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Abstract 

We perform a structural analysis on an environmental Kuznets curve (EKC) for Spain 

by exploiting long time series (1874-2011) and by using real oil prices as indicator of 

variations in fuel energy consumption. This empirical strategy allows us to both, capture 

the effect of the most pollutant energy on carbon dioxide (CO2) emissions and, at the 

same time, preclude potential endogeneity problems derived from the direct inclusion of 

fuel consumption in econometric specification. Knowingthe extent to whichoil prices 

affect CO2 emissions has a straightforward application for environmental policy. The 

dynamics estimates of the long and short-term relationships among CO2, economic 

growth and oil prices, are built through an autoregressive distributed lag (ARDL) 

model. Our test results support the EKC hypothesis. Moreover, real oil prices are clearly 

revealed as a valuable indicator of pollutant energy consumption. 

Keywords 

Environmental Kuznets curve, CO2; Oil prices; Autoregressive distributed lag model; 

Time series. 

 

1. Introduction 

Over time, humankind has contributed to atmosphere contamination through 

different processes of production and consumption. From the seventies, when a major 

concern on the environment’s deterioration took place at international level, some 



economists argued that enhancement in per capita income could eventually reduce the 

level of environment degradation. We can distinguish at least two arguments widely 

used to explain this possible phenomenon. That is, on the one hand, the variation 

towards a new productive structure which uses a lower level of polluting energies. On 

the other hand, the social willingness to pay for the extra cost associated to the cleaner 

energies. These underlying ideas were enthusiastically accepted when an early set of 

papers (e.g., Grossman and Krueger, 1991; Shafik and Bandyopadhyay, 1992; 

Panayotou, 1993) provided the first formal evidence about an inverted U-shape 

relationship between per capita income and environmental degradation following, 

therefore, a Kuznets type curve.1 Nowadays, we can appeal to many studies that show 

the existence of an environmental Kuznets curve (EKC) for several countries by using 

different sample periods, econometric modeling and empirical methods. 

With the aim of contributing to the knowledge on the EKC for CO2 emissions, 

this paper provides new evidence for Spain by exploiting time series from a large period 

(1874-2011). We will analyze the possible effect on Spanish CO2 emissions generated 

not only from economic growth but also from changes in pollutant energy consumption. 

However, the direct inclusion of pollutant energy consumption in models would 

introduce endogeneity problems since the available measures of CO2 are 

contemporaneously correlated with that variable. In fact, the Carbon Dioxide 

Information Analysis Center (CDIAC) calculates the total CO2 emissions by multiplying 

different primary energy sources (coal, petroleum, and natural gas) by their respective 

emission rates. Then, we will consider as an indicator of pollutant energy consumption 

real oil prices that, in turn, can be conformed as a useful instrument for environmental 

policy. 

                                                           
1
 Kuznets (1955) had originally suggested that a changing relationship between per capita income and 

income inequality could be represented by an inverted-U-shaped curve. 



The level of real oil prices may presumably affects CO2 emissions through two 

ways regardless of their indirect effect via GDP.2 On the one hand, it is well known that 

an increase in oil prices could imply a reduction on energy consumption. This might be 

compensated, in order to sustain GDP levels, by using more units of either labor or 

capital. On the other hand, we must bear in mind that fuel combustion is, after coal, the 

most pollutant of all energy alternatives. Thus, higher oil prices may drive towards 

substitution of fuel combustion by other cleaner and more efficient energy 

resources.3Taking into account the potential effect of oil prices to reduce CO2 

emissions, its introduction in the model specification will allow us to know the degree 

to which taxation on oil products may be considered as a useful environmental policy. 

Obtaining more accurate estimates of the per capita income effect is another compelling 

reason to extent the simplest EKC specification. That is, if oil price is a relevant 

variable and it is correlated with GDP, introduction of oil prices will avoid the 

estimation bias on the per capita income effect. 

