list(gIntersects(c2.2, WatershedsData$river, byid = TRUE))
c22_river = SpDF_Subset(id, WatershedsData$river)

id = list(gIntersects(c3.1, WatershedsData$river, byid = TRUE))
c31_river = SpDF_Subset(id, WatershedsData$river)

id = list(gIntersects(c3.2, WatershedsData$river, byid = TRUE))
c32_river = SpDF_Subset(id, WatershedsData$river)

# plots

bbox1 = slot(c3.2, "bbox")
bbox = matrix(0, 2, 2)
bbox[, 1] = bbox1[, 1] * 0.995
bbox[, 2] = bbox1[, 2] * 1.005

library(raster)
r1 = brick("dem_grid_todo1_Weser.tif")
plot(r1, col = (topo.colors(255)), xlim = bbox[1, ], ylim = bbox[2, ])

plot(c1, border = "Sienna", lw = 2, xlim = bbox[1, ], ylim = bbox[2, ], add = T)
plot(c2.0, border = "gray55", lw = 2, add = TRUE)
plot(c3.0, border = "gray55", lw = 2, add = TRUE)
plot(c2.1, border = "coral", lw = 2, add = TRUE)
plot(c2.2, border = "coral", lw = 2, add = TRUE)
plot(c3.1, border = "coral", lw = 2, add = TRUE)
plot(c3.2, border = "coral", lw = 2, add = TRUE)

plot(c1_river, col = "cyan", lw = 1, add = TRUE)
plot(c2_river, col = "cyan", add = TRUE)
plot(c3_river, col = "cyan", add = TRUE)
plot(c21_river, col = "cyan", add = TRUE)
plot(c22_river, col = "cyan", add = TRUE)
plot(c31_river, col = "cyan", add = TRUE)
plot(c32_river, col = "cyan", add = TRUE)

plot(station1, col = "orange", pch = 24, bg = "orange", add = T)

title(main = "Current zhyd watershed and \n 1st and 2nd order tributary watersheds")

# legend

legend("bottomright", legend = c("Station", "Current zhyd", "Tributary zhyd, 1st order",
"Tributary zhyd, 2nd order", "River network"), pch = c(24, NA, NA, NA, NA,
NA), lty = c(NA, 1, 1, 1, 1), col = c("orange", "Sienna", "gray55", "coral",
"cyan"), bg = "white")

# axis axis(1); axis(2)

# labeling the color bar

par(xpd = TRUE) #allow for plotting outside the plot
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text(x = 4385000, y = 3179000, labels = "Elevation (m)", srt = 0)
par(xpd = FALSE)

# map scale

library(maps)
map.scale(xc = 4320000, yc = 3140000, len = 10000, units = "5 km", ndivs = 2)

# north arrow

library(GISTools)
north.arrow(xb = 4320000, yb = 3145000, len = 750, lab = "N")
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7.3 The Watersheds.IOR1 function

library(Watersheds)
data(WatershedsData)

station1 = SpatialPoints(coords = cbind(4232972, 3327634), proj4string = slot(subbasin1,
"proj4string"))

watershed = new("Watershed", station = station1, subbasin = subbasin1, zhyd = zhyd1,
river = river1, c1 = subbasin1, node = node1)

a = Watershed.Order(watershed)
c1 = a[[1]]
nodeIO = a[[9]]
c1_river = a[[10]]

# determining inlet and outlet watershed nodes determining distances of

# nodeIO to c1

boundary = gBoundary(c1)
dist = gDistance(nodeIO, boundary, byid = TRUE)
a = Watershed.IOR1(x = nodeIO, dist = dist)
c1_inlet = a["inlet"][[1]]
c1_inlet
c1_outlet = a["outlet"][[1]]
c1_outlet

bbox1 = slot(c1, "bbox")
bbox = matrix(0, 2, 2)
bbox[, 1] = bbox1[, 1] * 0.998
bbox[, 2] = bbox1[, 2] * 1.002

library(raster)
r1 = brick("dem_grid_todo1_Weser.tif")
plot(r1, col = (topo.colors(255)), xlim = bbox[1, ], ylim = bbox[2, ])

plot(c1, border = "Sienna", add = T)
plot(station1, pch = 24, col = "orange", bg = "orange", add = TRUE)
plot(c1_river, col = "blue", add = TRUE)
plot(c1_outlet, pch = 21, col = "red", bg = "white", add = TRUE)
plot.PointAttribute(c1_outlet, "ELEV", 700, 0.8)

title(main = "Watershed outlet, case I")

# legend

legend("topleft", legend = c("Station", "outlet node", "Current zhyd", "River network"),
pch = c(24, 21, NA, NA), lty = c(NA, NA, 1, 1), col = c("orange", "red",

"Sienna", "blue"), bg = "white")
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# axis axis(1); axis(2)

# labeling the color bar

par(xpd = TRUE) #allow for plotting outside the plot

text(x = 4263000, y = 3326500, labels = "Elevation (m)", srt = 0)
par(xpd = FALSE)

# map scale

library(maps)
map.scale(xc = 4220000, yc = 3300000, len = 10000, units = "5 km", ndivs = 2)

# north arrow

library(GISTools)
north.arrow(xb = 4220000, yb = 3303000, len = 750, lab = "N")
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7.4 The Watersheds.IOR2 function

library(Watersheds)
data(WatershedsData)

station1 = SpatialPoints(coords = cbind(4301949, 3173053), proj4string = slot(subbasin1,
"proj4string"))

watershed = new("Watershed", station = station1, subbasin = subbasin1, zhyd = zhyd1,
river = river1, c1 = subbasin1, node = node1)

a = Watershed.Order(watershed)
c1 = a[[1]]
nodeIO = a[[9]]
c1_river = a[[10]]
c1_node = a[[11]]

# determining inlet and outlet watershed nodes determining distances of

# nodeIO to c1

boundary = gBoundary(c1)
dist = gDistance(nodeIO, boundary, byid = TRUE)
a = Watershed.IOR2(x = nodeIO, dist = dist, node = c1_node)
c1_inlet = a["inlet"][[1]]
c1_inlet
c1_outlet = a["outlet"][[1]]
c1_outlet

bbox1 = slot(c1, "bbox")
bbox = matrix(0, 2, 2)
bbox[, 1] = bbox1[, 1] * 0.998
bbox[, 2] = bbox1[, 2] * 1.002

library(raster)
r1 = brick("dem_grid_todo1_Weser.tif")
plot(r1, col = (topo.colors(255)), xlim = bbox[1, ], ylim = bbox[2, ])

plot(c1, border = "Sienna", add = T)
plot(station1, pch = 24, col = "orange", bg = "white", add = TRUE)
plot(c1_river, col = "cyan", add = TRUE)
plot(c1_outlet, pch = 21, col = "red", bg = "white", add = TRUE)
plot.PointAttribute(c1_outlet, "ELEV", 700, 0.8)

title(main = "Watershed outlet, case II")

# legend

legend("topright", legend = c("Station", "outlet node", "Current zhyd", "River network"),
pch = c(24, 21, NA, NA), lty = c(NA, NA, 1, 1), col = c("orange", "red",

"Sienna", "cyan"), bg = "white")
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# axis axis(1); axis(2)

# labeling the color bar

par(xpd = TRUE) #allow for plotting outside the plot

text(x = 4319000, y = 3186000, labels = "Elevation (m)", srt = 0)
par(xpd = FALSE)

# map scale

library(maps)
map.scale(xc = 4287500, yc = 3163000, len = 5000, units = "2.5 km", ndivs = 2)

