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Abstract 

Al 2O3-TiO2 coatings have been deposited by atmospheric plasma spraying from 

agglomerated, nanostructured powders showing better properties than those of their 

conventional (microstructured) counterparts. These nanostructured coatings can be also 

obtained by suspension plasma spraying however the research on suspension plasma 

sprayed Al2O3-TiO2 is still scarce. Consequently, it is crucial to study the effect of the 

suspension characteristics on the coating properties and to optimise the deposition 

process. 

In this work, Al2O3-13wt%TiO2 tribological coatings were successfully deposited by 

suspension plasma spraying from three different feedstocks: a nanometric suspension 

and two bimodal suspensions with different solid contents made up of titania 

nanoparticles and alumina submicron-sized particles. The coatings microstructure and 

phase composition were characterised using scanning electron microscopy and X-ray 

diffraction analysis. Moreover, nanoindentation technique was used to determine the 

nanomechanical properties of coatings. 

The influence of the feed suspension characteristics on the final coating quality was 

analysed. Findings showed that similar microstructures and phases were developed after 

depositing the different feedstocks. In addition suspension feedstock made up of 

nanoparticles resulted in a coating with better mechanical properties. However the use 

of submicron-sized particles in the suspension feedstocks gives rise to some technical 

and economic advantages in the process which should be taken into account when a 

suspension plasma spraying process is to be set up. 
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1 Introduction 

A possible way to obtain nanostructured coatings by thermal spraying consists of using 

a carrier liquid instead of a carrier gas to inject the nanoparticles in the plasma plume 

[1-5]. This technique is known as Suspension Plasma Spraying (SPS) and differs 

significantly from conventional Atmospheric Plasma Spraying (APS) since the 

suspension is fragmented into droplets and the liquid phase vaporise before the solid 

feedstock is processed [6,7]. This novel technique has recently undergone an extensive 

development, leading to the deposition of nanostructured coatings with unique 

properties and new functionalities [8-11]. 

Among the materials usually deposited by plasma spraying, alumina-based coatings 

show probably the most versatile fields of application [12]. Alumina is commonly used 

as an electrical insulator coating due to its high dielectric strength and its hardness and 

chemical stability even at very high temperatures. However, its lack of toughness and 

flaw tolerance constrain some properties such as thermal shock resistance. Still, Al2O3-

based coatings are widely used for wear, corrosion or erosion protection components. In 

such coatings, alumina is mixed with other oxides to enhance its properties. It has been 

shown that the addition of TiO2 improves the coating fracture toughness in conventional 

APS [12]. Indeed Al2O3-TiO2 coatings obtained by APS from both conventional or 

nanostructured, agglomerated feedstock powders have been extensively studied [13-17]. 

In all this previous research of the authors Al2O3-TiO2 coatings deposited from 

nanopowders have shown very promising bonding strength and wear resistance 

compared to coatings produced with conventional feedstock [18]. Moreover, the Al2O3-

TiO2 mixture with 13 wt% of TiO2 showed the best wear resistance among all the 

nanostructured Al2O3-TiO2 coatings [19]. 
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With regard to the phases appearing in coatings from alumina feedstocks, Toma et al. 

[20] observed that a higher amount of α-Al 2O3 was obtained in SPS coatings when 

compared with APS coatings. These authors suggested two sources of α-phase in the 

coating: partially melted α-phase feedstock particles and secondary α-phase formed as a 

result of substrate heating. Darut et al. also confirmed the high amount of α-phase in 

SPS coatings obtained from alcoholic suspensions of submicron-sized α-phase alumina 

[21]. However these authors pointed out that α-phase presence was probably not mainly 

due to partially-melted particles as encountered in APS process because most of the 

coating microstructure exhibited well melted and flattened particles. In this same paper, 

authors showed that the higher the TiO2 content the higher the AlxTiOy compounds 

content in the coatings. In a recent paper by the authors of the present work, the 

formation of tialite phase in a SPS coating obtained from aqueous suspension of nano-

sized Al2O3-13 wt% TiO2 was showed while the relative contribution of pre- or post- 

deposition steps to tialite formation is still unclear [22]. 

