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Abstract—In this paper, we address the fault diagnosis prob- proposals, the threshold is chosen to reduce the FAR to the
lem for discrete-time multi-sensor systems over communi¢®n  minimum [10], [11], but without quantifying it. Some works
networks with measurement dropouts. We use the measurement as [7], [8], [12] characterize the mean and variance of the

outcomes to model the measurement reception scenarios. Bas idual d MarkoV’s i lity to i desired
on this, we propose the use of a jump observer to diagnose resiqual and use Markov's inéqualiity to iImpose a desire

multiple faults. We model the faults as slow time-varying sinals FAR bound. However, Markov's inequality is known to be
and introduce this dynamic in the observer to estimate the falts conservative [13]. The main problem to get a proper FAR
and to generate a residual. The fault detection is assured by pound is to obtain the probability distribution of the rasadl
comparing the residual signal with a prescribed threshold.We signal. In [14] the residual was computed as a quadratic form
design the jump observer, the residual and the threshold tottain . ) .

disturbance attenuation, fault tracking and detection cortitions of the OUtpl_JtS e_stlmatlon errqr by me_ans of _the inverse of the
and a given false alarm rate. The false alarm rate is upper OUtputs estimation error matrix covariance given by a Kaima
bounded by means of Markov's inequality. We explore the trag- filter. With that, their residual signal follows a chi-sqadr
offs between the minimum detectable faults, the false alarmate  dijstribution and an exact FAR can be fixed. But, to the best

and the response time to faults of the fault diagnoser. By impsing  of the authors’ knowledge, the extension to observers with
the disturbances and measurement noises to be Gaussian, we !

tighten the false alarm rate bound which improves the time predefined gains (Wh?Ch have less implementation cost) for
needed to detect a fault. A numerical example is provided to networked systems with dropouts has not been addressed.

illustrate the effectiveness of the theory developed in thpaper. Regarding the fault estimation problem, the most common
Index Terms—Fault diagnosis, false alarm rate, time to detect approach is to make the residual track the fault or a weighted
faults, jump linear system, dropouts. fault signal by guaranteeing some performances of the éault

timation error under disturbances and the network issugls-[1
[19]. Recently, to improve the fault estimation performesic
l. INTRODUCTION the authors in [20] introduced a dynamic of the fault signal

Networked control systems have been extended to ma@fy the fault estimator. Fault detection and estimation can b
industrial applications due to the diverse offered advgesa Combined to attain fault diagnosis.
as the reduction on the installation cost or the increase onAccording to [21], the performance of a fault detection
the flexibility, provided by the communication network [1. a@lgorithm is defined by means of the trade-offs between the
these kinds of systems, the controller unit, the sensorgtend time to detect a fault and the FAR. This definition can be
actuator are not collocated and the exchange of informatigxtended to the fault diagnosis case by considering also the
is done through a shared network, leading to some netwof@nvergence speed of a norm of the fault estimation erra. Th
induced issues as time delays and dropouts [2], [3]. Owing @thors in [22] show that there exists a trade-off between th
the need for reliability, safety and efficient operation lnége fault detection rate and the FAR. More recently, the existen
networked systems, model-based fault diagnosis methdds ¢4 & compromise between the time to detect a fault and the
have been recently introduced to operate over networks [5fault sensitivity has been demonstrated in [23]. Neveess|
Fault detection over communication networks when usirgpne of them explores the compromises between the minimum
an observer-based fault detection scheme is addresseddgiectable faults, the FAR and the fault diagnosis (detecti
the comparison between a residual signal generated with gt estimation) speed.
estimated system outputs and a threshold. The residual id he dropouts in the fault diagnosis problem over commu-
conceived to balance the robustness against network gfféigation networks have been mainly studied in the packetize
and disturbances, and the fault sensitivity [6]-[9]. case [7], [8], [15]. The multi-sensor case was studied irj [24
Assuring a predefined false alarm rate (FAR) is a kéyith an invariant observer gain approach, however the use of
problem. In the majority of the networked fault detectiofiMP observers that adapt their gains to the network saenari
has been proved to enhance the estimation performances [25]
Copyright (c) 2015 IEEE. Personal use of this material isnjiged. [26]. Networked jump observer-based fault estimators have

However, permission to use this material for any other psepomust be recently started to receive attention [6], [8].
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available measurements at the fault diagnoser. We intevduc falt]

a jump observer to estimate the faults and define the residual £olt] | ] __”17_["’]__
signal as a quadratic form of the estimated fault vector. The ult]

design of the jump observer and residual is addressed throug Plant folt] |

an iterative linear matrix inequalities (LMIs) procedutet o __rr_uqH

allows obtaining the predefined set of observer gains and
the fault detector parameters. The design is carried out to
achieve disturbance and measurement noise attenuatidn, afj’ |, Fault Bstimator
fault diagnosis performances under a prescribed FAR. We L \ miltl onlt] \ ]

transmission outcome

———————————— =

-——————

propose two design strategies: the first one consists ofgfixin Residual . PR

the response speed to faults and minimizing the minimum generator 4t el dropouts
detectable fault, and the second one consists of fixing the it 1

minimum detectable fault and minimizing the response timéuit?

. Fault Detector ) )
The trade-offs between the minimum detectable faults, the Fault Diagnoser Unit