# north arrow

library(GISTools)
north.arrow(xb = 4287500, yb = 3166000, len = 375, lab = "N")
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7.5 The Watersheds.IOR3 function

library(Watersheds)
data(WatershedsData)

station1 = SpatialPoints(coords = cbind(4217199.42, 3353511.83), proj4string = slot(subbasin1,
"proj4string"))

watershed = new("Watershed", station = station1, subbasin = subbasin1, zhyd = zhyd1,
river = river1, c1 = subbasin1, node = node1)

a = Watershed.Order(watershed)
c1 = a[[1]]
riverIO = a[[8]]
nodeIO = a[[9]]
c1_river = a[[10]]

# determining inlet and outlet watershed nodes determining distances of

# nodeIO to c1

boundary = gBoundary(c1)
dist = gDistance(nodeIO, boundary, byid = TRUE)
a = Watershed.IOR3(x = nodeIO, y = riverIO, dist = dist)
c1_inlet = a["inlet"][[1]]
c1_inlet
c1_outlet = a["outlet"][[1]]
c1_outlet

bbox1 = slot(c1, "bbox")
bbox = matrix(0, 2, 2)
bbox[, 1] = bbox1[, 1] * 0.998
bbox[, 2] = bbox1[, 2] * 1.002

library(raster)
r1 = brick("dem_grid_todo1_Weser.tif")
plot(r1, col = (topo.colors(255)), xlim = bbox[1, ], ylim = bbox[2, ])

plot(c1, border = "Sienna", lwd = 2, add = T)

plot(station1, pch = 24, col = "orange", bg = "white", add = TRUE)
plot(c1_river, col = "cyan", add = TRUE)
plot(c1_outlet, pch = 21, col = "red", bg = "white", add = TRUE)
plot(c1_inlet, pch = 21, col = "green", bg = "white", add = TRUE)
plot.PointAttribute(c1_outlet, "ELEV", 1000, 0.8)
plot.PointAttribute(c1_inlet, "ELEV", 1000, 0.8)
title(main = "Watershed outlet and inlet, case III")

# legend

legend("topleft", legend = c("Station", "inlet node", "outlet node", "Current zhyd",
"River network"), pch = c(24, 21, 21, NA, NA), lty = c(NA, NA, NA, 1, 1),
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col = c("orange", "green", "red", "Sienna", "cyan"), bg = "white")

# axis axis(1); axis(2)

# labeling the color bar

par(xpd = TRUE) #allow for plotting outside the plot

text(x = 4239000, y = 3370000, labels = "Elevation (m)", srt = 0)
par(xpd = FALSE)

# map scale

library(maps)
map.scale(xc = 4185000, yc = 3340000, len = 10000, units = "5 km", ndivs = 2)

# north arrow

library(GISTools)
north.arrow(xb = 4185000, yb = 3343000, len = 750, lab = "N")
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7.6 The Watersheds.IOR4 function

library(Watersheds)
data(WatershedsData)

station1 = SpatialPoints(coords = cbind(4357947, 3284525), proj4string = slot(subbasin1,
"proj4string"))

watershed = new("Watershed", station = station1, subbasin = subbasin1, zhyd = zhyd1,
river = river1, c1 = subbasin1, node = node1)

a = Watershed.Order(watershed)
c1 = a[[1]]
riverIO = a[[8]]
nodeIO = a[[9]]
c1_river = a[[10]]

# determining inlet and outlet watershed nodes determining distances of

# nodeIO to c1

boundary = gBoundary(c1)
dist = gDistance(nodeIO, boundary, byid = TRUE)
a = Watershed.IOR4(x = nodeIO, y = riverIO, dist = dist)
c1_inlet = a["inlet"][[1]]
c1_inlet
c1_outlet = a["outlet"][[1]]
c1_outlet

bbox1 = slot(c1, "bbox")
bbox = matrix(0, 2, 2)
bbox[, 1] = bbox1[, 1] * 0.998
bbox[, 2] = bbox1[, 2] * 1.002

library(raster)
r1 = brick("dem_grid_todo1_Weser.tif")
plot(r1, col = (topo.colors(255)), xlim = bbox[1, ], ylim = bbox[2, ])

plot(c1, border = "sienna", add = T)

plot(station1, pch = 24, col = "orange", bg = "white", add = TRUE)
plot(c1_river, col = "blue", add = TRUE)
plot(c1_outlet, pch = 21, col = "red", bg = "white", add = TRUE)
plot(c1_inlet, pch = 21, col = "green", bg = "white", add = TRUE)
plot.PointAttribute(c1_outlet, "ELEV", 1000, 0.8)
plot.PointAttribute(c1_inlet, "ELEV", 1000, 0.8)

title(main = "Watershed outlet and inlet, case IV")

# legend

legend("topleft", legend = c("Station", "inlet node", "outlet node", "Current zhyd",
"River network"), pch = c(24, 21, 21, NA, NA), lty = c(NA, NA, NA, 1, 1),
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col = c("orange", "green", "red", "Sienna", "blue"), bg = "white")

# axis axis(1); axis(2)

# labeling the color bar

par(xpd = TRUE) #allow for plotting outside the plot

text(x = 4384000, y = 3289000, labels = "Elevation (m)", srt = 0)
par(xpd = FALSE)

# map scale

library(maps)
map.scale(xc = 4347500, yc = 3270000, len = 10000, units = "5 km", ndivs = 2)

# north arrow

library(GISTools)
north.arrow(xb = 4347500, yb = 3273000, len = 750, lab = "N")
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7.7 The Karlshafen and Whambeck Stations watersheds

## the Wahmbeck Station watershed

station1 = SpatialPoints(coords = cbind(4287441, 3168693), proj4string = slot(subbasin1,
"proj4string"))

watershed = new("Watershed", station = station1, subbasin = subbasin1, zhyd = zhyd1,
river = river1, c1 = subbasin1, node = node1)

a = Watershed.Order(watershed)
c1 = a[[1]]

## the Karlshafen Station watershed

station2 = SpatialPoints(coords = cbind(4281860, 3170824), proj4string = slot(subbasin1,
"proj4string"))

watershed = new("Watershed", station = station2, subbasin = subbasin1, zhyd = zhyd1,
river = river1, c1 = subbasin1, node = node1)

aa = Watershed.Order(watershed)
c1a = aa[[1]]

## defining common axis

(bbox = slot(c1, "bbox"))
(bboxa = slot(c1a, "bbox"))
(xmin = 0.999 * min(c(bbox[1], bboxa[1])))
(xmax = 1.001 * max(c(bbox[1, 2], bboxa[1, 2])))
(ymin = 0.999 * min(c(bbox[2, 1], bboxa[2, 1])))
(ymax = 1.001 * max(c(bbox[2, 2], bboxa[2, 2])))

# plotting both stations

plot(station1, xlim = c(xmin, xmax), ylim = c(ymin, ymax))
plot(station2, add = T)
axis(1)
axis(2)

# further parameters of the Wahmbeck Station watershed

riverIO = a[[8]]
nodeIO = a[[9]]
c1_river = a[[10]]