The existing empirical literature gives us light on the consideration of oil prices 

in the EKC framework (i.e., Agras and Chapman, 1999; Heil and Selden, 2001; and 

Richmond and Kaufmann, 2006). These authors claim the importance of oil prices and 

indicate that measures oriented to increase domestic prices on the most polluting 

energies constitute a valuable tool to reduce the level of CO2 emissions. Moreover, the 

results obtained by Richmond and Kaufmann (2006) from the US data suggested that 

including energy prices in the model could have a considerable impact on the estimated 

                                                           
2 The effect of oil prices on GDP is widely recognized, and has been received notable attention in the 
empirical literature (e.g., Lardic and Mignon, 2006; Bachmeier, et al. 2008; Kilian and Vigfusson, 2013). 
3
 Shahbaz et al. (2014), for example, show that more electricity consumption has been declining CO2 

emissions in the United Arab Emirates. According to authors, more electricity consumption is linked with 
the adoption of more efficient technology and cleaner energy in this country. 



income coefficients. In fact, in the analyzed context, the inclusion of energy prices 

removed statistical support for typical turning points. 

The estimation process that we use is the autoregressive distributed lag (ARDL) 

bounds testing procedure of Pesaran and Shin (1999) and Pesaran et al. (2001). A major 

advantage of this method is that allows us to make valid inferences on both parameters 

and functional forms regardless of whether the time series are I(1) or I(0), or a 

combination of both. This advantage makes the method particularly suitable to our 

purpose. The reason is that different historical stages included in our long-time series 

imply presumable presence of structural breaks, which introduces uncertainty as to the 

true order of integration of the variables. This means that, it is possible that any of the 

variables used here are stationary around some probable structural breaks,4 but can be 

erroneously classified as I(1) from conventional tests. Another noteworthy advantage is 

that the ARLD bounds testing approach is superior to that of the traditional Johansen’s 

cointegration methodology, which in general, requires a very large sample size. In 

particular, Pesaran and Shin (1999) demonstrate that the ARDL procedure has better 

properties in a sample size as the used here (i.e., less than 150 observations). 

 

2. Empirical background 

Since the initial empirical studies of the aforementioned economists in the early 

nineties, a large number of papers have tested the existence of a U-shape relationship 

between pollution level and per capita income. There are several recent surveys on this 

topic offering a fairly comprehensive overview of the state of the question (e.g., Kijima, 

                                                           
4 Moreover, the ARDL will allow us conveniently test whether or not there is underlying structural breaks 
that affect the long-run stability of estimated coefficients. 



et al. 2010; Bo, 2011; Pasten and Figueroa, 2012). The papers surveyed can be 

classified by those referred to pollutants that would have only local effects (such as 

sulfur and nitrous oxides) and those associated to pollutants that would have global 

effects. A key factor that determines if a pollutant is either local or global is mostly 

based on the kind of combustion system that an industry uses. For example, sulfur oxide 

(local pollutant) stems basically from coal combustion whereas CO2 (global pollutant) is 

derived more from oil combustion. Since our research is addressed to CO2 emissions, 

the present paper is confined to the latter group in which there is less of a consensus 

about the existence of an EKC (Meers and Leekley, 2000). This result should not be 

very surprising giving that social costs go beyond across time and places where 

emissions are generated. Therefore, it is more likely that there is a free-rider behavior 

that makes countries to keep polluting to a larger extent regardless the level of per 

capita income that can be reached. 

Next, we will focus on those papers that are related, in some way, to either the 

context and/or the type of model specification that are object of our research. The paper 

by Roca et al. (2001) is the first research that estimates a long-run relationship between 

income and CO2 emissions for the Spanish case by using time series analysis. The 

empirical results, from a sample period that ranges from 1973 to 1996, do not reveal the 

existence of an EKC since the estimated elasticity between (per capita) income and (per 

capita) CO2 emissions is positive and greater than one (1.24). This outcome has been 

recently questioned by Esteve and Tamarit (2012a) because the long-run relationship is 

assumed to be stable over time. They introduced potential breaks in a bivariate model 

and considerably extended the data sample used by Roca et al. (2001). From a sample 

that goes from 1858 to 2007, the authors found that the long-run elasticity between (per 

capita) income and (per capita) CO2 is defined by three regimes where estimates 



decreased over time. This outcome has been interpreted as the existence of a declining 

growth path pointing to a prospective turning point even though the EKC does not 

follow an inverted-U-shaped curve. 