On the other hand in SPS process ethanol has been more extensively used as suspension 

solvent due to its lower vaporisation heat but water is preferable for sustainability and 

economic reasons [23]. However as the vaporisation heat of water is high when higher 

solid concentration is used in the suspension feedstock an energy-saving effect can be 

expected. This benefit relates to energy consumption associated to water vaporisation 

during plasma heating. Figure 1 plots an estimate by the authors of the total enthalpy, 

∆Htotal which means the total energy required to vaporise water as well as to melt a 

given solid mixture (alumina:titania in weight ratio 87:13) versus solid content 

represented as the solid mass fraction (wsolid) present in the suspension feedstock 

[24,25]. Despite the solid fusion enthalpy increases when suspension solid content rises 

the enthalpy for vaporising water compensates and overcomes this fusion enthalpy. 
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Nevertheless although higher solid content feedstocks can be desirable in terms of 

deposition efficiency this solids content must be optimised to avoid clogging during 

injection as well as incomplete particle melting inside plasma torch.  

With regard to particle size in the suspension feedstock, SPS technology ranges from 

few tenth of nanometers to few micrometers. When nanoparticles are used a much 

higher tendency to agglomerate is observed. Besides the particle melting in plasma 

torch is also deeply affected by the particle size distribution. Thus excessively small 

particles do not flatten so effectively while large particles and agglomerates display 

higher tendency to remain partly unmelted [2]. Few attempts have been made to use 

feedstock mixtures of different particle size distributions, e.g. submicron-nano sized 

particles despite their many potential advantages. The use of such bimodal distribution 

in the feedstock suspension can give rise to significant benefits during the suspension 

processing, i.e. higher solids content and lower viscosity leading to better feeding in the 

plasma torch along with higher deposition efficiency [26]. Besides some coatings 

properties can be improved when using bimodal feedstock as recently reported for APS 

coatings [8,9]. However, the use of these bimodal powders has hardly been treated in 

SPS literature. 

Standard SPS process results in thinner coatings than those obtained by conventional 

APS process. As a consequence it has been successfully proved that nanoindentation 

technique is a more feasible method than conventional microindentation for the 

mechanical characterisation of such layers. However, the amount of papers dealing with 

the use of nanoindentation method to characterise SPS layers is still very scarce [27]. 

From the above it can be inferred that the research on Al2O3-TiO2 coatings by SPS is in 

some way incipient. Consequently, it is necessary to study the effect of the 

characteristics of the feedstock on the final coating microstructure and properties in SPS 
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Al 2O3-TiO2 coatings. In addition, the use of submicron-sized particles in SPS feedstocks 

instead of nano-sized particles can result in significant benefits in terms of suspension 

feedstock processing while the final coating properties can be in large extent preserved.  

Also, increasing the solids content in SPS aqueous suspensions remains still a 

challenge. For these reasons this work aims at depositing Al2O3-13wt%TiO2 tribological 

coatings by SPS from three different feedstocks: a nanometric suspension and two 

bimodal suspensions with different solid contents made up of titania nanoparticles and 

alumina submicron-sized particles. The coatings microstructure and phase composition 

were characterised using scanning electron microscopy and X-ray diffraction analysis. 

Nanoindentation technique was used to determine the coatings nanomechanical 

properties. Finally an estimate of energy saving associated with increasing solids 

content in the suspension feedstock is also included. 

 

2 Materials and methods 

2.1 Feedstocks preparation 

Two commercial nanopowder suspensions of alumina and titania (VP Disp. W630X and 

AERODISP® W740X respectively, Degussa-Evonik, Germany), a submicron-sized 

powder of alumina (Condea-Ceralox HPA-0.5, Sasol, USA) and a nanopowder of 

titania (AEROXIDE® P25, Degussa-Evonik, Germany) were used as raw materials. 

These materials have been fully characterised in previous works [28-30]. Table I shows 

the main characteristics of the suspensions and powders used to prepare the different 

feedstocks. 