# determining inlet and outlet watershed nodes determining distances of

# nodeIO to c1

boundary = gBoundary(c1)
dist = gDistance(nodeIO, boundary, byid = TRUE)
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a = Watershed.IOR4(x = nodeIO, y = riverIO, dist = dist)
c1_inlet = a["inlet"][[1]]
c1_inlet
c1_outlet = a["outlet"][[1]]
c1_outlet
plot(c1, border = "sienna", add = T)

library(raster)
r1 = brick("dem_grid_todo1_Weser.tif")
plot(r1, col = (topo.colors(255)), add = T)

plot(c1, border = "sienna", add = T)
plot(station1, pch = 24, col = "orange", bg = "white", add = TRUE)

plot(c1_river, col = "cyan", add = TRUE)
plot(c1_outlet, pch = 21, col = "red", bg = "white", add = TRUE)
plot(c1_inlet, pch = 21, col = "green", bg = "white", add = TRUE)
plot.PointAttribute(c1_outlet, "ELEV", 1000, 0.8)
plot.PointAttribute(c1_inlet, "ELEV", 1000, 0.8)

# further parameters of the Karlshafen Station watershed

riverIOa = aa[[8]]
nodeIOa = aa[[9]]
c1_rivera = aa[[10]]

# determining inlet and outlet watershed nodes determining distances of

# nodeIO to c1

boundary = gBoundary(c1a)
dist = gDistance(nodeIOa, boundary, byid = TRUE)
a = Watershed.IOR3(x = nodeIOa, y = riverIOa, dist = dist)
c1_inlet = a["inlet"][[1]]
c1_inlet
c1_outlet = a["outlet"][[1]]
c1_outlet
plot(c1a, border = "sienna", add = T)

plot(station2, pch = 24, col = "orange", bg = "white", add = TRUE)

plot(station2, pch = 24, col = "red", bg = "white", add = TRUE)

plot(c1_rivera, col = "cyan", add = TRUE)

plot(c1_outlet, pch = 21, col = "red", bg = "white", add = TRUE)

plot(c1_inlet, pch = 21, col = "green", bg = "white", add = TRUE)

plot.PointAttribute(c1_outlet, "ELEV", 1000, 0.8)
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plot.PointAttribute(c1_inlet, "ELEV", 1000, 0.8)

title(main = "Karlshafen and Wahmbeck Stations watersheds")

# legend

legend("topleft", legend = c("Station Wahmbeck", "Station Karlshafen", "inlet node",
"outlet node", "Current zhyd", "River network"), pch = c(24, 24, 21, 21,
NA, NA), lty = c(NA, NA, NA, NA, 1, 1), col = c("orange", "red", "green",
"red", "Sienna", "cyan"), bg = "white")

# axis

axis(1)
axis(2)

# map scale

library(maps)
map.scale(xc = 4277500, yc = 3164000, len = 5000, units = "2.5 km", ndivs = 2)

# north arrow

library(GISTools)
north.arrow(xb = 4277500, yb = 3165500, len = 300, lab = "N")

# labeling the color bar

par(xpd = TRUE) #allow for plotting outside the plot

text(x = 4297000, y = 3179000, labels = "Elevation (m)", srt = 0)
par(xpd = FALSE)
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7.8 Precipitation time series management

setwd("/Users/j_mata01/Documents/timeCapsule/documents/03_III_ifgi_Muenster/03_thesis/03_data/netCDF")

# accesing ncdf file

library(ncdf)
nc = open.ncdf("rr_0.25deg_reg_1995-2013_v9.0.nc")

# Converting the numeric vector to a 'Date' class object representing

# calendar dates using as.Date.

# First of all we need to know the units:

nc$dim$time$units

# extract the variable time

ti = get.var.ncdf(nc, varid = "time")
str(ti)

# convert the time vector to dates

dates = as.Date(ti, origin = c("1950-01-01"))
str(dates)
range(dates)
class(dates)
length(dates)

# recalling the Lon/Lat variables

lon = get.var.ncdf(nc, varid = "longitude")
lat = get.var.ncdf(nc, varid = "latitude")

# Now the precip. data can be represented as a time series: tx =

# get.var.ncdf(nc, varid='rr')

tx = get.var.ncdf(nc, varid = "rr", count = c(-1, -1, 1096)) #cut from 01.01.1995 to 31.12.1997 (1096 days)

# tx = get.var.ncdf(nc, varid='rr', start=c(1,1,1000), count=c(-1,-1,1096))

str(tx)
dim(tx)

# locating the coordinates for the current station

which(lon == 9.875)
nc$dim$longitude$vals[202]
lon[202]

which(lat == 51.625)
nc$dim$latitude$vals[106]
lat[106]

# time serie definition ts = as.data.frame(matrix(0,365,2))

# ts[,1]=dates[1:365] ts = as.data.frame(matrix(0,45,2)) ts[,1]=dates[1:45]

ts = as.data.frame(matrix(0, 1096, 2))
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ts[, 1] = dates[1:1096]

ts[, 2] = tx[202, 106, ]
plot(ts, ty = "l", col = "blue")
write.table(ts, "out_ts.csv", sep = "\t")
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7.9 Routing and solute transport modelling

library(ReacTran)

# Model formulation

river.model <- function(t = 0, OC, pars = NULL) {
tran <- tran.volume.1D(C = OC, F.up = F.OC, F.lat = F.lat, Disp = Disp,

flow = flow.up, flow.lat = flow.lat, V = Volume, full.output = TRUE)
reac <- -k * OC
return(list(dCdt = tran$dC + reac, Flow = tran$flow))

}

# Parameter definition

# Initialising river morphology:

nbox <- 500 # number of grid cells

lengthEstuary <- 5974 # length of estuary [m]

BoxLength <- lengthEstuary/nbox # [m]

Distance <- seq(BoxLength/2, by = BoxLength, len = nbox) # [m]

Int.Distance <- seq(0, by = BoxLength, len = (nbox + 1)) # [m]

# Cross sectional area: wide river [m2]

CrossArea = 40
# Volume of boxes (m3)

(Volume <- CrossArea * BoxLength)

# Transport coefficients

Disp <- 1000 # m3/s, bulk dispersion coefficient

# flow.up <- 180/3.83 # m3/s, main river upstream inflow

flow.up <- as.numeric(xx_fit[, 1][1]) # m3/s, main river upstream inflow

class(flow.up)

flow.lat.0 <- 180/3.83 # m3/s, side river inflow

F.OC <- 180/3.83 # input organic carbon [mol s-1]

F.lat.0 <- 180/3.83 # lateral input organic carbon [mol s-1]

k <- 10/(365 * 24 * 3600) # decay constant organic carbon [s-1]

# Model solution

# scenario 1: without lateral input

F.lat <- rep(0, length.out = nbox)
length(F.lat)
flow.lat <- rep(0, length.out = nbox)
Conc1 <- steady.1D(runif(nbox), fun = river.model, nspec = 1, name = "OC")
str(Conc1)
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# scenario 2: with lateral input

F.lat <- F.lat.0 * dnorm(x = Distance/lengthEstuary, mean = Distance[nbox/2]/lengthEstuary,
sd = 1/20, log = FALSE)/nbox

flow.lat <- flow.lat.0 * dnorm(x = Distance/lengthEstuary, mean = Distance[nbox/2]/lengthEstuary,
sd = 1/20, log = FALSE)/nbox

Conc2 <- steady.1D(runif(nbox), fun = river.model, nspec = 1, name = "OC")
str(Conc2)

# Plotting output

# use S3 plot method

plot(Conc1, Conc2, grid = Distance/1000, which = "OC", mfrow = c(2, 1), lwd = 2,
xlab = "distance [km]", main = "Organic carbon decay in the river on 01.01.1995",
ylab = "OC Concentration [mM]")

plot(Conc1, Conc2, grid = Int.Distance/1000, which = "Flow", mfrow = NULL, lwd = 2,
xlab = "distance [km]", main = "Longitudinal change in the water flow rate on 01.01.1995",
ylab = "Flow rate [m3 s-1]")

legend("topright", lty = 1:2, col = 1:2, lwd = 2, c("baseline", "+ side river input"))
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7.10 The ”Watersheds” package: user manual
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Package ‘Watersheds’

February 25, 2014

Type Package

Title Spatial watershed aggregation and spatial drainage network analysis

Version 1.0

Date 2013-08-10

Author J.A. Torres

Maintainer J. A. Torres <arturo.torres@uni-muenster.de>

Description A package for watersheds aggregation and spatial drainage network analysis.