FAR and the delay between fault occurrence and detection
(response time of the fault estimator) are highlightedtff@r Fig. 1. Networked fault diagnosis problem for two sensorshwgiossible
more, we derive two ways of bounding the FAR dependirfgults in the plant f, for actuators and other faulty components) and in the
on whether the residual signal probability distributionuis-  S€"S°rS £s1> fs2)-
known (Markov’s inequality approach) or known as a result
of assuming Gaussian disturbances and measurement noises
(chi-squared approach). wherem;[t] € R represents the-th measurement of thgth
Notation : Let A and B be some matricesd (i, ) defines sensor and;[t] € R the j-th sensor noise assumed as a zero
the i-th diagonal element ofl. The maximum and minimum mean random signal with known varianEg v, [’} = o3 for
eigenvalues ofd are denoted by\(A) and \(A) respectively. all ¢, that is uncorrelated with respect to the time indeXve
A =< B means that matrixd — B is negative semidefinite. also consider that; is mutually uncorrelated with;.;. c;
Similar applies to=. The direct sum is represented Kp, denotes one row of matrig’ (severalc; could be equal and
where A@ B is a block diagonal matrix witid and B on correspond to the same row 6f) and h; denotes each one
its diagonal. Operatovec(A) generates a vector by stackingof the rows of matrixH.
the columns of matrixA. Let z[t] € R™ be a stochastic In the current work, we model the fault signal as a slow
process. Expected value and prol%ability are denotell{fay time-varying one (cf. [20], [27]), i.e.,
andPr{-}. We write |z[t]||2 £ z[¢]" z[¢] for the ¢s norm of
x[t], |\:c{||0}0 £ max, n!a;i“k [t]] f[o]r th[e] ¢~ norm of z and it +1] = flt] + AflH] )
7| Ears £ limi—oe 312y 4 [l[¢]]3 for its RMS norm. whereAf[t] is the variation of the fault from instantto ¢+ 1.
Equation (4) allows modeling, for instance, step signalg [¢]
Il. PROBLEM FORMULATION only takes a nonzero value at the time the fault appears) or
Let us consider linear time invariant discrete-time systeniamp signals 4 f[¢] takes a constant value), that have been

defined by equations widely used in the literature to analyze the behavior oftfaul
_ ' detection algorithms [4]. Along this paper, we considert tha
t+1] = Ax[t] + By, ult] + B, w[t] + By f[t], (1
7l ] 2t ult wif] o1 @ wlt], v;[t] for all j = 1,...,n,, and Af[t] are mutually

where z € R" is the state,u € R™ is the vector of yncorrelated for alt.

known inputs,w € R"~ is the state disturbance assumed as \We introduce an extended order model to include the fault
a random signal, uncorrelated in time, with zero mean ag§namic as

known covariance matriE{w[t]Tw[t]} = W for all ¢, and _ _ ~ ~

f € R is the fault vector. Throughout this work we assume z[t + 1]= Az[t]+ Byult|+ Byw[t] + BeAf[t]  (5)

that the known input: is causally available at all times, see - T

Fig. 1. This general model includes as a particular caseih 2t = [x[t] 1 ] and

system without known inputs, by simply takirig, = 0. B A By B B, _ B,, _ 0
The measurable outputs of the system are modeled byd = o I’ B, = NE By = RE By = I
equation )
y[t] = C x[t] (2) wherez € R™ with i = n + ny.

. In this work we intend to detect and estimate (diagnose)
wherey € R™v is the output vector. .
: o - . the possible system faults (represented by ve¢top) when
Different sensors with different characteristics on santpl : o
. the measurements are transmitted through a communication
rate or noise, that may have faults, can be connected to on . >
. etwork that may induce dropouts. In this case, the system
single measurable output, but at least each measurablatou . . .
. ; utput measurements are not available at every discrete tim
is measured by one sensor, having, > n, sensors. We . o L
: instant. When the dropout rate is high, the fault estimation
define the measurement value as . .
problem becomes more difficult and the importance of a fast

m;lt] = ¢; z[t] + h; fIt] +vift], j=1,...,n, (3) response to faults and a low FAR becomes more evident.



The measured and transmitted value from sepsdrinstant B. Fault diagnosis method

tis . B We propose the following fault estimation algorithm for
mit] = ¢;z[t] + vj]t], (6) system (5)-(6). At each instart the model is run in open
with ¢; = [¢; h;] andj = 1,...,n.,. We assume that the pair°P l€ading to

(A,C) is detectable (being' the matrix whose rows are;). 2[t7] = A2t — 1] + Buult — 1]. (11)

Remark 1. If the pair (A,C) is not detectable (i.e., |f no measurement is received, we keep the open loop esti-

ng > ny), only a combination of the faults can be detectegnation, i.e.,2[t] = 2[¢t~]. If a measurement arrives at instant
Then, a previous transformation of the system, as proposed ¢, the state is updated as

in [28], must be done (leading to new; faults such that

7; < ny,) before the proposed technique becomes applicable.  Zltx] = 2[t; ] + L{tx] (m®[tx] — alts] C 2[t; ), (12)
whereL[tx] is the updating gain matrix ane“[t;] is defined
A. Network transmissions characterization in (8).

Each sensor samples its output synchronously with tRemark 2. While ¢t € N refers to each time instant,
known input update and sends independently a time-taggedth & < N) enumerates only the instants where some
packet with the measurement$[t] to the fault diagnoser measurements are received. For instance, if we receive some
station, through an unreliable communication network wittheasurements only at instartis= 8 andt;,, = 10, but not

packet dropouts. att =9, then instantty, + 1 =9 (or t41 — 1 = 9) refers to
We define the binary variable;[¢] that indicates the avail- instant9, when no measurement is received.

ability of the j-th sensor measuremernjit€ 1, . .. at each -

insta)rqtt asj O L) Let us denotez[ty] by z,. Defining the extended state

. . . estimation error at updating instants &s = z; — 2, the
o] = { 0 if m§[t] is not received at, (7) estimation error dynamics is given by
it =

L if m§[t] is received at. N
ék Z(I — LkakC)A kék_l — Lkakvk

Then, the availability matrixa[t] = @’ «,[t] is a binary Ne
dia_lgonal matrix that can (_)nly have ones in its diagonal. Thus + Z(I — Ly OV A By Wity +1— 1] (13)
using «aft] we can redefine the available measurements at =1
S o (ot ot g DeiNg By = [Bu Byl and Wit i +1—1) = [wfty1 +1 -
m?[t] = alt] (Cz[t] +[t]) 8) 17 Aflti_1+1—1]"1". N denotes the number of consecu-

Note that a component of vectom®[t] is null when tive instants without measurements (which is unboundesl), i
the corresponding measurement is not availablg] = Ne=1r —tr—1.
[v1[t] - -- vn,, [t]]T is the measurement noise vector with co- The fault detection algorithm uses the estimated faults to
varianceE{v[t]v[t]T} =V = EB?QH 072, (for all t). compute a residual signal at instanmts: ¢;, as