First, a 10 vol.% of 87 wt% Al2O3–13 wt% TiO2 nanosuspension was prepared by 

mixing both commercial suspensions [4,28]. This suspension was referenced as N10. 

Secondly, on the basis of the effect of suspension solids content on plasma-spray 
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deposition as set out above two suspensions with different solids content were studied. 

Thus one 10 vol.% and one 15 vol.% of 87 wt% Al2O3–13 wt% TiO2 submicron-nano-

sized suspensions were prepared by dispersing nano-sized titania particles and 

submicron-sized alumina particles in water [30]. These suspensions were referenced as 

SN10 and SN15 respectively. A commercial polyacrylic acid-based polyelectrolyte 

(DURAMAX TM D-3005, Rohm & Haas, USA) was used as deflocculant [29-32]. In 

both cases, stable, well-dispersed and low-viscosity suspensions were obtained, 

following the methodology described elsewhere [4,28-32]. Figure 2 details a flow 

diagram describing the suspension preparation routes followed to obtain the three 

suspension feedstocks. Rheological behaviour of all the prepared suspensions was 

previously determined using a rheometer, demonstrating that the incorporation of 

submicron-sized particles leads to a significant reduction of viscosity, as expected for 

the lower surface area of those particles [31]. Also in previous research of the authors 

the stability of these three feedstocks was proven [4,28-32]. 

Stainless steel (AISI 304) disks have been used as substrates (25 mm diameter and 10 

mm thickness). Before deposition, the substrates were grit blasted with corundum 

(Metcolite VF, Sulzer Metco, Switzerland) at a pressure of 4.2 bar and cleaned with 

ethanol. 

2.2 Coating deposition 

Coatings were deposited by plasma spraying with a monocathode torch (F4-MB, Sulzer 

Metco, Switzerland) with a 6 mm internal diameter anode operated by a robot (IRB 

1400, ABB, Switzerland). 

First of all, the substrates were mounted on a rotating device and up to 6 samples were 

coated simultaneously and were preheated between 350 ºC and 400 ºC to enhance 

coating adhesion. The preheating was carried out using the same torch and the 
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parameters are shown in table II. Then, the suspensions were injected using a SPS 

system developed by the Institute for Ceramic Technology (Instituto de Tecnología 

Cerámica, ITC) described in figure 3. This system is formed by two pressurised 

containers which force the liquid to flow through the injector of 150 µm average 

diameter. A filter was used to remove agglomerates larger than 75 µm and possible 

contaminations. Main plasma spraying parameters are also given in table II. For all 

coatings suspension feedrate was 27 ml/min. 

2.3 Coating characterisation techniques 

X-ray diffraction patterns were collected to identify crystalline phases in coating 

samples (Theta-Theta D8 Advance, Bruker, Germany). The microstructure was 

analysed on polished cross-sections using a SEM microscope (JSM6300, Jeol. Japan). 

Porosity and amount of partially melted areas were then determined by image analysis 

from SEM pictures as set out in previous research [33]. 5000x magnification pictures 

were used and an average of 10 images for each determination (porosity or partially 

melted areas) and coating was carried out. Nevertheless it is worthwhile mentioning that 

when nanoparticles are used SEM technique shows serious constrains to assess too 

small porosity [34]. Finally, elemental analysis was performed in SEM using energy 

dispersive X-rays analysis (EDX). 

Coating’s hardness (H) and elastic modulus (E) were measured with a nanoindenter (G-

200, Agilent Technology, USA) using a Berkovich diamond tip. The area function of 

the indenter was previously calibrated with fused silica as a reference material. A 25 

indentations array was performed at 2000 nm constant depth on arbitrary zones of the 

cross-section of coating, assuring that a representative zone of melted and partially 

melted material was analysed. The stiffness was obtained by using the Continuous 

Stiffness Measurement (CSM) method that permits to calculate the hardness and 
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modulus profiles in depth. Subsequently, the average values of hardness and elastic 

modulus were determined for a depth ranging from 100 to 200 nm. More details of this 

procedure can be found in previous research [23,27]. 