License GPL (>= 2)

Depends R (>= 2.10), methods, sp, maptools, rgeos, lattice, splancs

R topics documented:
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2 plot.PointAttribute-methods

Watersheds-package Spatial watershed aggregation and spatial drainage network analysis

Description

Spatial analysis for watersheds aggregation and ordering accordingly to an outlet point and size of
tributary watershed of the current watershed. Spatial drainage networks analysis inside the aggre-
gated watersheds.

Details

Package: Watersheds
Type: Package
Version: 1.0
Date: 2013-08-10
License: GPL (>= 2)
Depends: R (>= 2.10), methods, sp, maptools, rgeos, lattice, splancs, multicore

Creation and handling of objects class Watershed for identifying the subbasin that contains the
current station (class SpatialPoints) and subsets the zhyd object to subbasin and extract the
current zhy object that contains station via the S4 method Watershed.Order. Identification of
the inlet and outlet stretches and inlet and outlet nodes of the zhyd. Implementation of functions
Watershed. ,IOR1, IOR2, IOR3, and IOR4 for determining the actual inlet and outlet nodes. S4
methods Watershed.Order2 and Watershed.Tributary for defining tributary nodes and tributary
catchments of the current zhyd watershed.

Author(s)

J.A. Torres

Maintainer: J.A. Torres <arturo.torres@uni-muenster.de>

See Also

See Also the class Watershed and the methods Watershed.Order, Watershed.Order2 and Watershed.Tributary.

plot.PointAttribute-methods
Plotting attributes of SpatialPointsDataFrame objects

Description

S4 Method for plotting attributes of SpatialPointsDataFrame objects.



plot.PolyLineAttribute-methods 3

Methods

signature(x = "SpatialPointsDataFrame", y = "character", dist = "numeric", cex = "numeric")

x A "SpatialPointsDataFrame" object from where the coordinates of the attribute will be re-
trieved.

y A "character" with the name of the attribute.
dist A "numeric" with the distance from the coordinate to plot the attribute text.
cex A "numeric" with the relative size to plot the attribute text.

plot.PolyLineAttribute-methods
Plot attributes of Spatial-Lines,Polygons-DataFrame objects.

Description

S4 Method for plotting attributes of SpatialLinesDataFrame and SpatialPolygonsDataFrame
objects.

Methods

signature(x = "SpatialPolygonsDataFrame", y = "character", dist = "numeric", cex = "numeric")

x "SpatialPointsDataFrame" or "SpatialPointsDataFrame" object from where the coordi-
nates of the attribute will be retrieved.

y "character" with the name of the attribute.
dist "numeric" with the distance from the coordinate to plot the attribute text.
cex "numeric" with the relative size to plot the attribute text.

RiverStation Intersection of SpatialPoints and SpatialLinesDataFrame

Description

The function intersects objects SpatialPoints and SpatialLinesDataFrame. Identyfies the closer
stretch(es) to a station. The SpatialPoints must be length 1.

Usage

RiverStation(x, y, window = 1��)

Arguments

x An object of class SpatialPoints as is defined in package sp and length 1.
y An object of class SpatialLinesDataFrame as is defined in package sp.
window A numeric value that represents the size of the square (window) around the x

object.



4 SpDF_Subset

Details

window value magnifies the object x in order to certainly secure the intersection with the object y.
The greater value the more intersection area is defined.

Value

An object SpatialLinesDataFrame that is a subsect of th object x that represents the current inter-
section withe object x.

Author(s)

J.A. Torres

Examples

library(Watersheds)
data(WatershedsData)

station1 = WatershedsData$station
river1 = WatershedsData$river

tributary = RiverStation(station1, river1)
plot(tributary, col="blue")
plot(station1,pch=21,bg="red",cex=.8,add=TRUE)
plot.PolyLineAttribute(x=tributary, y="OBJECTID", dist=1��, cex=.8)
title(main="Point station and tributary rivers")

SpDF_Subset Subsetting spatial dataframe objects

Description

Given and list x of logical values, the function subsets the object z accordingly the TRUE values of
x.

Usage

SpDF_Subset(x, y)

Arguments

x A list of logical values where TRUE values indicates the index of the subset.

y A spatial object as is defined in package sp from extracting the subset.

Value

A spatial object of the same class of y.

Author(s)

J.A. Torres
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Examples

library(Watersheds)
data(WatershedsData)

# subsetting the river Werra subbasin
id = list(gIntersects(WatershedsData$rWerra, WatershedsData$subbasin,byid=TRUE))
subbasin_rWerra = SpDF_Subset(id,WatershedsData$subbasin)
plot(subbasin_rWerra)

# subsetting the river Werra zhyd watersheds
id = list(gIntersects(WatershedsData$rWerra, WatershedsData$zhyd,byid=TRUE))
zhyd_rWerra = SpDF_Subset(id,WatershedsData$zhyd)
plot(WatershedsData$rWerra,col="blue",lwd=1,add=TRUE)
plot(zhyd_rWerra,col="green3",add=TRUE)
title("Subbasin River Weser and primary zhyd watersheds")

# subsetting the river Werra river drainage watersheds
id = list(gIntersects(subbasin_rWerra, WatershedsData$river,byid=TRUE))
river_rWerra = SpDF_Subset(id,WatershedsData$river)
plot(subbasin_rWerra)
plot(WatershedsData$rWerra,col="blue",lwd=3,add=TRUE)
plot(river_rWerra,col="blue1",add=TRUE)
title("Subbasin River Weser and drainage network")

SpDF_Touch Touch function for spatial objects

Description

The SpatialDataFrame Touch function. Identifies which nodes has touching lines and retrives a list
with two elements.

Usage

SpDF_Touch(x, y)

Arguments

x An spatial object as is described in package sp.
y An spatial object as is described in package sp.

Value

A list with two elements:

comp1 A matrix with the OBJECTID of the node (column 1), the maximum number
of lines that are touching the node (column 2), and the elevation of that node
(column 3).

comp2 A matrix with the OBJECTID of the lines that are touching the node.

Author(s)

J.A. Torres



6 Watershed

Examples

library(Watersheds)
data(WatershedsData)

station1 = WatershedsData$station
subbasin1 = WatershedsData$subbasin
zhyd1 = WatershedsData$zhyd
river1 = WatershedsData$river
node1 = WatershedsData$node

station1 = SpatialPoints(coords=cbind(4328448.74, 3118576.86),
proj4string=slot(subbasin1,"proj4string"))
watershed = new("Watershed",station=station1,subbasin=subbasin1,
zhyd=zhyd1,river=river1,c1=subbasin1,node=node1)

a = Watershed.Order(watershed)
c1 = a[[1]]
riverIO = a[[8]]
nodeIO = a[[9]]

touch = SpDF_Touch(nodeIO, riverIO)
touch1 = touch[[1]]; touch1

Watershed Class "Watershed"

Description

A S4 class "Watershed" for representing "Watershed" objects.