The possible values of[t] at each instant belong to a e = fTF1fy, (14)

known finite set
where the common fault detection decision is given by

if 7. <mry  No fault
if 7, > 7 Fault

a[t]GE:{TIOanlv"'vnq}v q:2nm_17

wheren; denotes each possible combination of the available
measurements at the fault diagnoser station (measuren}?nt

. ) . N .~ beingry, > 0 a threshold to be defined. Then, fault isolation
reception scenario). Matrix, denotes the scenario in which. . S :

. : . is achieved by means of the combination of fault detectiah an
there is no measurement available, i, = 0. We char-

acterize the network behavior using the total probability fault estimation, allowing us to identify which is the origof

each scenario irE. We denote byp; = Pr{a[t] = n;} the fault

the probability of having the measurement reception séenaRemark 3. According to [4], the minimum detectable fault is

n; at instantt. p, denotes the probability of having noa fault that drives the residual to its threshold, providead n

measurements. other faults, disturbances and measurement noises areipes
In the current paper, we assume that the arrival probabilifjien, assuming a zero fault estimation error (ife.= f),

from each sensor is governed by an independent and idertich diagonal element df in (14) multiplied by, defines

cally distributed process [29]. We denote Bythe probability the minimum detectable fault 8&,in; = 7 F'(I,1) for the

of having available the measurement from senjsat instant corresponding channel & 1,...,ny).

t, i.e., 8; = Pr{a;[t] = 1}. Then, the probability of having a

. oL . iy Considering the fault detection logic, the FAR is defined as
given combination of available measurements = is

the average probability of rising false alarms over an itdini
pi = Pr{aft) = n;} = H (1-5) H B, (10) time window, i.e.

JET(ns) JEZ(n:)

K-1
U= 1Ii P > =0}. 15
forall i =0,...,q whereZ(n;) = {j|n:(j,7) = 0}. K 3o kzzo r{re > | fi } (15)



The aim of this work is to compute the gain matridgs the Theorem 2. For a given threshold, > 0 and0 < ¢ < 1,
matrix F', and the threshold;;, such that the fault diagnoserand under the premisses of Theorem 1, if
attains disturbance and measurement noise attenuatidn, an
fault diagnosis performances for a given FAR. These ohjesti tr(TW) +tr(oV) = g1, (19)
can be reached with an invariant observer gain (as in thad constraint17) are fulfilled, then, the following additional
majority of reviewed works), or with a jump one (e.g. [6],)X8] statement holds:
In this work, we relate the gai; to the sampling scenario

. iii) In the absence of faults and under zero initial condits
ag, as Ly = L(ag), with the law L, = L; whenay = n; )

the fault detection algorithm assures a FAE5) bounded

for ay, = m,...,nq. Then, the matrices are computed off-line
. ! by ¢.
leading to the finite set
Proof. See Appendix B. O
Lye L.={Lq,...,Ly}. (16)

The next theorem extends the previous one showing how
I1l. FAULT DIAGNOSER DESIGN DROPOUTFREE the fault estimation error decays at each measuremenninsta

Let us first consider the case without measurement dropoutheorem 3. For a given threshold, > 0 and0 < ¢ < 1,
ie,B;=1forall j =1,...,n,. Inthis casen[t] is always and under the premisses of Theorem 2, if
the identity, which implies that each instatris a measurement R
instant ¢ = t) leading toL, = L and N, = 1, for all k. The I'y =By PBf = 0, (20)
following theorem presents how to design the observer Gaingng constraints(17), (19) are fulfilled, then, the following
and the matrixF’ that defines the residual (14) based on thgygitional statement holds:

Hy norm of system (13). iv) The fault estimation error given Bg{|| f||3} decays with

Theorem 1. Consider the estimation algorithni11)(12) 1
applied to systerfil)-(4) with standard sampling. If there exist p=1- m (21)
symmetric matrices?, F, I'y, I'y, I'y, and full matrix X 1 F)
fulfilling Proof. See Appendix C. O
P A 0 The above theorem shows thB{| f;||3} decays withp,
AT P Byl =0, (17a) from the initial conditions to the steady state region (SE8)(
0 B? r p depends on the maximum eigenvalue of the prodyct.
P B, If Fis fixed to assure the detection of some given minimum
[BT r L] =0, p=A{w,v, f} (17b) faults,I"; determines the response time of the fault estimator
_ et (by means ofp) and therefore the time to detect a fault (as
with the residual is defined with the estimated faults).
A= (P -XC)A, By = (P—XC)Buy, Remark 4. Under a step-like fault, the number of instants
B,=-X, By =(P—-XC)By with measurement reception, denoted By until the initial

- . . value of the fault estimation error is decreased belgi¥),

then, defining the observer gain matriceslas= P~' X, the . . : L 0)

following statements hold: characterizes the settling time of the fault estimationtmec
9 ) (time to achieve tha 00 — ¢ of the final value).XC can be

i) In the absence of disturbances, faults, and measuremgptsined approximately by solving equatipfit! = £/100
noises the extended state estimation effi8) converges (see(41)) leading to

to zero.
ii) Under zero initial conditions (i.e.z, = 0), the fault K = {M — 1} (22)
estimation error is bounded by log(p)

E{||flAms} < AF) (tr(T) AT )AL, (18) where H is the operator that rounds its argument to the
nearest integer towards infinity. One of the most used values

whereT' =T, W + T,V and |Af oo < Af - for ¢ in system theory i§ = 2%. Thus,¢ = 2% refers to the
Proof. See Appendix A. j humber of time instants until reaching the 98% of the fault

estimation final value.
The above theorem states thatis related to the expected

value of the squared RMS norm of the fault estimatioRémark 5. For a fixed value off", increasing the FAR by
error. We can extract from (18) that the fault estimationd(ar"®ans 0f¢ leads to an increase in the values Bf, and
therefore the residual signal) is more sensitive to disindes v+ S€€(19). Higher values on these variables alleviate the
and measurement noises when the maximum of the minim&@straints overP in (17b) increasing the solution space
detectable faults (by means &fF)) is higher. Furthermore, In the search for a feasible matri¥. This would allow,
the lower the value\(T';), the lower the effect of the faults fOr instance, structure constraints over matrik. Matrix

on the estimation error. The next theorem extends the gesdly " (20) constrains the last diagonal block oft. Then,
of the previous one to bound the FAR. increasing ¢ can enlarge the solution space to find lower

values ol ¢, which, in turn, lead to lower values @f (faster



fault diagnosers). These ideas are analyzed in the exampleFheorem 4 has shown how to reduce the conservatism of

section. the approach when assuming Gaussian disturbances, bt at th

cost of including new nonlinear equality constraints thag a
ard to handle. We will show in the design strategies section
ow to overcome this issue.