Two additional papers are found in the literature using alternative functional 

forms. Those reexamined the relationship between (per capita) income and (per capita) 

CO2 emissions for Spain through the same data sample utilized by Esteve and Tamarit 

(2012a). More specifically, Esteve and Tamarit (2012b) employ a bivariate model with 

two threshold regimes in order to combine the idea of cointegration with nonlinearity 

(in the adjustment) between income and CO2 variables. The paper does not provide 

information about a possible turning point as the standard EKC approach points out. 

However, their results suggested, once more, that economic development is compatible 

with pollution reduction. By adopting a more complex functional form, where the 

cointegration relationship between (per capita) income and (per capita) CO2 is assumed 

non-linear, such outcome is also obtained by Septhon and Mann (2013). 

All the papers described above pay no attention to the potential contribution of 

energy consumption with respect to the level of CO2 emissions. It is obvious that the 

utilization of energy, especially combustion of fossil fuels, is, at the same time, a large 

source of pollution. Furthermore, disregarding the role of energy use in models may 

generate estimation bias if energy use and income are related.5 Thus, the inclusion of an 

energy variable, which collects the possible effect of the energy consumption, seems to 

be a reasonable empirical strategy. There are some recent studies which analyse income 

effects on CO2 emissions by incorporating an energy variable in countries such as 

                                                           
5 Nowadays, a large number of studies reveal causality between energy consumption and economic 
growth for a large set of countries as can be seen from a review of the literature. See, for example, Payne 
(2010). 



Pakistan (Shahbaz et al. 2012), Indonesia (Shahbaz et al. 2013), and India (Tiwari et al. 

2013; Shahbaz et al. 2015). 

Due to the standard build procedure of CO2 variable, energy consumption is 

contemporaneously correlated with CO2 emissions. Stemming from it, we can see as 

some authors have instrumented the energy consumption variable through either the 

evolution of energy prices (Agras and Chapman, 1999; Heil and Selden, 2001; 

Richmond and Kaufman, 2006) or a set of indicators to proxy the use of pollutant 

energies (Apergis and Ozturk, 2015).6 In the first paper, research is done for a large set 

of high, middle and low-income countries between 1971 and 1989. The authors used 

gasoline prices given that combustion of fossil fuels is the main source of CO2 pollution 

in the analyzed countries. Results derived from a partial adjustment model indicated that 

oil price is an essential variable to explain the level of CO2 emissions. Moreover, it is 

revealed that their inclusion (together with other no relevant variables)7 removes the 

empirical evidence in favor of a turning point for income. Therefore, it is highlighted 

that economic growth per se will not reduce carbon emissions. Thus, the omission of oil 

prices can lead to recommend wrong environmental policies. 

Similar conclusion is obtained by Heil and Selden (2001), and Richmond and 

Kaufman (2006). The former use panel data information related to a large set of 

countries for the period 1951-1992. They forecast the cumulative emissions for the 

period 1991 to 2001 and compare them with the period between 1881 and 1990. The 

cumulative emissions would be a seven-fold the preceding period without new active 

environmental policies. This indicates that it may have very adverse effects on climate 

change. The authors point out that the common oil price used in their analysis should be 

                                                           
6 In this latter case, the lack of institutional concern about the use of clean energy is then controlled for 
Asian countries. 
7 Trade variables are also included but they are not revealed as significant. 



considered as a proxy of domestic energy prices. It obviously varies across the countries 

due to taxes, subsidies, and others idiosyncratic distortions of each region. A small 

magnitude of the coefficient associated to oil prices is found. However, the authors 

empathize that this should not be interpreted as evidence that energy price increases 

would have little impact on CO2 emissions. Richmond and Kaufman (2006) use panel 

data information for several OECD countries related to 1978-1997 period. Once again, 

it is shown that there is no turning point when oil prices are included in the econometric 

model. Oil prices reveal to be quite effective for reducing energy use and CO2 

emissions. The authors explicitly claim that raising real energy prices may be 

considered an effective policy measure for environmental improvement. 