 

3 Results and discussion 

3.1 Coatings microstructure 

Figure 4 shows the cross-sectional SEM micrographs of the as-sprayed coatings 

obtained from the three different feedstocks. The thickness of the coatings ranged from 

30 to 55 µm. All the coatings displayed a microstructure formed by melted and partially 

melted areas (marked PMn in coatings from nano-structured feedstock and marked PMs 

in coatings from submicron-structured feedstocks) as reported elsewhere [20,22]. This 

microstructure develops because after the liquid is evaporated the resulting particles or 

agglomerates may thus be heated, partly melted, or melted, yielding the end coating. 

Overall no significant differences were found in the coatings microstructure by 

introducing submicron-sized particles in the starting suspension, but as expected this 

submicron-sized particles addition leads to the presence of larger particles in partially 

melted areas of the coating (SN10 and SN15). Moreover, it should be noted that the 

increase of suspension concentration (from SN10 to SN15) did not change the 

microstructure of the resulting coating but allowed thicker coatings to be obtained (from 

30 to 55 µm) giving rise to an improvement of process efficiency. 

Porosity and amount of partially melted areas in the three as-sprayed coatings are shown 

in table III. Firstly the three coatings showed a significant as well as quite similar 

amount of partially melted areas. These values are consistent with those reported in the 

literature on SPS coatings [2,33]. The similarity in the amount of partially melted areas 
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can be due to the fact that the same spraying distance was used for the three coatings 

since as reported elsewhere when nanoparticle suspensions are used as feedstocks the 

amount of partially melted areas are quite sensitive to the spraying distance [33]. 

Secondly, very few porosity was detected in the three coatings. Nevertheless, it should 

be noted that the data scattering value obtained was of the same magnitude as the 

measured data as a consequence of the lack of resolution of the SEM technique when 

very tiny pores are present as reported elsewhere [34]. More interestingly the 

measurable coating porosity by SEM technique in the partially melted areas increases as 

the concentration in the suspension feedstock rises (from SN10 to SN15 coating). This 

is probably due to the higher presence of agglomerates in the partially melted areas of 

SN15 coating as a consequence of higher agglomeration tendency of the more 

concentrated SN15 suspension. To confirm this assumption N10 suspension was 

allowed to age after 7 days in order to enhance the presence of unstable agglomerates. 

This suspension (referenced N10-aged) was plasma sprayed in the same conditions as 

the other three suspensions. Figure 5 shows both suspensions (N10 and N10-aged) flow 

curves. N10 suspension exhibited Newtonian behaviour with very low viscosity. 

However, the N10-aged suspension viscosity significantly increased and a large 

thixotropy area appeared, evidencing the destabilisation of the stable (well-dispersed) 

N10 suspension [30]. As seen in the table III the unstable agglomerates built up in the 

aged suspension result in an increase of partially melted areas in the coating as well as a 

significant source of measurable, large voids. 

To assess the homogeneity of alumina-titania distribution in the coating EDX analysis 

was carried out on the three coatings (N10, SN10 and SN15). For the sake of simplicity 

figure 6 shows only the analysis corresponding to N10 coating since similar analysis 

were carried out on the other two samples. Dark dots refers to alumina phases and the 
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whitish ones to titania phases. Overall as it can be observed alumina and titania phases 

are homogeneously deposited throughout the coating. This compositional homogeneity 

in the coatings contrasts with that obtained by other works using conventional or 

nanostructured alumina-titania APS feedstocks which give rise to splats with 

heterogeneous phase compositional distribution [35,36]. Thus TiO2 has been well 

trapped as solute in the alumina matrix. Moreover as reported in previous research by 

the authors, BSE micrographs on Al2O3-13wt%TiO2 coating revealed zones with 

different concentration of Ti or Al probably due to the presence of different crystalline 

phases [22]. These findings indicate that the preparation of the suspension feedstocks is 

crucial to obtain a homogeneous distribution of the compounds in the final SPS coating 

[4,31,32]. If this preparation is adequate the characteristics of the suspension feedstock, 

i.e. solids concentration or particle size distribution does not seem to affect on coating 

homogeneity in terms of phases distribution. 