We used Markov’s inequality in Theorem 2 to bound th
FAR. However, it is well known that the bound yielde
by Markov’s inequality may be very conservative (see [13
because it does not consider the probability distributibthe
residualry. This may result in a real FAR that is some orders V. APPLICATION TO NETWORKED TRANSMISSION
of magnitude lower than the desired one, which, as shown the previous section we presented how to design the

in the examples, may lead to a very slow response of thg,|t diagnoser and to characterize the obtained FAR and
fault diagnoser (characterized Byin Theorem 3). Most of response time to faults for measurement transmission witho
the works in the literature share this important drawbaok. lropouts. In this section we extend the previous results to a
order to overcome this, a more accurate bound on the FARyre interesting case where measurement information is not
would be desirable. Assuming that the disturbanegsand g\ways available due to network dropouts. This will strewss t
the measurement noiseg are Gaussian, we show in the nexheeq of fast fault detection with a low FAR. The following
theorem how to impose an appropriate value to matrix F {georem extends Theorem 3 and shows how to find the set
force the residual; follow a chi-squared distribution, which of ghserver gain matrices (16) and the matrix that defines the

allows us to tighten the FAR bound. residual (14).
Theorem 4. For the fixed thresholdth =ny and for a given Theorem 5. For a given threshold, > 0 and0 < ¢ < 1,
0 < ¢ <1, under the premisses of Theorem 3, if consider the estimation algorithrtl1)-(12) applied to sys-
F=¢"1%; (23) tem(l)_-(4). Assume that there can lqe_diﬁerent meg_surement
_ _ _ reception scenariog; (i = 0,...,q) with a probability p;. If
and constraintg17), (19), (20) are fuffilled, with* there exist symmetric matricé®, Q, F, I, I',, ', and full
vee(Sly) = (I _GAw GA)_I vee (Y1), (24) matrices X; fulfilling )
Y1 =GB,WBLIGT + PTIXV (P X)T, P - M Bf} _ (262)
G=(I-P'X0), L By F
_ - " I, — BLM;B,, = 0, (26b)
then, in the absence of faults, under zero initial condiion @, P M
and Gaussian disturbances and measurement noises, if the ﬁ% F?’} =0, (26¢)
fault diagnoser gain is defined a = P~' X, then the FAR L ?’_T v _
is given by Iy — By (Ms + Mg)By = 0, (26d)
T'th ‘DL, P M
¥ =1-CDF — 25 =1 4
ng<¢> (25) N Q}to, (26e)
whereCDF vz (%) = Pr{ < .} denotes the cumulative tr(Ty W) + tr(Ty V) = ¢ ren, (261)
distribution function (CDF) of a chi-squared random variab y— BfTPBf =0, (260)

with n; degrees of freedom; .
with
Proof. See Appendix D. .
— oAV ATOA
Remark 6. Following the definition of the CDF of a chi- vee(My) = ¢(A4) “vee(AQA),

squared random variable, the value of needed to obtain M, = (1 — po) M5 + LMl, M; = 1 2Q7

a desired FARy with the chi-squared approach is always 1=po (1 =po)
higher (for any value ofny) that the one required with ﬁpl Xim \/p_l(P_lec—,)
the Markov’s inequality approach. For instance,rsiff = 2 _ _

and ¢ = 1073 using Theorem 2 requireg = 103 while Ms = : , My= ' ;

Theorem 4 requiresy = 0.145. Following Remark 5, this Ly Xyl VPq(P — Xn,0)
implies that using the chi-squared approach could lead tdtfa ro

diagnosers with a faster response to faults than employieg t vec(n/,) = gp(/{)*l <Vec(ATM5A) +
result on Theorem 2. However, Markov’s inequality approach

(from Theorem 2) has wider applications because it does Nty o(A) = I —po AT @ A7, then, defining the observer gain
require Gaussian disturbances and noises, as the Chi'mu‘ﬁﬁatrices asL; = P~'X;, the following statements hold:

approach (from Theorem 4) does.
PP ( ) i) In the absence of disturbances, faults and measurement

vec(M1)> ,

— Po

1The Kronecker product betweeA € R"*™ and B € RP*4 is a block noises,(13) converges to zero in average.
and - amB i) Under zero initial conditions, the fault estimation erris
matrix such asA ® B . . € R™P*™4_The vectoriza- bounded by
an1B te anmB

tion of matrix A is vec(A) = [a11 -+ @n1 a1z -+ Gnm] . E{HfH%MS} < \(F)- ((b Ten + an(Ff)A_ffnax) , (27)



where Af, .. is a constant that depends on the fault First, let us consider that we desire to detect faults over a
magnitude that bounds vectdf, € R"/ as|Af|l. < certain value, i.e to fix the minimum detectable fault on each
Af beingAf, a vector that fulfills for allk that channel fnin,; (for I = 1,...,nys), with a guaranteed FAR,
- N—1 and to detect as fast as possible the appearance of faslts (i.
Z Npé\/—l Z =TQ (AleAf[tk + l]) with the lowestp). The next optimization problem deals with
e = this design problem.

max’

*

ol N—-1 Strategy 1. For a given thresholdy, > 0, letv be the desired
=Af, <Z Np)—t Z B (AHTQA'By | Af,.  FAR, fix¢ to be¢ = ¢, and letF be a diagonal matrix such
N=1 =0 that F = @, f2,,;/7w. Then, the minimization problem
(28) '

— -, . minimize
iii) Under zero initial conditions and in the absence of faul w7

. (31)
the residual evaluation assures a FAE5) bounded by. subjectto Xy = {(26), F' X F, T'yF <~I}
iv) The fault estimation error given dg{| fx||3} decays with along variablesy, P, Q, F, T, T, Ty, and X, (with
1 i =1,...,q), leads to the fault diagnoser with the fastest
p=1- X(FfF)' (29) response under faults, able to detect faults ofigr, ; (with
l=1,...,n5) with a FAR belowy.