The three studies discussed above employ relatively short time series. 

Nevertheless, they use a wide range of cross-sectional data. Although the results are 

restricted to be common to a set of countries, they give an interesting overview about 

the phenomenon we are concerned to. The economic arguments as well as the relevant 

omission bias suggested by the empirical results encouraged us to reexamine, through 

longer time series, the EKC for specific countries. The availability of a reasonable time 

span data for the Spanish case is an advantage. This case is particularly interesting given 

the different results and approaches showed by existing papers (e.g. Roca et al., 2001; 

Esteve and Tamarit, 2012a, 2012b; Mann, 2013). However, the role of energy prices 

and in particular real oil prices is not taken into account. By using the same context, our 

analysis may enrich the knowledge on the EKC. Furthermore, the use of oil prices as 

indicator of consumption of pollutant energy may avoid endogeneity problems as well 

as some potential biasness in the final results. 

 



3. Sample period 

We focus on a sample period between 1874 and 2011 for which annual time 

series for CO2, GDP, population, and international oil prices are available. They are 

collected from different data sources. Thus, CO2 emissions measured in metric tons 

were obtained from the Carbon Dioxide Information Analysis Center (CDIAC) of the 

US Department of Energy (available at the websitehttp://cdiac.ornl.gov/). The GDP, in 

US dollars (1990 base year), and the population were compiled by the Maddison 

Historical Statistics (http://www.ggdc.net/maddison/maddison-project/home.htm) and 

the Instituto Nacional de Estadística (http://www.ine.es/). Finally, crude oil prices 

measured in real dollars (2010 base year) were gathered from the Statistical Review of 

World Energy 2013 provided by the British Petroleum company (http://www.bp.com/). 

As we can see in Figure 1, the overall evolution of CO2 emissions seems a priori 

a bit worrying. Indeed, the emissions in 1950 were twenty four times those generated in 

1874. Whereas in 2011, they have been about two hundred and fifty times higher than 

those emitted at the beginning of the shown period. Regardless of the concerns caused 

by the emissions trend, Spain may have reached a certain level of the per capita income 

from which some reducing effect on emissions would have been taken place. In fact, it 

should be noted that the Spanish per capita income has also experienced a rather 

significant growth. Although in 1950 the per capita income was only about fifty percent 

greater than in 1874, the increase achieved in 2011 is more than eleven times that on the 

corresponding starting year. 

[Please insert Figure 1 about here] 

The moderate economic growth at the beginning of the sample and the 

extraordinary development in the past five decades respond to certain historical facts 



that it is worth of briefly mentioning. In broad terms, this moderate growth sub-period 

in Spain came associated to a predominantly agricultural economy, with low utilization 

of energy resources, and scarce external relations.8 This economic growth was transitory 

interrupted by the Spanish Civil War (1936-1939). Under the following dictatorship 

government with the implementation of an autarky system, the development was 

somewhat conditioned by the access to limited domestic energy sources. With the aim 

to boost economic growth, some technocrats advocated implementing a package of deep 

policy reforms introduced in 1959 and following years. This change encouraged trade in 

general and imports of petroleum products in particular. 

As we can also see in Figure 1, international oil prices display some generalized 

growth and turbulences, which are especially relevant in the last decades. More 

specifically, oil prices rebounded from 1973 mainly due to the Yom Kippur War. Later 

on in 1978 they extraordinarily increased once more as a consequence of Iran 

revolution. The return to social stability in the next decade was accompanied by a 

falling in oil prices. They rose again but moderately this time when Iraq invaded Kuwait 

in 1990. After the Asian financial crisis of 1997, and mainly after Iraq’s conflict and 

their invasion in 2003, the oil prices greatly augmented again. Later on, the renowned 

Arab spring in 2010 ended a new stage of falling prices. 