Finally, XRD patterns of all coatings are shown in figure 7. As it can be observed the 

alumina found in the three coating is mainly present as corundum and gamma alumina, 

independently of feed material phases since nanometric alumina is formed by transition 

phases (δ- and γ-Al 2O3) and submicron-sized alumina is exclusively corundum (α-

Al 2O3). These findings seem to confirm the information reported in the literature 

concerning α-phase formation: partially melted α-phase feedstock particles and 

secondary α-phase formed as a result of substrate heating [20]. For this reason, the 

amount of preserved corundum grows in the coatings containing submicron-sized 

particles (samples SN10 and SN15). In respect of titania, most of the initial phase (an 

anatase:rutile ratio of approximately 3:1) reacts with alumina during the deposition 

process, leading to the formation of aluminium titanate (tialite). This finding confirms 

the intimate mixture of compounds in the starting suspensions in a SPS process since 
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similar compositions of alumina-titania sprayed in powder form (APS process) react in 

less extent to form these titanates compounds [32]. The formation of tialite phase in SPS 

coating obtained from a suspension feedstock made up of Al2O3-13wt%TiO2 has been 

previously reported in the literature [21,22]. Nevertheless if the formation of this 

crystalline phase takes mainly place by heating during torch travel or on the deposited 

layer is still unclear. The short spraying distances involved in SPS process can favour 

that the reaction occurs once the layer has been deposited. However further research in 

necessary to prove this statement. 

3.2 Coatings mechanical properties 

The coating’s hardness (H) and elastic modulus (E) were measured by nanoindentation. 

As described above, all indentations were performed at 2000 nm in depth randomly 

positioned on several zones of sample. Figure 8 shows the mean and standard deviation 

hardness and elastic modulus profiles obtained for each analysed coating obtained from 

the as-prepared suspensions (N10, SN10, SN15). These curves revealed two main 

characteristic behaviours; (i) at low penetration depths (below 300 nm for H and 100 

nm for E), hardness and elastic modulus ranged from 15 to 29 GPa and 250 to 280 GPa 

respectively. At higher loads the mechanical response tended to decrease. Furthermore, 

(ii) the data scattering was higher for the lower range of depth. These results indicate 

that at a lower range of penetration depth the true material’s H and E is revealed. That 

is, the melted zones achieve the highest values and the partially melted areas the lowest 

leading to the high data scattering observed. However, at a higher penetration depth the 

porosity, which is the major effect affecting on the softer, partially melted material, the 

indentation size effect, the activated microcracks and other plastic mechanism are 

responsible for the diminution of mechanical features. 
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In this study, the comparative analysis using the H and E mean values acquired at low 

penetration range of depth was the main focus, because these results allow more 

realistic features of the projected material (alumina-titania) to be determined without 

taking into account microstructural defects that could be removed o diminished in 

incoming works. This was the reason why results were averaged between 100 to 200 

nm. Table IV summarises the averaged H and E values for each deposited coating 

acquired by nanoindentation. 

These results reveal that mechanical properties are significantly better (around 30% 

higher) for the coating prepared from nanoparticles (N10). Thus this finding confirms 

previous research when nanostructured feedstocks were used in APS processes 

[31,32,37]. As the literature states that submicron-structured matrices contained in 

coatings obtained from nanostructured feedstocks result in coatings with better 

mechanical properties provided that the amount and poor cohesion of partially melted 

zones do not compensate the enhancement matrix effect. However, although the number 

of papers about mechanical properties in alumina-titania coatings, obtained from 

nanostructured feedstocks by APS process is abundant, no papers on SPS coatings from 

nano- or submicron-sized alumina-titania feedstocks addressing mechanical properties 

have been found. In one previous paper similar comparison of nanoindentation 

mechanical properties in alumina-titania coatings obtained from nano- and submicron-