Proof. See Appendix E. O

) - ) ) ~ Remark 8. The computational complexity of Strategy 1 can
Remark 7. The existence of vectahf, defined in(28)is pe described as follows. The size of the full involved LMI
assured because it represents an equality constrainedgmob ¢onstraint is

with one equation and s degrees of freedom. For instance, un-
der ramp-like faults A f [t +1] is constant) A f[t,+1] = Af), (2" +1)(n+ny) + 5nf + ny + Ny + 1.
(forall7=0,1,...)andAf .. = |Af|le. Furthermore, the

o ) . H H (n+ng)x(n+ny)
exact value ofA f is not relevant for the analysis. Symmetric matrices a®> € R ! 7 have (n +

ny)(1+n+nys)/2 decision variables, while full matrices as

In the aim of reducing the conservativeness introduced by, ¢ R("*"1)x"n have(n+ny)n,,. Furthermore, Strategy 1
Markov's inequality to bound the FAR, the next theorens based on semidefinite programming and therefore does not
extends Theorem 4 by forcing, to follow a chi-squared require a high computing capacity. This kind of problems can
distribution when measurements are subject to dropouts. be solved using MATLAB toolboxes as Yalmip [30] (which can
handle large scale problems).

max

Theorem 6. If the threshold is set as., = ny and for a
given0 < ¢ < 1, under the premisses of Theorem 5, if Second, let us assume that we desire to impose the response
F—g¢'s, (30) speed under the appearance _of_ faults (by means @fith a
guaranteed FAR. Then, the minimum detectable faults can be
and constraintg26) are fulfilled fori = 1,..., ¢, with minimized through the next optimization problem.

Y= B;{(R _ poflRflT)Bf, vec(R) = Yflvec(YQ), Strategy 2. For a given thresholdy, > 0, letv be the desired
q FAR, fix¢ to be ¢ = 1, and letp be the given upper bound
Yi = p(A) — (ZPi(GiA) ® (G A)), on how the fault estimation error decays, i.e.< p. Then,
i=1 the minimization problem
p(A) =1 —pAT ® AT, minimize
1 q

q
Yo =——> piLinVn] L + ZpiGi(SW)Gzrv subjectto Xy = { (26), tx(F) <7, } (32)

1=po = i=1 MyF<(1—p)t1
Sy = o (BuW B + poASw, AT, along variablesy, P, Q, F, I',, I'y, T'y and X; (with i =
1=po - _ - 1,...,q), leads to the fault diagnoser with the minimum value
vee(Sw,o0) = 9(A)” vec(Bu,WB,,), of the sum of the squared minimum detectable faults (defined
Li=P'X;, Gi=1I-LnC by matrix ') with p < 5 and a FAR below.

then, in the absence of faults, under zero initial condiiorRemark 9. Optimization problem(32) is nonlinear because
and Gaussian disturbances and measurement noises, the PARe bilinear matrix inequality (BMI) that affects the piact
is given by(25). I'tF. This can be solved with the following rank constrained

roblem
Proof. See Appendix F. P

T )
> 0, rank <n
V. FAULT DIAGNOSIS STRATEGIES [ F A I A f

Based on the derived results on Theorem 5, we proposhere a new symmetric decision matrixhas been added.
the following two strategies to address the design of a fadlhis problem can be iteratively handled with the well known
diagnoser depending on the needs of the application. cone complementarity linearization (CCL) algorithm [31]



(which only addresses feasibility by relaxing the rank corFhe state disturbances and measurement noises are Gaussian
straint with a positive semidefinite constraint on the imeal with covariance matrices
matrix) over a bisection algorithm. Solving Strategy 2 isreno 0.11 0.03 00l 0
time consuming than Strategy 1 because of the iterations W= [0'03 0.13} , V= { 0 0.01} .
introduced by the CCL and the bisection algorithm. Nev-
ertheless, it only introduces (1 + ny) decision variables =~ We consider that the measurements are independently ac-
(due toA) and only increases the full LMI size @n; + 1 quired through a communication network where the probabil-
over a semidefinite programming problem, and therefore, tifées of having available the measurements from each sensor
computational complexity is not really an issue. are 8 = [0.58 0.46].
. . . . . . For ease of analysis, in this example we will only explore
) Both deS|gn strategl.es are sitill valid when including MONhe case when we impose that the minimum detectable faults
linear equality constraints (30) but need more computaﬂorbre below some given values and we try to obtain the fastest
effort. _The next strategy extends the Previous ones to d(_:ms'response to faults of the fault diagnoser, i.e. we will only
the chi-squared approach presented in Theorem 6. analyze Strategies 1 and 3. For ease of notation, let us assum
Strategy 3. The minimization problem that the requirement over the minimum detectable faults is
such thatF' < finI. In the next, we impose the threshold to
be Tth = T f.
(33) First, let us study the compromises between the minimum
Y =1— CDF (Tt_h) detectable faultsf,;,, the desired FAR) and the speed of
o\ ¢ the fault diagnoser by means pfin the design procedure.
along variablesy, P, Q, F, T, T, T';, and X; (with i = Fig. 2 illustrates these trade-offs for five rdif“ferent dedir
1,...,q) with r, = ny, extends the design made in Strategy FARS with ¢ = [1071 107% 107% 10~ 10~°] and for the
if j = 1, or in Strategy 2, ifj = 2, to tighten the FAR bound W0 presented approaches to assure them: through Markov's
with the chi-squared approach. inequality (left hand side figure, Strategy 1) and through
o _ ) characterizing the probability distribution of the resadisignal
Remark 10. Optimization problem(33) is nonlinear due (right hand side figure, Strategy 3). We note that imposing
to constraint(30). This optimization problem can be solvedmgajier minimum detectable faults or lower FARs results in a
iteratively with LMI constraints by fqrcing matri¥’ at each gjower response time to faultg figher). We also find that
stepk to be asF < ¢~ !X, (£*!), until 5, (L£*~") converges forcing F to be as defined in (30) (chi-squared approach)
to a constant value,_whe@f(ﬁkfl) is the covariance matrix yesylts in a faster response under fayitsrpaller) for the same
in (30) evaluated with the observer gains at step- 1. The minimum detectable faults than using Markov’s inequality
computational burden of each of the iterations is nearly thﬁpproach. Furthermore, Fig. 2 shows an asymptotic behavior
same as in Strategy 1 (or Strategy 2), but the total computigg p with respect tofumin, leading to a minimum achievable
time is multiplied at most by the number of iterations. Howyg|ye.
ever, we are again dealing with a semidefinite programming gecond, let us study the behaviour of some fault diagnosers
problem, therefore the computational load is not a problemj gimylation, whereu[t] = 0 for all ¢. Table | compares

