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Abstract

Text mining of scientific literature has been essential for setting up large

public biomedical databases, which are being widely used by the research

community. In the biomedical domain, the existence of a large number of

terminological resources and knowledge bases (KB) has enabled a myriad

of machine learning methods for different text mining related tasks. Unfor-

tunately, KBs have not been devised for text mining tasks but for human

interpretation, thus performance of KB-based methods is usually lower when

compared to supervised machine learning methods. The disadvantage of su-

pervised methods though is they require labelled training data and therefore

not useful for large scale biomedical text mining systems. KB-based methods

do not have this limitation.

In this paper, we describe a novel method to generate word-concept prob-

abilities from a KB, which can serve as a basis for several text mining tasks.

This method not only takes into account the underlying patterns within the

descriptions contained in the KB but also those in texts available from large
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unlabelled corpora such as MEDLINE. The parameters of the model have

been estimated without training data. Patterns from MEDLINE have been

built using MetaMap for entity recognition and related using co-occurrences.

The word-concept probabilities were evaluated on the task of word sense

disambiguation (WSD). The results showed that our method obtained a

higher degree of accuracy than other state-of-the-art approaches when evalu-

ated on the MSH WSD data set. We also evaluated our method on the task

of document ranking using MEDLINE citations. These results also showed

an increase in performance over existing baseline retrieval approaches.

Keywords: word-concept probability, text mining, word sense

disambiguation, information retrieval, biomedical literature

1. Introduction

Text mining of biomedical literature has supported the development of

biomedical knowledge bases (KB), which are actively used by the research

community [23]. These databases have contributed as well in the develop-

ment of methods to perform text mining related tasks like entity recogni-

tion and relation extraction. There are a large number of KBs available for

biomedical text mining purposes. Some of these resources are integrated into

the Unified Medical Language System R© (UMLS R©) [12] and many resources

are available from the Open Biological and Biomedical Ontologies (OBO)

foundry [39]1. Unfortunately, since these resources were not developed to

1OBO foundry: http://www.obofoundry.org
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perform text mining tasks, knowledge based methods usually exhibit lower

performance compared to ad hoc supervised methods (e.g., supervised clas-

sifiers) [20]. Despite this limitation, knowledge based approaches become

crucial when either there is a scarcity of labelled data to train supervised

methods. Due to the heterogeneity and large scale of biomedical resources,

knowledge based methods are becoming more popular.

Estimating word-concept probabilities from KBs provides an effective way

to support a large range of text mining tasks in the biomedical domain [40].

Unlike supervised methods, the absence of manually labelled data can be al-

leviated by defining statistical approximations from either the existing data

in the KBs (e.g., names, relations and descriptions) or external data such as

MEDLINE R© abstracts [20]. Other approaches are aimed at building statisti-

cal models directly from corpora, like Latent Dirichlet Allocation (LDA) [11],

but it is not clear how to interpret or integrate these models within the KB

structures [15].

Word sense disambiguation (WSD) and information retrieval (IR) are two

tasks that benefit from word-concept probability models. Given an ambigu-

ous word with its context, WSD attempts to select the proper sense given

a set of candidate senses. An example of ambiguity is the word cold which

could either refer to low temperature or the viral infection. The context in

which cold appears is used to disambiguate it. WSD is an intermediate task

that supports other tasks such as: information extraction [5], information

retrieval and summarization [33]. WSD in the biomedical domain is mostly
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based on either supervised learning or knowledge based approaches [37]. As

previously mentioned, the scarcity of training data makes knowledge based

methods preferable to supervised ones.

In IR, KB based methods have been proposed for either expanding queries

or for performing semantic searches [14, 25]. However, these methods do not

provide a proper way to combine the expanded words, and just use the KB

for defining improved IR queries as we have shown in [25].

This work proposes a novel method for generating word-concept statis-

tical models from KBs that can be used directly for both IR and WSD. As

mentioned earlier, this method is also able to take advantage of existing data

in MEDLINE to produce a model with improved performance. These models

can be integrated into IR language models to resolve ambiguity.

An implementation of the presented method is available from

https://bitbucket.org/ajjimeno/wkpropability.

2. Related Work

In the biomedical domain, there have been several big projects and initia-

tives to build comprehensive knowledge resources such as OBO and UMLS.

At the same time, during the last decade researchers have devised automatic

text mining techniques to find new knowledge from the scientific literature [9].