sized suspensions was carried out but the authors produced the coatings by HVSFS 

(High Velocity Suspension Flame Spraying) [38]. Nevertheless this paper highlights an 

important issue in suspension sprayed coatings since the authors did not find differences 

in the mechanical properties of the coatings sprayed with nano- or submicron-sized 

feedstocks owing to the agglomeration state of nanoparticles in the suspension 

feedstock. In the present research the dispersion and stabilisation of the suspension 
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feedstocks was previously set out [29,30]. For this reason the effect of nanoparticles on 

mechanical properties in N10 coating could be fully developed. To confirm this 

statement nanoindentation test on the N10-aged coating obtained as set out in previous 

section was also acquired. Results of this test are also displayed in figure 8. As this 

figure reveals, the effect of the agglomeration provoked in N10-aged suspension is 

reflected in the mechanical behaviour of N10-aged coating. Hence, H and E curves 

showed an intermediate profile development between N10 and SN10/SN15 coatings, as 

a consequence of the much higher content of partially melted areas built up from the 

agglomerated feedstock suspension of N10-aged coating in comparison with N10 

coating. As set out above the destabilisation of the nanoparticle suspension feedstock 

gives rise to an impaired coating microstructure made up of higher amount of partially 

melted areas containing coarser pores. Consequently decreasing averaged values of H 

and E in the coating were obtained which were closer to those of the SN coatings. 

Nevertheless the values of H and E mechanical properties could not be averaged and 

included in table IV due to the high data scattering found in this coating sample. 

Previous research on nanoindentation in SPS coatings obtained from nanoparticle 

suspension feedstocks of other oxides such as YSZ (Yttria-Stabilised Zirconia) or titania 

highlighted the enhanced mechanical properties found when nanoparticles suspensions 

were used as a consequence of the ultrafine character of SPS coating splats [23,27]. 

These papers also showed the mechanical weakening effect of the partially melted areas 

which appear in more or less extent in SPS coatings. Further research is still necessary 

to confirm these preliminary findings, and more importantly, to establish a clear relation 

between coating microstructure and mechanical properties. 

Finally, regarding SN coatings, an increase of suspension concentration in the range 

addressed in this research did not modify mechanical properties of the coatings what 
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could be considered, in principle, a positive effect if an optimisation of the solids 

concentration in the feedstock suspension is targeted as a consequence of the possible 

technical and economic benefits set out above. 

Overall the effect of increasing of the solids concentration in the suspension feedstock 

has not proven to show a clear effect on coating microstructure and properties, at least 

in the variation range addressed in this preliminary research. For this reason, further 

research is now in progress in order to better analyse in an isolated way the effect of 

solids content and the agglomeration (stabilisation) degree of the suspension feedstock. 

To achieve this objective, increasing solid concentration suspensions of submicron-

sized alumina particles will be prepared and the stabilisation degree of these 

suspensions will be conveniently modified. The effect of the spraying distance during 

plasma spraying deposition will also be taken into account due to its great effect on the 

amount of partially melted areas in the coatings. 

. 

4 Conclusions 

Al 2O3-TiO2 coatings were successfully deposited by SPS from suspensions in which 

particle size (nano- and submicron-sized particles) and solids concentration were varied. 

Findings showed that similar microstructures made up of melted matrices and partially 

melted zones were obtained. The alumina found in the coatings is mainly present as 

corundum and gamma alumina. In respect of titania, most of the initial phase reacts with 

alumina during the deposition process, leading to the formation of aluminium titanate 

(tialite).  In addition the developed alumina and titania phases were homogenously 

distributed throughout the different coatings. On the other hand suspension feedstock 

made up of nanoparticles resulted in a coating with better mechanical properties than 

those obtained from submicron-sized particles. However when the nanoparticle 
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suspension feedstock was destabilised impaired microstructure containing higher 

amount of partially-melted areas with coarse pores was obtained. This impaired 

microstructure led to worse mechanical properties which were closer to those of the 

coatings obtained from submicron-sized particles. No effect of solids concentration in 

submicron-sized feedstocks on coating mechanical properties was observed for the 

solids concentration variation and plasma spraying conditions used in this research. 