Remark 11. Strategy 3 will lead, in general, to minimumthe fault diagnosis performances for the case witeris
detectable faults undefin; (for I = 1,...,n). If we do unconstrained, case C1 (where Markov’s inequality apgroac
not intend to detect faults undgt.;,;, we can first solve the is used, Strategy 1) and whénis constrained to be as in (30),
optimization problem involved in Strategy 3 and thenyse-  caseé C2 (where the chi-squared approach is used, Strategy 3)
FT F=1f, in the real-time implementation (whef& includes For both cases we impoge= 10" and fui, = 0.6. We also

the original prescribed minimum detectable faulfs,;, ;). In include in Table | a case C3 where we reduced fhe from

this case, as we impose in the design that>; < F, the case C2 to the half. The matricds obtained for the three

obtained FAR will be upper-bounded K43). cases are:

minimize 1y
subjectto &}, (30),

018 0 0.161  —0.025
VI. EXAMPLE For = { 0 0.18} » Fea = [—0.025 0.107} ’
Let us consider an industrial continuous-stirred tank t@ac 0.022  —0.008
process (borrowed from [32]) where the discretized stptes Fos = {—0.008 0.041 } :

model is
A { 0.972 _0.001} B [—0.084 0.023} As illustrated in Table I, for case C3, we can detect smaller

0034 0.863 0.076 0.414 faults than in case C2 at Fhe expense of being sloyver than in
case C2. However, we still are much faster than in case C1
By = By, C = [1 0} ) where the guaranteed detectable faults were higher. Mergov
01 as stated in Remark 11 cases C2 and C3 can detect faults
We desire to detect faults from the second actuator and thelow the imposedf.,i, (fmin1 for the actuator fault and

first sensor, i.e. fmin,2 for the sensor fault). Concerning the computational
0.023 0 0 1 burden, obtaining C1 takés4sec (using Yalmip with SeDuMi
By = [0.414 0} , H = {0 0} ‘ solver [33] in a i7-3770 processor at 3.40 GHz) while C2



Trade-offs with Markov’s inequality approach Trade-offs with chi-squared approach
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Fig. 2. Trade-offs on the observer-based fault diagnossigde

requires2.5sec (with 10 iterations). Note that as previouslynechanism only takes 6 more instants to detect the fauls Thi
stated in Remark 8 and 10, the computational cost is not @ndue to the fact that C3 can detect lower faults than C2 and
issue. C4 (note that the diagonal dT&)l are higher than the ones of
After a simulation ofL0° instants with no faults, we verify F, and ). Finally, note that the settling time at the 98%
that the FAR obtained in simulation (by dividing the number d§ = 2%) for the fault estimation, measured in terms of the
risen alarms by the total number of simulation time insfantsumber of measurement instants, is in the ordeC¢fiefined
for case C2 and case C3 is the same as forecasted in ith€22)). For example, for case C3, the settling time is of 60
design, but for case C1 is much lower (several orders @feasurement instants fgh and of 130 forf;, while it was
magnitude) than the imposed bound. This conservativerfessbaracterized byC = 167 from (22).
the Markov’s approach results in an extremely slow residual
dynamics (as seen in Fig. 3), and a huge time to detect the VIl. CONCLUSION

fault (characterized by 6101 measurement instants, se§ (22 |n the current work, we designed a jump observer-based
that is useless in practice. To alleviate this conserva&es, faylt diagnoser to detect and estimate faults under measure
we add to the analysis a fourth case C4 (WHbs = Fo1) ments dropouts. We constructed the residual signal using a
where, as a difference from case C1, we impgse= 0.1 guadratic form of the estimated faults. A finite set of observ
(¢ < 0.1). Then, we obtain a fault diagnoser similar to C2 withyains is used to estimate the faults and each gain is applied
a FAR in simulation ofl0~* (see Table 1), which is under thedepending on the measurement outcomes. We employed the
desired one ot0~*. This shows that we can compensate thgeasurement successful reception probabilities from sech
conservativeness of the Markov's approach by increasieg tor to describe the possible measurement reception sesnari
value Of(b and then Verifying in simulation if the prescribed The proposed design method allows f|nd|ng a trade off
bound is fulfilled, but we cannot guarantee a priori a givefetween the achievable minimum detectable faults and the
tight false alarm rate or minimum detectable faults. response time to faults, while guaranteeing a prescribled fa
Fig. 3 and Fig. 4 show the fault estimation and faulllarm rate. Two design strategies can be used: fixing the
detection performances resulting from simulating the tfauhinimum detectable faults and then minimizing the response
diagnosers from Table | under the appearance of two stge, or fixing the response time and then minimizing the
faults, one for each channel, of an amplitude0df at time minumum detectable faults.
t = 100 (disappearing at = 400) for f;, and att = 200  We developed two ways of imposing a desired false alarm
(disappearing at = 500) for fs. rate depending on the assumed knowledge about the proba-
The fault diagnosers for case C2 and C4 are the fastédity distribution of the residual signal. If no informati is
ones to detect the faults and their estimation of the fawt®eh assumed to be known, the Markov’s inequality leads to a very
the lowest settling time. However they are the most semsiticonservative bound on the false alarm rate. If the disturésin
under state disturbances and measurement noises (as tleey had noise are assumed to be Gaussian, a certain condition
the highestp\(F) product, see (27)). For case C1, the faultnposed on matrix” leads to a chi-squared residual distribu-
detector cannot detect the faults on time because it has a tion. In this case a very precise bound on the false alarm rate
slow dynamic due to the conservativeness introduced by tiseattained, improving the fault diagnosis performance.
Markov’s inequality. Case C3, is an intermediate case batwe Further research may include extensions to delayed mea-
C1 and C2. Even if for case C3 the estimated faults converggrements with Markovian models for the missing measure-
slower to the faults than for cases C2 and C4, the detectiorents and analytical characterization of the missing feaaté.