Objects from the Class

Objects can be created by calls of the form new("Watershed", ...).

Slots

station: Object of class "SpatialPoints" of length 1. Represents a point from which aggrega-
tion fo watersheds will occur.

subbasin: Object of class "SpatialPolygonsDataFrame" of length 1. Represents the current
boundary of the hydrological units or zhyd objects.

zhyd: Object of class "SpatialPolygonsDataFrame". Represents the current hydrological units
(zhyd accordingly to ECRINS (EAA, 2012)) to be analized inside the subbasin boundary.

river: Object of class "SpatialLinesDataFrame" that represents the current river network to be
analised inside the subbasin boundary.

c1: Object of class "SpatialPolygonsDataFrame" of lentgh 1. Represents the curren zhyd object
of analysis.

node: Object of class "SpatialPointsDataFrame". Represents the current nodes of the river
network to be analised inside the subbasin boundary.
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Methods

Watershed.Order signature(x = "Watershed"): ...
Watershed.Order2 signature(watershed = "Watershed"): ...
Watershed.Tributary signature(x = "SpatialPointsDataFrame", xo = "SpatialPointsDataFrame", y = "SpatialLinesDataFrame", z = "SpatialPointsDataFrame", zhyd = "SpatialPolygonsDataFrame", c1 = "SpatialPolygonsDataFrame")

Author(s)

J.A. Torres

References

European Environment Agency - EAA. (2012). EEA catchments and rivers network system, ECRINS
v1.1. rationales, building and improving for widening uses to Water Accounts and WISE applica-
tions (EEA Technical report No. 7/2012). (Luxembourg: Publications Office of the European
Union).

See Also

See Also as the functions Watershed.IOR1, Watershed.IOR2, Watershed.IOR3, Watershed.IOR4,
or the S4 methods Watershed.Order, Watershed.Order2, Watershed.Tributary

Examples

data(WatershedsData)
station1 = WatershedsData$station
subbasin1 = WatershedsData$subbasin
zhyd1 = WatershedsData$zhyd
river1 = WatershedsData$river
node1 = WatershedsData$node

station1 = SpatialPoints(coords=slot(station1,"coords"),
proj4string=slot(subbasin1,"proj4string"))
watershed = new("Watershed",station=station1,subbasin=subbasin1,
zhyd=zhyd1,river=river1,c1=subbasin1,node=node1)

Watershed.IOR1 Watershed inlet and outlet nodes: case 1

Description

The function determines the inlet and outlet nodes for zhyd watershed objects. This case 1 is for
those watersheds that its river inlet and outlet object is length 1 (length(riverIO)=1).

Usage

Watershed.IOR1(x, dist)

Arguments

x An object "SpatialPointsDataFrame" as is described in package sp over the
function will search the inlet and outlet nodes of the watershed.

dist A vector with the distances of each point in x to the current zhyd boundary.
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Value

A list of length 2:

inlet A "SpatialPointsDataFrame" that represents the inlet node of the current
zhyd.

outlet A "SpatialPointsDataFrame" that represents the outlet node of the current
zhyd.

Note

If there are not inlet or outlet node of the current zhyd, 0 is returned.

Author(s)

J.A. Torres

See Also

See Also the functions Watershed.IOR2, Watershed.IOR3, Watershed.IOR4.

Examples

library(Watersheds)
data(WatershedsData)

station1 = WatershedsData$station
subbasin1 = WatershedsData$subbasin
zhyd1 = WatershedsData$zhyd
river1 = WatershedsData$river
node1 = WatershedsData$node

station1 = SpatialPoints(coords=cbind(4232972,3327634),
proj4string=slot(subbasin1,"proj4string"))
watershed = new("Watershed",station=station1,subbasin=subbasin1,
zhyd=zhyd1,river=river1,c1=subbasin1,node=node1)

a = Watershed.Order(watershed)
c1 = a[[1]]
nodeIO = a[[9]]
c1_river = a[[1�]]

# determining inlet and outlet watershed nodes
# determining distances of nodeIO to c1
boundary = gBoundary(c1)
dist = gDistance(nodeIO, boundary, byid =TRUE)
a = Watershed.IOR1(x=nodeIO, dist=dist)
c1_inlet = a$inlet; c1_inlet
c1_outlet = a$outlet; c1_outlet

plot(c1,col="gray5�")
plot(station1,pch=24, bg="blue",add= TRUE)
plot(c1_river, col="blue", add=TRUE)
plot(c1_outlet,pch=21, bg="red",add= TRUE)
plot.PointAttribute(c1_outlet,"ELEV",7��,�.8)
title(main="Watershed outlet, case I")
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Watershed.IOR2 Watershed inlet and outlet nodes: case 2

Description

The function determines the inlet and outlet nodes for zhyd watershed objects. This case 2 is for
those watersheds that its river inlet and outlet object is length 2 (length(riverIO)=2).

Usage

Watershed.IOR2(x, dist, node)

Arguments

x An object "SpatialPointsDataFrame" or "SpatialPoints" as are described
in package sp over the function will search the inlet and outlet nodes of the
watershed.

dist A vector with the distances of each point in x to the current zhyd boundary.

node An object "SpatialPointsDataFrame" as are described in package sp over the
function will search the inlet and outlet nodes of the watershed. It must be the
entire node search object.

Value

A list of length 2:

inlet A "SpatialPointsDataFrame" that represents the inlet node of the current
zhyd.

outlet A "SpatialPointsDataFrame" that represents the outlet node of the current
zhyd.

Note

If there are not inlet or outlet node of the current zhyd is returned 0.

Author(s)

J.A. Torres

See Also

See Also the functions Watershed.IOR1, Watershed.IOR3, Watershed.IOR4.

Examples

library(Watersheds)
data(WatershedsData)

station1 = WatershedsData$station
subbasin1 = WatershedsData$subbasin
zhyd1 = WatershedsData$zhyd
river1 = WatershedsData$river
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node1 = WatershedsData$node

station1 = SpatialPoints(coords=cbind(433�341.36,3284797.�6),
proj4string=slot(subbasin1,"proj4string"))
watershed = new("Watershed",station=station1,subbasin=subbasin1,
zhyd=zhyd1,river=river1,c1=subbasin1,node=node1)

a = Watershed.Order(watershed)
c1 = a[[1]]
nodeIO = a[[9]]
c1_river = a[[1�]]
c1_node = a[[11]]

# determining inlet and outlet watershed nodes
# determining distances of nodeIO to c1
boundary = gBoundary(c1)
dist = gDistance(nodeIO, boundary, byid =TRUE)
a = Watershed.IOR2(x=nodeIO, dist=dist, node=c1_node)
str(a)
c1_inlet = a$inlet; c1_inlet
c1_outlet = a$outlet; c1_outlet

plot(c1,col="gray6�")
plot(station1,pch=24, bg="blue",add= TRUE)
plot(c1_river, col="blue", add=TRUE)
plot(c1_outlet,pch=21, bg="red",add= TRUE)
plot.PointAttribute(c1_outlet,"ELEV",7��,�.8)
title(main="Watershed outlet, case II")

Watershed.IOR3 Watershed inlet and outlet nodes: case 3

Description

The function determines the inlet and outlet nodes for zhyd watershed objects. This case 3 is for
those watersheds that its river inlet and outlet object is length 3 (length(riverIO)=3).