Due to the fact that Spain is highly dependent on fuel oil imports (Sudrià, 2010), 

it seems quite reasonable to think that variations in international oil prices may have had 

an impact on the historical evolution of Spanish CO2 emissions. Then, data on 

                                                           

8 The reasonable performance of the economy in Spain during this first stage is described, for example, in 
Molinas and Prados de la Escosura (1989), and in Fernández Navarrete (2005). 



international oil prices will be taken as a useful proxy of the (unknown) local prices for 

fuel oil products. 

 

4. Model specification and methodology 

The econometric specification that explains a country’s emissions of global 

pollutants such as CO2 differs somewhat from those that intend to explain emissions 

from other pollutants. Thus, since CO2 emissions are mainly generated in industries by 

using oil fuel, then, an indicator of oil prices would be a reasonable variable to be 

introduced in the model.9 The rest of our proposed model will involve, as in the case of 

other pollutants, per capita real income following the standard EKC. Thus, we finally 

specify the next econometric model, in natural logarithms, to explain the Spanish 

emissions of global CO2 pollutant: 

ttttt
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where lnyt represents per capita real income proxied by per capita GDP, and lnpt 

captures the evolution of real crude oil prices to which Spanish agents faced in the local 

market. Lastly, is the error term which is assumed to be independent and normally 

distributed. According to the typical EKC form, we would expect that the elasticity of 

CO2 with respect to per capita income be positive (β1>0) and the income elasticity of its 

square would become negative (β2<0). Oil price elasticity for CO2 emissions would be 

expected to be negative (β3<0), meaning that higher prices would discourage the use of 

energy and therefore emissions would be lower. 

                                                           
9 For the analysis of pollutants largely based on different combustion systems other energy prices should 
be taken into consideration. This would be the case of local pollutants such as sulfur oxide or nitrous 
oxide emissions, where and indicator of coal prices would be advisable to be introduced. 
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The empirical methodology that we use in this paper is the autoregressive 

distributive lag (ARDL) bounds test proposed by Pesaran et al. (1997, 2001). Then, the 

error correction model (ECM) can be easily derived from the ARDL framework making 

also possible to estimate the long-run adjustment process towards equilibrium. One of 

the advantages of this method is that the time series regression can be carried out 

regardless of the nature of variables, that is, whether or not they are either I(1) or I(0). 

Given that most of the macroeconomic variables are proved to be either one of those 

two orders, then this methodology is convenient with the aim of examining long-run 

relationships. As Pesaran and Shin (1999) demonstrated, another great advantage is that 

serial correlation and endogeneity problems are removed when long-run and short-run 

components are simultaneously taken with appropriate lags. 

The relationship among per capita CO2, per capita income, and oil prices 

postulated in Eq. (1) follows a time path before a long-term nexus is achieved. Thus, the 

Eq. (1) would be written as an unrestricted error correction representation:
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where et are the new serially independent errors. The estimation procedure used here 

involves two stages. In a first stage we will analyze, through the ARDL bounds test, 

whether or not there is evidence of a cointegrating relationship. With this purpose, the 

null hypothesis of no cointegration among the variables ( 0:
43210

==== λλλλH ) should 

be tested against the alternative hypothesis ( 0:
43211

≠≠≠≠ λλλλH ). Ordinary least 

squares report F-statistics, which are compared to the critical values given in Pesaran 

and Shin (1996), and Pesaran et al. (2001). If they go beyond the upper bound then the 

null hypothesis will be rejected and there will be a cointegrating relationship among the 



variables. On the contrary, if the F-statistics are below the lower bound, the null 

hypothesis will not be rejected. In the case that the F-statistics are in between the upper 

and lower critical values, then the test result should be considered inconclusive. The 

second stage, then, is to estimate the long-run coefficients of the cointegrating relation 

and make inferences about their values. 