TABLE |
FAULT DIAGNOSERS COMPARISON
Case Design Simulation
fmin fmin,l fmin,2 ¢ d} P K FAR
Cc1 0.6 0.6 0.6 10~3 | 1073 | 0.999 | 6101 0
C2 | 056 0.46 0.52 | 0.145 10~3 | 0.808| 18 10-3
C3 | 021 0.29 0.29 | 0.145 1073 | 0.977| 167 10-3
C4 0.6 0.6 0.6 0.1 01| 0798 17 104
Case C1 and C4 Case C2 Case C3
1.2
— C4
<08 “
s —
E \ \ \ ‘
S04
3 \ \ \ ‘
g 0 L
= Cl
0.4
1.2
—_ C4
<08 N o
£ | |
& |
ho 0.4 | ‘
5
g 0 X L — (I
= cl
0.4
0 200 400 600 0 200 400 600 0 200 400 600
simulation instants, ¢ simulation instants, t simulation instants, ¢

Fig. 3. Fault estimation performances for the analyzedscaseTable .

Case C1 and C4 Case C2 Case C3
5 25
= \
;2 20 fault
2 I
=
2 15 \
<
= I
= 10
5 detectionlat £ = 106 C4\
s 5 \
5 Tth cl
g - — — e
4 0 YN
0 100 200 300 0 100 200 300 0 100 200 300
simulation instants, ¢ simulation instants, ¢ simulation instants, ¢

Fig. 4. Fault detection performances for the analyzed ceseEable I.

APPENDIX convergent, then we have
oo T o0 oo o0
Let us first introduce the following lemmas. Z wir; | P Z piw; | < Z i Z izl Pa;.
=1 =1 =1 =1

Lemma 1 ( [34]). Letw be a stochastic vector with mean
and a covariance matri¥¥’, and P a symmetric matrix. Then

A. Proof of Theorem 1

E{w? Pw} = uT Py + tr(PW). LetNI%S (ilefine the Lyapunov function at instant ¢, as
Vi = 2, Pz.
i) In the absence of disturbances, faults and measurement

Lemma 2 ( [35]). Let P be a positive semidefinite matrixnoises, after taking Schur's complements on (17a) and gremu
x; a vector with appropriate dimensions and > 0 scalar tiplying the result byz}" and postmultipliying by its transpose,
constants (withi = 1,2,...). If the series concerned iswe obtain thatV},,; — Vi < 0 that assures that the extended
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state estimation error (13) converges to zero under stendéor all &, considering the fact thdf s F' and F%TFfF% are

sampling. similar matriced. From this expression we can upper bound
i) Performing similar steps on (17b) (Schur’s complementsE{Hf,gH%} allowing us to rewrite expression (37) as

and operations withw!', 1" andAf, ), taking expected value

< _
on the results and adding the obtained constraints with rilee o E{Vin} <pB{Vi} +e+ (1 = p)ds, (39)
from (17a) we get for all & with p as defined in (21) and
E{Vit1} — E{Vi} + B{/TF ' i} — E{w[Ty,uw} e =1 + g ANC A frae
—E{vl Ty} — Af,TTAf, <0 (34) Expressions (17a) imposes thaf PB; = F~' which com-

bined with (20) leads t&' s F' = I guaranteing that < p < 1.
Going backwards fronk to £ = 0, expression (39) becomes
k
E{Vip1} < p" M E{Vo} + ) ol (e + (1 - p)da).
1=0

where we have considered the uncorrelation betwégn
wy, vg+1 and Af,. Applying Lemma 1 overw} and v},
considering zero initial conditiond/{(0) = 0) and adding the
result fromk =0 to K — 1 we get

K—-1 K—-1
- - _ . . k k1
STE(fIF ) < KD+ S AfT,AfF (35) Taking into account thal,_, p' = 555 < 1, then
- -~ B{Vi1} < BV} + ——e +d (40)
where we have taken into account thBt = 0 and that B =P 0Ty e

=T,W +T,V. Dividing the above expressions bif,

. . . > ~I 2 .
taking the limit whenK — oo and considering that Constraint (17a) implies also tha{Vi} > E{]fi2}

Considering this, inequality (38) and the fact that

T -1 ¢ —1 T F ~ ~ — ~
BULF"Ab2MF OBURA, AEDIFel3 < 1F2IB < XE-HIFelB,
and that\(F'~!) = 1/A(F) (asF is a positive definite matrix), . w(F . NF _
it leads to (18), which concludes this proof. E{[|frs1l3} < PHIﬁE{HfO@} + {a (_ 3))5 + A(F)da,

(41)

i - . wherex(F) = A\(F)/A(F) is the condition number of matrix
If there is no fault on the system (i.¢, = —fx andAfr = £ 4nd where we have considered thet—1) = 1/\(F)

0 for all k), we have tha&{fF~'fx} = B{f{ F"'fi} = pecauseF is positive definite. Expression (41) proves that
E{ry}. Then, following the proof of Theorem 1, d|V|d|ngE{”Jzk”%} decays withp.