Usage

Watershed.IOR3(x, y, dist)

Arguments

x An object "SpatialPointsDataFrame" as is described in package sp over them
the function will search the inlet and outlet nodes of the watershed.

y An object "SpatialLinesDataFrame" as is described in package sp that repre-
sents the inlet and outlet rivers of the watershed.

dist A vector with the distances of each point in x to the current zhyd boundary.

Value

inlet A "SpatialPointsDataFrame" that represents the inlet node of the current
zhyd.

outlet A "SpatialPointsDataFrame" that represents the outlet node of the current
zhyd.
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Note

If there are not inlet or outlet node of the current zhyd is returned 0.

Author(s)

J.A. Torres

See Also

See Also the functions Watershed.IOR1, Watershed.IOR2, Watershed.IOR4.

Examples

library(Watersheds)
data(WatershedsData)

station1 = WatershedsData$station
subbasin1 = WatershedsData$subbasin
zhyd1 = WatershedsData$zhyd
river1 = WatershedsData$river
node1 = WatershedsData$node

station1 = SpatialPoints(coords=cbind(4217199.42,3353511.83),
proj4string=slot(subbasin1,"proj4string"))
watershed = new("Watershed",station=station1,subbasin=subbasin1,
zhyd=zhyd1,river=river1,c1=subbasin1,node=node1)

a = Watershed.Order(watershed)
c1 = a[[1]]
riverIO = a[[8]]
nodeIO = a[[9]]
c1_river = a[[1�]]

# determining inlet and outlet watershed nodes
# determining distances of nodeIO to c1
boundary = gBoundary(c1)
dist = gDistance(nodeIO, boundary, byid =TRUE)
a = Watershed.IOR3(x=nodeIO, y=riverIO, dist=dist)
c1_inlet = a$inlet; c1_inlet
c1_outlet = a$outlet; c1_outlet

plot(c1,col="gray6�")
plot(station1,pch=24, bg="blue",add= TRUE)
plot(c1_river, col="blue", add=TRUE)
plot(c1_outlet,pch=21, bg="red",add= TRUE)
plot(c1_inlet,pch=21, bg="green",add= TRUE)
plot.PointAttribute(c1_outlet,"ELEV",1���,�.8)
plot.PointAttribute(c1_inlet,"ELEV",1���,�.8)
title(main="Watershed outlet and inlet, case III")
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Watershed.IOR4 Watershed inlet and outlet nodes: case 4

Description

The function determines the inlet and outlet nodes for zhyd watershed objects. This case 4 is for
those watersheds that its river inlet and outlet object is length 4 (length(riverIO)=4).

Usage

Watershed.IOR4(x, y, dist)

Arguments

x An object "SpatialPointsDataFrame" as is described in package sp over them
the function will search the inlet and outlet nodes of the watershed.

y An object "SpatialLinesDataFrame" as is described in package sp that repre-
sents the inlet and outlet rivers of the watershed.

dist A vector with the distances of each point in x to the current zhyd boundary.

Value

inlet A "SpatialPointsDataFrame" that represents the inlet node of the current
zhyd.

outlet A "SpatialPointsDataFrame" that represents the outlet node of the current
zhyd.

Note

If there are not inlet or outlet node of the current zhyd is returned 0.

Author(s)

J.A. Torres

See Also

See Also the functions Watershed.IOR1, Watershed.IOR2, Watershed.IOR3.

Examples

library(Watersheds)
data(WatershedsData)

station1 = WatershedsData$station
subbasin1 = WatershedsData$subbasin
zhyd1 = WatershedsData$zhyd
river1 = WatershedsData$river
node1 = WatershedsData$node

station1 = SpatialPoints(coords=cbind(4357947,3284525),
proj4string=slot(subbasin1,"proj4string"))
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watershed = new("Watershed",station=station1,subbasin=subbasin1,
zhyd=zhyd1,river=river1,c1=subbasin1,node=node1)

a = Watershed.Order(watershed)
c1 = a[[1]]
riverIO = a[[8]]
nodeIO = a[[9]]
c1_river = a[[1�]]

# determining inlet and outlet watershed nodes
# determining distances of nodeIO to c1
boundary = gBoundary(c1)
dist = gDistance(nodeIO, boundary, byid =TRUE)
a = Watershed.IOR4(x=nodeIO, y=riverIO, dist=dist)
c1_inlet = a$inlet; c1_inlet
c1_outlet = a$outlet; c1_outlet

plot(c1,col="gray6�")
plot(station1,pch=24, bg="blue",add= TRUE)
plot(c1_river, col="blue", add=TRUE)
plot(c1_outlet,pch=21, bg="red",add= TRUE)
plot(c1_inlet,pch=21, bg="green",add= TRUE)
plot.PointAttribute(c1_outlet,"ELEV",1���,�.8)
plot.PointAttribute(c1_inlet,"ELEV",1���,�.8)
title(main="Watershed outlet and inlet, case IV")

Watershed.Order-methods
S4 Method for Function Watershed.Order

Description

S4 Method for function Watershed.Order. Definition of the properties of the current zhyd water-
shed.

Value

The method returns a list of 11 objects:

c1 An object SpatialPolygonsDataFrame of length 1 that represents the current
zhyd watershed object.

c1_inlet An object SpatialPointsDataFrame of length 1 that represents the current inlet
node of the zhyd watershed object.

c1_outlet An object SpatialPointsDataFrame of length 1 that represents the current out-
let node of the zhyd watershed object.

c2 An object SpatialPolygonsDataFrame of length 1 that represents the greater
watershed tributary of the current zhyd watershed object.

c3 An object SpatialPolygonsDataFrame of length 1 that represents the second
watershed tributary of the current zhyd watershed object.

node_trib An object SpatialPointsDataFrame of length 2 that represents the station
points of the tributary watershed objects.



14 Watershed.Order-methods

sb1 An object SpatialPointsDataFrame of length 1 that represents the subbasin
that contains the current zhyd watershed object.

riverIO An object SpatialLinesDataFrame that represents the inlet (I) and outlet (O)
rivers that crosses the boundary of the current zhyd watershed object.

nodeIO An object SpatialPointsDataFrame that represents the nodes of the inlet (I)
and outlet (O) rivers that crosses the boundary of the current zhyd watershed
object.

c1_river An object SpatialLinesDataFrame that represents the river network inside the
current zhyd watershed object.

c1_node An object SpatialPointsDataFrame that represents the node network inside
the current zhyd watershed object.

Methods

signature(x = "Watershed") The function takes the object of class Watershed and identifies
the subbasin that contains the current station (class SpatialPoints) and subsets the zhyd
object to subbasin and extract the current zhy object that contains station. Posteriorly, iden-
tifies the inlet and outlet stretches and probable inlet and outlet nodes of the zhyd. Then, runs
the functions Watershed. ,IOR1, IOR2, IOR3, or IOR4 for determining the actual inlet and
outlet nodes. Finally, the method executes the S4 method Watershed.Tributary for defining
tributary nodes and tributary catchments of the current zhyd watershed.

See Also

See Also the class Watershed and the methods Watershed.Order2 and Watershed.Tributary.