Finally, the empirical methodology involves the modeling of a restricted error 

correction representation, which takes a similar form of Eq. (2) but now including the 

long-run terms in the error correction variable lagged one period: 
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where ectt-1 is the error correction term represented by the OLS residuals series from the 

long-run cointegration relationship, and the coefficient indicates the speed of 

adjustment towards this long-run equilibrium. Diagnostic and stability tests will reveal 

the soundness of the model. 

 

5. Results and discussion 

Since the ARDL approach does not contemplate an order higher than I(1), unit 

root tests will still be performed. We are aware that any structural break in the variables 

would reduce the power of this type of tests. If that were the case, then I(1) could not be 

rejected but anyhow, the aforementioned method admits both degrees I(1) and I(0) or 

even if it is an I(0) plus trend (TSP). The Augmented Dickey Fuller (ADF) unit root 

tests presented in Table 1 indicates that the four variables turned out to be of order one. 

[Please insert Table 1 about here] 

λ



We now estimate (p+1)
k number of regressions, where p is the maximum 

number of lags and k is the number of variables in the model, to determine the model 

lag selection. In order to select the optimum lag order for the model we focus on the 

Akaike Information Criterion (AIC) as well as the Schwarz Bayesian Criterion (BSC). 

We use a high enough order to ensure that the optimal one is not exceeded. As we can 

see in Table 2 the optimum lag order is (2, 3, 0, 2) according to the AIC, but it is (2, 2, 

0, 1) according to the SBC. Based on the minimum value of the standard error of 

regression, we finally choose the order selected by the SBC. 

[Please insert Table 2 about here] 

When working with long time series it is advisable to pay special attention to 

structural changes. Thus, in order to provide stability to the model, we consider the 

possibility that a break or more than a break exist for intercept and trend. Since we do 

not know a pre-specified date for possible breaks, we will look for endogenous ones. 

Thus, using a trimming of 10% of the observations in each of two subsamples we check 

a break recursively. The one-by-one-break method based on that of Banerjee et al. 

(1998) keeps the analysis simple and at the same time provides easily interpretable 

results based on the critical values tabulated in Andrews and Ploberger (1994). For each 

time point, the F-statistics for testing the null hypothesis of no break is computed. Then, 

a break point is defined at point for which the F-statistics attains its maximum. 

Empirical results indicate the presence of two structural breaks, which refer to years 

1917 and 1973.10 The first break coincides with World War I, which is not surprising 

given that Spain was benefitted from its neutrality basically through increased 

production in textile and metallurgical sectors. The second break point matches with the 

first oil shock, time when Spain enters into a deep recession given that it heavily 

                                                           
10 Results of including breaks one by one are available from the authors upon request. 



depended on oil imports. The possibility of a structural change in the composition of 

output that might have lowered the elasticity of CO2 emissions was not found provided 

that the two structural breaks (1917 and 1973) of the CO2 emissions function were 

significant as to the intercept differentials and not to their slope ones. 

Next, we carry out another test to be sure that the selected model with both 

breaks is dynamically stable. Thus, we check that all the inverse roots of the 

characteristic equation associated with our ARDL model lie strictly inside the unit 

circle. Since this is a two-lag model (according to the selection test shown in Table 2), 

the number of inverse roots will also be two. The chart in form of Argand diagram in 

Figure 2 indicates that the two roots are real roots (they are in the X-axis) and lie inside 

the unit circle. Therefore, it can be confirmed that our dynamic model is stable. 

[Please insert Figure 2 about here] 

Once the properties of time series have been analyzed, the optimum lag order 

was determined, and different stability tests were done, we have to check whether or not 

a cointegrating relationship (long-run nexus) exists in the ARDL context and estimate 

the long run coefficients. Thus, after estimating by ordinary least squares (OLS) an Eq. 

(2) type (with two structural breaks in the intercept and trend), a bounds test is carried 

out. As we can see in Table 3, the computed F-statistics indicates that there is a 

cointegrating relationship among lnCO2, lny, (lny)
2, and lnp at 1% level. 