expression (35) by, taking the limit whenX tends to infinity
and considering constraint (19), we obtain D. Proof of Theorem 4

B. Proof of Theorem 2

1 K First, in the absence of faults and under zero initial condi-

Am = Z E{ri} < ¢ron. (36) tions, f, is normally distributed and has zero mean because the
k=0 disturbances and measurement noises are normally distlibu

Considering the above result and the FAR definition givaesith zero mean. Second, l&f;,_; = E{ék,lékal} be the

in (15), we can employ Markov’s inequalftgo obtain covariance matrix for the state estimation error updated at
K1 instantst;_; (which is also the covariance at instantsince
U < lim 1 Z M < o, we are dealing with standard sampling). Then, its expected
K—oo K — T value at instant,, is given by
proving that¢ bounds the FAR. E{Z,} =G(AZ,_1 A" + B,WBI)GT + LV LT. (42)

As the observer gainl. assures the stability of (13) (by
C. Proof of Theorem 3 ) o Theorem 1), the series in (42) converges to a symmetric
Let us define vectorf; by f; = F~=2 f. With that, (34) positive definite matrix>; = E{Z;} = Zy_1 whenk — oo
can be rewritten as (see [26]) given in (24). Then we have thg{ '/, is

E{Vit1} — E{Vi} < —E{||fLI3} + ren + ng AT p) A2 e distributed as;? ~(see [36]). Considering (23), the signal
(37) 7k/¢ = fi F~' fi is then distributed a&; . From Theorem 2

Inequality (20) implies thal’; minus the diagonal block We know thatE{r;}/¢ < ru, see (3525)- As the expected value
of P corresponding to the fault estimation error is positivef random variable that follows &’ is ny, if we fix the

semidefinite. Then, there exists a finite real constant 0 threshold to be, = ny, then we have that the FAR is

that fulfills e T
- - . 1T L~ ‘IJZPI‘{—>—fk=0}, (43)
E{(Vi} <E{fiTsfi} +di =E{f;"FZ T;Fzfi} + d d using the definiti ¢f h y btai
<XNT RE{|| fLI3Y + da (3g) andusing the definition of the CDF, we obtain (25).

3Matrices A and B are similar i = C~1 AC. Similar matrices share the
2If x is a positive random variable and> 0, thenPr{z > a} < @ same eigenvalues.



E. Proof of Theorem 5

Let us define the Lyapunov function at instant ¢, as

Vi, = 2T P%,. Let us first study the evolution of the LyapunovE {Z/ M1%,} <E{V;} — E
function. The expected value of the Lyapunov function at th
tx11 given that a measurement was

next update instant =
obtained at, denoted byE{V,.1}, is

oo
Z Py ! Zpi E{zZ\1 PZ11|Nks1 = N, a1 = i}

ol
ol (E (Ermren))-]
+E {v,{ <Z Py~ 1anLTPLmZ> vk}

(44)

el

considering the uncorrelation betweéfty], wltx + 1 — 1],
V[tg+1] and Affty +1—1] for I = 1,..., N, — 1 and the
uncorrelation in time ofw([t]. Matrix Q is defined byQ =
quzl pZG;TPG“ whereG; = I — LZT]ZO andL; = PilXi.

Le us denote by, 1 the result of replacing in (449 by
Q@ whereQ =< @Q. We rewriteVy, 1 as

> A'ByAfty +z]>

=0

*

Vit = Vi + Vi + Via + V0
Since Q < @, we have thaE{Vj 1} < Vii1. If poA(A)?
1, the series involve in (44), and therefore .., are
convergent. Then, the summatory mfﬂ, which implies
dealing with cross products between the differant[t; + ],
can be bounded with Lemma 2 3, < Vi, with Vi,
given by (28). Therefore, defining,; as

kYl z w v 5

Vit1 = Ve + Vi + Vs + Vs (45)
we have tha®{Vi;1} < Vi1 < Viyi. Let us now analyze
constraints (26a)-(26e). If (26e) holds, then matgixs such
as@ = Q. MatricesM;, Ms, Ms, Mg can be rewritten as

ZpN 1 AN QAN,
N-1 .
3t (z B (4) @Aléw)
1=0
%) N—-1 )
Ms + Mg = Z Npy' ™t ) (A)TQAT
N=1 =0

Then taking Schur’s complement from 7(26a) to (26d); premu

tiplying the result byz?, w?l', v andAf,~ and postmultipliy-

11

ing by its transpose respectively; and taking expectedegalu
in both sides, we obtain

{FrF i,
E) {wkTMgwk} <E {wk Fwwk} ,
E {”kT (Z Py ZmTLiTPLim-) Uk} <E{vjTyui},
N=1 =1
T , - _ N T I
Afy (B?(M5 + Mﬁ)Bf) Afy <Af TrAfy,
Adding all the above expressions leads to
T =Viy — B{Vi} + E{f{ F " fi}
— E{w!/Tywy} — B{oITyur} — Af, TfAf, <0 (46)
whereV,.,; is as defined in (45). Let us defirte as
eo=7 _vk—ﬁ-l + E{Vk+1} <0.

Therefore, afE{V; 11} < Vi41, if (46) holds, then we have
that® < 0 (analogous to (34)), sinc® < T < 0.

Using the fact tha® < 0 and following similar steps than
in the proofs of Theorems 1, 2 and 3 we can prove with not
much effort that the statements of Theorem 5 hold.

F. Proof of Theorem 6

Let Z,_, = E{ék,léﬂl} be the covariance matrix for the
state estimation error updated at the measurement ingtant
Then, its expected value at instantis given by

E{Zk} Zpl ARk 1AT —|—Sw)GT
— ZpiLi mVnl L] (47)
=)
where >3V p) " = 1/(1 — po) and Re_y =
Yo PhA Zy_1 (AHT expressed as
vec(Ry_1) = (I — poA ® A)"tvec(Zy_1).

Following similar arguments than in the proof of Theorem 4,
the series in (47) converges to a symmetric positive definite
matrix ¥ ; andry /¢ = fkTEjjlfk is distributed ast? , leading

to a FAR given by (25).
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