Examples

library(Watersheds)
data(WatershedsData)

station1 = WatershedsData$station
subbasin1 = WatershedsData$subbasin
zhyd1 = WatershedsData$zhyd
river1 = WatershedsData$river
node1 = WatershedsData$node

station1 = SpatialPoints(coords=cbind(4328448.74, 3118576.86),
proj4string=slot(subbasin1,"proj4string"))
watershed = new("Watershed",station=station1,subbasin=subbasin1,
zhyd=zhyd1,river=river1,c1=subbasin1,node=node1)

a = Watershed.Order(watershed)
c1 = a[[1]]
c1_inlet = a[[2]]
c1_outlet = a[[3]]
c2 = a[[4]]
c3 = a[[5]]
node_trib = a[[6]]
sb1 = a[[7]]
riverIO = a[[8]]
nodeIO = a[[9]]
c1_river = a[[1�]]
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c1_node = a[[11]]

bbox1 = slot(c1, "bbox")
bbox = matrix(�,2,2)
bbox[,1] = bbox1[,1]*.998
bbox[,2] = bbox1[,2]*1.��2

plot(c1, xlim=bbox[1,], ylim=bbox[2,],col="gray5�")
plot(c2, col="gray75", add=TRUE)
plot(c3, col="gray85", add=TRUE)
plot(slot(watershed,"station"),pch=24, bg="blue",add= TRUE)
plot.PolyLineAttribute(c1, "order", 45�, �.8)
plot.PolyLineAttribute(c2, "order", 45�, �.8)
plot.PolyLineAttribute(c3, "order", 45�, �.8)
plot(c1_river, col="blue", add=TRUE)
plot(c1_node,pch=21,bg="blue",cex=.5,add=TRUE)
plot(nodeIO,pch=21,bg="blue",cex=.5,add=TRUE)
plot(c1_inlet, pch=21, bg="green",add= TRUE)
plot(c1_outlet,pch=21, bg="red",add= TRUE)
plot.PointAttribute(nodeIO,"ELEV",6��,�.7)
title(main="Current zhyd watershed (1)",
sub="First order tributary watersheds (1.1, 1.2)")

Watershed.Order2-methods
S4 Method for Function Watershed.Order2

Description

S4 Method for function Watershed.Order2. Definition of the tributary zhyd watersheds of the
current zhyd watershed.

Value

The method returns a list of 2 objects:

c2 An object with the output of the method Watershed.Order of length 11 for one
of the points of node_trib. The properties of the greater tributary watershed of
the current zhyd watershed.

c3 An object with the output of the method Watershed.Order of length 11 for the
other points of node_trib. The properties of the second tributary watershed of
the current zhyd watershed.

Methods

signature(watershed = "Watershed") The method takes the objec of class Watershed when
object node_trib is length 2. The method identifies the zhyd watershed that contaions the
current station (class SpatialPoints) and apply the method Watershed.Order on each
point of node_trib returning a list of objects Watershed.Order. The computation is done
via parallel processes for optimizing and take advance of multicore functionalities.

See Also

See Also the class Watershed and the methods Watershed.Order and Watershed.Tributary.
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Examples

library(Watersheds)
data(WatershedsData)

station1 = WatershedsData$station
subbasin1 = WatershedsData$subbasin
zhyd1 = WatershedsData$zhyd
river1 = WatershedsData$river
node1 = WatershedsData$node

station1 = SpatialPoints(coords=cbind(432865�,317445�),
proj4string=slot(subbasin1,"proj4string"))
watershed = new("Watershed",station=station1,subbasin=subbasin1,
zhyd=zhyd1,river=river1,c1=subbasin1,node=node1)

a = Watershed.Order(watershed)
c1 = a[[1]]
node_trib = a[[6]]
c1_river = a[[1�]]

watershed2 = new("Watershed", station=node_trib, subbasin=subbasin1, zhyd=zhyd1, river=river1, c1=c1,node=node1)
c23 = Watershed.Order2(watershed2)
c2 = c23[[1]]
c3 = c23[[2]]

c2.� = c2[[1]]
c2_inlet = c2[[2]]
c2_outlet = c2[[3]]
c2.1 = c2[[4]]
c2.2 = c2[[5]]
c2_node_trib = c2[[6]]
c2_sb1 = c2[[7]]
c2_riverIO = c2[[8]]
c2_nodeIO = c2[[9]]
c2_river = c2[[1�]]
c2_node = c2[[11]]

c3.� = c3[[1]]
c3_inlet = c3[[2]]
c3_outlet = c3[[3]]
c3.1 = c3[[4]]
c3.2 = c3[[5]]
c3_node_trib = c3[[6]]
c3_sb1 = c3[[7]]
c3_riverIO = c3[[8]]
c3_nodeIO = c3[[9]]
c3_river = c3[[1�]]
c3_node = c3[[11]]

# subsetting river networks
id = list(gIntersects(c2.1, WatershedsData$river,byid=TRUE))
c21_river = SpDF_Subset(id,WatershedsData$river)

id = list(gIntersects(c2.2, WatershedsData$river,byid=TRUE))
c22_river = SpDF_Subset(id,WatershedsData$river)
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id = list(gIntersects(c3.1, WatershedsData$river,byid=TRUE))
c31_river = SpDF_Subset(id,WatershedsData$river)

id = list(gIntersects(c3.2, WatershedsData$river,byid=TRUE))
c32_river = SpDF_Subset(id,WatershedsData$river)

# plots
bbox1 = slot(c3.2, "bbox")
bbox = matrix(�,2,2)
bbox[,1] = bbox1[,1]*.995
bbox[,2] = bbox1[,2]*1.��5

plot(c1, col="gray5�", xlim=bbox[1,], ylim=bbox[2,])
plot(c2.�, col = "gray95", add=TRUE)
plot(c3.�, col="gray79", add=TRUE)
plot(c2.1, col="gray78", add=TRUE)
plot(c2.2, col="gray85", add=TRUE)
plot(c3.1, col="gray53", add=TRUE)
plot(c3.2, col="gray63", add=TRUE)

plot(c1_river, col="blue",add=TRUE)
plot(c2_river, col="blue",add=TRUE)
plot(c3_river, col="blue",add=TRUE)
plot(c21_river, col="blue",add=TRUE)
plot(c22_river, col="blue",add=TRUE)
plot(c31_river, col="blue",add=TRUE)
plot(c32_river, col="blue",add=TRUE)

Watershed.Tributary-methods
S4 Method for Function Watershed.Tributary

Description

S4 Method for function Watershed.Tributary. Definition of the order of tributary zhyd water-
sheds of the current zhyd watershed.

Value

The method returns a list of 4 objects:

c2c3 A list of length 2 with objects SpatialPolygonsDataFrame of length 1 ordered
that represents the greater watershed and second tributary of the current zhyd
watershed object.

c2 An object SpatialPolygonsDataFrame of length 1 ordered that represents the
greater watershed tributary of the current zhyd watershed object.

c3 An object SpatialPolygonsDataFrame of length 1 ordered that represents the
second watershed tributary of the current zhyd watershed object.

node_trib An object SpatialPointsDataFrame of length 2 that represents the station
points of the tributary watershed objects.
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Methods

signature(x = "SpatialPointsDataFrame", xo = "SpatialPointsDataFrame", y = "SpatialLinesDataFrame", z = "SpatialPointsDataFrame", zhyd = "SpatialPolygonsDataFrame", c1 = "SpatialPolygonsDataFrame")

See Also

See Also the class Watershed and the methods Watershed.Order and Watershed.Order2.