[Please insert Table 3 about here] 

In order to check for the existence of an EKC we have to observe the signs of the 

coefficients associated to lny and (lny)
2.  Both coefficients have the expected signs, that 

is, positive for per capita income and negative for its quadratic form. The two of them 



are statistically significant. Now, we can obtain the estimated turning point regarding 

per capita income ( ( )
32

ˆ2/ˆˆ λλ−= expy ). It is reached at 9,236 US$ (1990 base), which 

approximately corresponds to per capita income in year 1980. Then, we could interpret 

this result by saying that from that date on, CO2 starts decreasing as per capita income 

grows. The specification of a cubic expression of income that would explain a likely N-

shape relationship with CO2 emissions was also tested. However, the parameter 

associated to the cubic income variable was negative and non-significant. We also 

checked Dasgupta et al.‘s (2002) argument about the possibility that the environmental 

Kuznets curve may have begun to flatten downward under some economic changes such 

as technological effectiveness against pollution. The comparison of two models with 

technological change and without it did not help us to determine that the Spanish EKC 

really shifted downward during the sample period. 

Regarding the oil price long-run parameter, we can see that it is quite significant. 

Its inelasticity explains a less than proportional effect on emissions each time that there 

is a variation in real crude oil prices. More specifically, its magnitude is -0.39 and 

should be interpreted as a 1% increase in real oil prices causes a 0.39% reduction of 

CO2 emissions. Moreover, in order to know the importance of considering real oil price 

as an indicator of variations in fuel energy consumption, we have estimated a second 

specification model without including this variable. As we can see in Table 4, the 

estimated coefficients associated to lny and (lny)
2 change noticeably if that indicator is 

excluded. In this case, the EKC would reach an earlier turning point at 8,103 US$ (1990 

base), which corresponds to per capita income in year 1974. 

[Please insert Table 4 about here] 



Lastly, in Table 5 we can see the error correction representation for the selected 

model. The underlying regression passes all diagnostic tests (such as Lagrange 

Multiplier test for serial correlation, and heteroscedasticity, Jarque-Bera normality test 

of residuals, Reset test on functional form, or model specification). Furthermore, the 

sensitivity analysis makes the model econometrically robust. The estimated coefficients 

have expected signs and values. Thus, past values of CO2 (in differences) explain the 

evolution of CO2. The remaining short-run elasticities are (in absolute terms) lower than 

the long-run elasticities, which is something expected. That is, income elasticity and its 

quadratic form show the same signs as in the long term but now, the absolute magnitude 

is clearly lower. The oil price elasticity has a positive sign, but the coefficient is 

practically marginal and not significant. Moreover, its lagged value is significant but 

again close to zero. The error correction coefficient is statistically highly significant and 

has the correct sign (negative), which confirms the established long run relationship 

among the variables. This last coefficient value entails that the rate of adjustment 

toward the long-run equilibrium is about 3% over each year. 

[Please insert Table 5 about here] 

 

6. Conclusions 

The aim of this paper has been the estimation of an EKC dynamic structure for the 

Spanish emissions of global CO2 pollutant. The analysis carried out through the ARDL 

procedure considered a time period between 1874 and 2011. The fact that Spain has 

been traditionally highly dependent on energy consumption from fuel oil constituted a 

good reason not to disregard it in the EKC model specification. Failure to do so, we 

might have fallen into an estimation bias derived from the correlation between energy 



consumption and GDP. Thus, unlike previous papers, we took into account real oil 

prices as a useful indicator of global pollutant energy consumption for Spain. The use of 

oil prices as an indicator, instead of that one related to the energy consumption, ruled 

out potential endogeneity problems. 

Even though local oil prices were unknown for the whole analyzed period, we 

checked the fact that Spain imported most of oil products that it consumed. Therefore, 

in the estimation process we included the oil prices from international markets as a 

reliable proxy for the variation of local oil prices. Empirical results support the idea that 

changes in real oil prices are relevant in order to explain the evolution of CO2 

emissions. The estimated coefficients associated to per capita income and to its 

quadratic form have opposite signs, suggesting the presence of a turning point. This is 

obtained for some years later than in the case where the oil price variable was omitted. 