However the use of submicron-sized particles to obtain suspension feedstocks with high 

solids concentration proved to give rise to some technical (improved processability) and 

economic (lower energy consumption) advantages in the SPS process which should be 

taken into account when a SPS process is to be set up. 
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TABLES 

Table I. Main characteristics of the commercial suspensions and powders as provided 

by the suppliers 

Suspensions 

Reference 
Suspension 

type 

Main 
crystalline 

phases 

Solids 
content 
(wt%) 

pH Viscosity 
(mPa·s) 

Mean 
aggregate 

size 
(nm) 

Density 
at 20 
ºC 

(g/cm3) 

AERODISP 
VP W630X 

Nano-
Al 2O3 

Transition 
aluminas 
(δ- and γ-

Al 2O3) 

30.0±0.1 
3.0-
5.0 

≤ 2000 140 1.27 

AERODISP 
W740X 

Nano-
TiO2 

Anatase 
Rutile 

40.0±0.1 
5.0-
7.0 

≤ 1000 ≤ 100 1.41 

Powders 

Reference 
Powder type 

Main 
crystalline 

phases 

Average 
primary 
particle 

size 
(nm) 

Specific 
surface 

area 
(m2/g) 

pH in 4% 
dispersion Purity (wt%)  

Condea 
Submicron-

Al 2O3 
α-Al 2O3 350 9.5±0.5 --- 99.5 

P25 Nano-TiO2 
Anatase 
Rutile 

21 50±15 3.5-4.5 99.5 

 

Table II. Main SPS parameters 

SPS 
steps 

Ar 
(l/min)  

H2 
(l/min)  

Arc 
intensity 

(A) 

Spraying 
distance 

(mm) 

Spraying 
velocity 
(m/s) 

Suspension 
feed rate 
(ml/min) 

Injector 
diameter 

(µm) 
Pre-

heating 
35 12 600 100 --- --- --- 

Spraying 37 8 700 30 1 27 150 
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Table III. Porosity and amount of partially melted areas determined by SEM of the 

coatings obtained from the as-prepared suspensions as well as from the aged N10 

suspension 

Coating sample 
% of partially 
melted areas % voids content 

% voids content in 
the partially 
melted areas 

N10 16 ± 6 0.3 ± 0.3 1 ± 1 
SN10 19 ± 6 0.2 ± 0.3 2 ± 1 
SN15 19 ± 3 0.3 ± 0.3 7 ± 1 

N10-aged 35 ± 8 0.9 ±0.3 7 ±1 

 

Table IV. Hardness and modulus averaged values of coatings 

Sample Hardness 
(GPa) 

Elastic modulus 
(GPa) 

N10 16±2 225±20 
SN10 13±2 178±21 
SN15 12±2 175±18 
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FIGURE CAPTIONS  

Figure 1. Plot of the power required to plasma-spray water suspensions of 

alumina:titania (87:13 weight ratio) by SPS as a function of solid content of suspension 

feedstock (an estimate by the authors) 

Figure 2. Flow diagram describing the suspension preparation routes followed to obtain 

the three suspension feedstocks as well as references adopted 

Figure 3. Suspension plasma spraying equipment 

Figure 4. SEM micrographs at three magnifications of coatings obtained from N10, 

SN10 and SN15 as well as from N10-aged (marked PMn: Partially Melted nanoparticles 

and PMs: Partially Melted submicron-sized particles) 

Figure 5. Flow curves of the as-prepared N10 suspension and N10-aged suspension 

Figure 6. EDX analysis of coating obtained from N10 

Figure 7. XRD patterns of coatings obtained from N10, SN10 and SN15 

Figure 8. Hardness and Elastic Modulus obtained on coatings by nanoindentation 

(samples: N10, SN10. SN15 and N10-aged) 
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FIGURES 

 

Figure 1 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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