Examples

library(Watersheds)
data(WatershedsData)

station1 = WatershedsData$station
subbasin1 = WatershedsData$subbasin
zhyd1 = WatershedsData$zhyd
river1 = WatershedsData$river
node1 = WatershedsData$node

station1 = SpatialPoints(coords=cbind(4328448.74, 3118576.86),
proj4string=slot(subbasin1,"proj4string"))
watershed = new("Watershed",station=station1,subbasin=subbasin1,
zhyd=zhyd1,river=river1,c1=subbasin1,node=node1)

a = Watershed.Order(watershed)
c1 = a[[1]]
c1_inlet = a[[2]]
c1_outlet = a[[3]]
sb1 = a[[7]]
riverIO = a[[8]]
nodeIO = a[[9]]
c1_river = a[[1�]]
c1_node = a[[11]]

a = Watershed.Tributary(x=c1_inlet,xo= c1_outlet,y=riverIO,z=nodeIO,zhyd=zhyd1, c1=c1)
c2c3 = a[[1]]
c2 = a[[2]]
c3 = a[[3]]
node_trib = a[[4]]

bbox1 = slot(c2c3, "bbox")
bbox = matrix(�,2,2)
bbox[,1] = bbox1[,1]*.998
bbox[,2] = bbox1[,2]*1.��2

plot(c1, xlim=bbox[1,], ylim=bbox[2,],col="gray5�")
plot(c2, col="gray75", add=TRUE)
plot(c3, col="gray85", add=TRUE)
plot(slot(watershed,"station"),pch=24, bg="blue",add= TRUE)
plot.PolyLineAttribute(c1, "order", 45�, �.8)
plot.PolyLineAttribute(c2, "order", 45�, �.8)
plot.PolyLineAttribute(c3, "order", 45�, �.8)
plot(c1_river, col="blue", add=TRUE)
plot(node_trib,pch=21,bg="red",cex=.8,add=TRUE)
plot.PointAttribute(node_trib,"ELEV",6��,�.7)
title(main="Current zhyd watershed (1)",
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sub="First order tributary nodes (1.1, 1.2)")

WatershedsData A dataset of the ECRINS database for the river Weser basin, Germany.

Description

The European Environment Agency (EEA) has been developed the Catchments and Rivers Net-
work System (ECRINS) version 1.1. The ECRINS is the hydrographical system currently in use
at the European level as well as widely serving as the reference system for the Water Information
System (WISE) (EEA,2012). The current version of ECRINS is based on previous work carried
out by the Joint Research Centre (JRC) Catchment Characterisation and Modelling (CCM) and the
EEA (European Lakes, Dams and Reservoirs Database (Eldred2), European Rivers and Catchments
(ERICA)), (EEA,2012).

Usage

data(WatershedsData)

format

basin: an object SpatialPolygonsDataFrame as is defined in package sp that represents the river
Weser basin. The data slot contains 6 variables as attributes of 1 obaservation.

ctry: an object SpatialPolygonsDataFrame as is defined in package sp that represents the ad-
ministrative boundary of Germany. The data slot contains 6 variables as attributes of 1 obaser-
vation.

node: an object SpatialPointsDataFrame as is defined in package sp that represents the nodes
of the ECRINS river network of the river Weser basin. The data slot contains 13 variables as
attributes of 3882 obaservations.

rAller an object SpatialLinesDataFrame as is defined in package sp that represents the basin
of the river Aller, a major tributary of the river Weser. The data slot contains 74 variables as
attributes of 88 observations.

rDiemel an object SpatialLinesDataFrame as is defined in package sp that represents the basin
of the river Diemel, a major tributary of the river Weser. The data slot contains 74 variables
as attributes of 39 observations.

rFulda an object SpatialLinesDataFrame as is defined in package sp that represents the basin
of the river Fulda, a major tributary of the river Weser. The data slot contains 74 variables as
attributes of 82 observations.

rHunte an object SpatialLinesDataFrame as is defined in package sp that represents the basin
of the river Hunte, a major tributary of the river Weser. The data slot contains 74 variables as
attributes of 34 observations.

river an object SpatialLinesDataFrame as is defined in package sp that represents the ECRINS
river network of the river Weser basin. The data slot contains 52 variables as attributes of
3874 observations.

rWerra an object SpatialLinesDataFrame as is defined in package sp that represents the basin
of the river Werra, a major tributary of the river Weser. The data slot contains 74 variables as
attributes of 120 observations.

rWeser an object SpatialLinesDataFrame as is defined in package sp that represents the basin
of the river Weser. The data slot contains 74 variables as attributes of 104 observations.
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rWiumme an object SpatialLinesDataFrame as is defined in package sp that represents the basin
of the river Wiumme, a major tributary of the river Weser. The data slot contains 74 variables
as attributes of 18 observations.

station an object SpatialPoints as is defined in package sp that represents a point of interest
for which the watershed will be aggregated an ordered. Could be a point with the coordinates
of a measurement station.

subbasin an object SpatialPolygonsDataFrame as is defined in package sp that represents the
subbasins of the tributaries of the river Weser. The data slot contains 4 variables as attributes
of 4 observations.

zhyd an object SpatialPolygonsDataFrame as is defined in package sp that contains the primary
hydrological units of the river Weser basin accordingly with ECRINS. The data slot contains
50 variables as attributes and 915 observations.

References

European Environment Agency - EAA. (2012). EEA catchments and rivers network system, ECRINS
v1.1. rationales, building and improving for widening uses to Water Accounts and WISE applica-
tions (EEA Technical report No. 7/2012). (Luxembourg: Publications Office of the European
Union).

Examples

data(WatershedsData)

# plotting river Weser basin
plot(WatershedsData$ctry)
plot(WatershedsData$basin, col="green4", add=TRUE)
title("River Weser basin, Germany")

# plotting river Weser basin
plot(WatershedsData$ctry)
plot(WatershedsData$basin, col="green4", add=TRUE)
title("River Weser basin, Germany")

# plotting subbasins river Weser basin
plot(WatershedsData$basin)
plot(WatershedsData$subbasin, col="green3",add=TRUE)
plot(WatershedsData$rWeser,col="blue",lwd=2,add=TRUE)
plot(WatershedsData$rAller,col="blue",lwd=1,add=TRUE)
plot(WatershedsData$rDiemel,col="blue",lwd=1,add=TRUE)
plot(WatershedsData$rFulda,col="blue",lwd=1,add=TRUE)
plot(WatershedsData$rHunte,col="blue",lwd=1,add=TRUE)
plot(WatershedsData$rWerra,col="blue",lwd=1,add=TRUE)
plot(WatershedsData$rWiumme,col="blue",lwd=1,add=TRUE)
title("Subbasins River Weser")

# plotting primary zhyd watersheds and drainage network inside river Werra subbasin
# subsetting the river Werra subbasin
id = list(gIntersects(WatershedsData$rWerra, WatershedsData$subbasin,byid=TRUE))
subbasin_rWerra = SpDF_Subset(id,WatershedsData$subbasin)
plot(subbasin_rWerra)

# subsetting the river Werra zhyd watersheds
id = list(gIntersects(WatershedsData$rWerra, WatershedsData$zhyd,byid=TRUE))
zhyd_rWerra = SpDF_Subset(id,WatershedsData$zhyd)



WatershedsData 21

plot(WatershedsData$rWerra,col="blue",lwd=1,add=TRUE)
plot(zhyd_rWerra,col="green3",add=TRUE)
title("Subbasin River Weser and primary zhyd watersheds")

# subsetting the river Werra river drainage watersheds
id = list(gIntersects(subbasin_rWerra, WatershedsData$river,byid=TRUE))
river_rWerra = SpDF_Subset(id,WatershedsData$river)
plot(subbasin_rWerra)
plot(WatershedsData$rWerra,col="blue",lwd=3,add=TRUE)
plot(river_rWerra,col="blue1",add=TRUE)
title("Subbasin River Weser and drainage network")
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