Specifically, we can infer that from 1980 the economic growth has experienced an 

environmental improvement through the reduction of CO2 emissions. 

Lastly, it is also interesting to highlight that estimated impact of real oil prices on the 

Spanish CO2 emissions is quite relevant from a long-run perspective. We can infer that 

a rise of a 1% in real oil prices causes about a 0.4% reduction of global CO2 pollutant. 

This outcome suggests that, in addition to the effects of per capita income, there is 

margin for implementing specific policy measures in order to improve the 

environmental quality. The knowledge about the effect of the oil price variation on the 

CO2 emissions provides possibilities for environmental policy decision making. Thus, 

the design of a new carefully energy tax structure to reduce consumption of fossil fuels 

and to promote other cleaner and more efficient energy resources should be seriously 

taken into consideration. 
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Figure 2. Inverted AR Roots from the ARDL Model 
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Table 1. Augmented Dickey Fuller Tests 

 ADF statistics 
I(1) versus I(0) 

ADF statistics 
I(2) versus I(1) 

ADF statistics 
DSP versus TSP 

lnCO2 -1.15(1) -3.12(2) -1.91(1) 

lny 0.70(1) -7.40(1) -1.21(1) 

(lny)
2
 0.87(3) -4.95(3) -1.13(3) 

lnp -2.71(1) -7.23(3) -2.93(1) 

Critical values -2.88 -2.88 -3.44 

The numbers in brackets are the lags used in the ADF test in order to remove serial correlation in the 

residuals. DSP stands for difference stationary process and TSP means trend stationary process. 

  



Table 2. Optimum Lag Order for Model Selection  

 AIC SBC 

Order for lnCO2, lny, (lny)2, lnp (2, 3, 0, 2) (2, 2, 0, 1) 

Standard error of regression 0.00219 0.00216 

The regressions are run based on the autoregressive distributed lag method. 

  



Table 3. Cointegration Results and Long Run Estimates of the ARDL Model 

 Lower bounds 
10%     5%      1% 

Upper bounds 
10%     5%      1% 

F-statistics 

 2.45     2.86     3.74 3.52     4.01    5.06 F(4,122)= 6.3399 

 Coefficients T-statistics P-value 

α -10.31 -0.77 (0.444) 

lny 7.67 2.53 (0.012) 

(lny)
2
 -0.42 -2.40 (0.018) 

lnp  -0.39 -2.24 (0.027) 

Breack(1917) -0.48 -2.27 (0.025) 

Breack(1973) 0.65 2.61 (0.010) 

Sensitivity analysis and other statistics are provided in the error correction model. 

  



Table 4. Long Run Estimates of the ARDL Model Without Oil Prices 

 Coefficients T-statistics P-value 

α -25.63 -1.81 (0.073) 

lny 11.16 3.34 (0.001) 

(lny)
2
 -0.62 -3.17 (0.002) 

Break(1917) -0.54 -1.89 (0.061) 

Break(1973) 0.74 2.26 (0.025) 

  



Table 5. Error Correction Representation for the Selected Model 

 Coefficient T-statistics P-value 

α0 -0.047 -0.95 (0.346) 

dlnCO2(-1) 0.791 16.78 (0.000) 

dlny 0.027 1.87 (0.064) 

d(lny)
2
 -0.003 -0.32 (0.746) 

dlnp 0.008 1.01 (0.313) 

dlnp(-1) 0.002 2.20 (0.030) 

dBreak(1917) -0.001 -2.05 (0.042) 

dBreak(1973) 0.005 3.16 (0.002) 

ect(-1) -0.030 -3.26 (0.001) 

Statistics    

R2 adjusted 0.97   

S.E. of regression 0.02   

F-Statistics (9,128) 526.26  (0.000) 

Diagnostic tests    

Serial correlation   (0.716) 

Functional form   (0.740) 

Normality   (0.735) 

Heteroscedasticity   (0.135) 

Variables starting with a d means differenced once; variables lagged one period are expressed as (-1); ect 

is the error correction term. 

 