In this paper, we are interested in developing a general purpose probabilis-

tic model that can be used in several text mining tasks, such as WSD and

Document Ranking.
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WSD methods are based on supervised learning or KB-based approaches [37].

Supervised methods are trained on examples for each one of the senses of an

ambiguous word. A trained model is used to disambiguate previously unseen

examples. This approach requires a large set of training examples, which is

usually not available. For example, the 2009AB version of the UMLS con-

tains approximately 24 thousand ambiguous words, based on the exact match

of the words in the UMLS Metathesaurus. Preparing such training examples

would be very expensive to build and maintain [44].

In the biomedical domain, KB-based methods for WSD either build a

concept profile [29, 28, 20], develop a graph-based model [2, 3] or rely on

the semantic types assigned to each concept for disambiguation [19]. These

derived models are compared to the context of the ambiguous word being

disambiguated to select the most likely sense. In these approaches, candidate

senses of the ambiguous word are UMLS concepts.

KB-based methods have been complemented with information available

from existing resources like MEDLINE. An example is the use of MeSH

indexing R©2 as additional information [41]; although this approach is de-

pendent on the availability of MeSH indexing. In previous work, we col-

lected training data from MEDLINE citations for each sense of an ambiguous

word [20]. PubMed queries used to retrieve these citations were generated

using English monosemous relations [27] of the candidate concepts which, po-

2NLM’s controlled vocabulary used to index MEDLINE:
https://www.nlm.nih.gov/mesh
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tentially, have an unambiguous use in MEDLINE. This approach has shown

good performance compared to other KB-based methods. In a subsequent

study, we extended the work in [20] by considering all of MEDLINE instead

of the top 100 recovered citations by PubMed and by generating concept

profiles that can be easily estimated on large number of examples [21]. Using

a large number of examples showed an improvement over previous methods.

Semi-supervised algorithms could be used to obtain additional examples

of contexts for ambiguous words. We explored this in [22], where the initial

disambiguation predictions provided by an unsupervised method were used

as a seed to identify better concept profiles. This method showed a significant

improvement.

There are several approaches in WSD that utilize the graph structure of

the resources [30, 1], e.g. by applying adaptations of the page rank algo-

rithm. Unfortunately, these methods cannot be re-used for other tasks like

IR, because the generated models are only able to rank senses for given con-

texts, and not documents for given concepts. Conversely, approaches for IR

that take into account the KB (e.g. [25]) are aimed at generating IR queries

but not statistical models for other purposes.

In this paper, we claim that the generation of statistical models from both

the KB and existing external corpora can provide a very valuable resource

for effectively performing various text mining tasks. Furthermore, we show

that the presented model generates word-concept probabilities that produce

good results on these tasks.
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3. Methods

In this section, we present the word-concept statistical model. The esti-

mation of the model based on the knowledge base is presented in Section 3.1.

The model estimates weights to combine probabilities from concepts at dif-

ferent traversal steps. In this work, the model is adjusted using it for dis-

ambiguation, which is introduced in Section 3.2. The adjustment is based

on Expectation-Maximization as explained in Section 3.3. Once the model is

trained, it can be refined based on existing corpora in an unsupervised way

as explained in Section 3.4. The word-concept probabilities obtained from

this model can be used in other tasks such as IR as explained in Section 3.5.

Lastly, experimental set up and data sets used in this work are presented in

Section 3.6.

In this work, a KB is defined as an inventory of concepts C, where each

concept c ∈ C is associated to a list of lexical forms lex(c) (i.e., strings of

text that are synonyms, variants, and so on), and a set of relations to other

concepts, denoted with r(c, c′). These relations can be of any kind, from

taxonomic is-a relations to other specific biomedical domain relationships

(e.g. treats). Resources like the UMLS Metathesaurus fit this KB definition

(see Section 3.6). Strings of text consist of tokens, that are their model

primitives. Tokens may be punctuation or words, which are the minimal

semantic tokens in the text. Terms are words or multi-word expressions

denoting a concept(e.g. the synonyms and lexical variants linked to concepts

in the UMLS).
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3.1. Word-concept probability estimation

We propose estimating the probability P (wj|ci) by selecting a word wj

given a concept ci in a KB. This is done by selecting a word from the concept

ci, step 0, or from any of the related concepts at any specific step k while

traversing the KB relations. The method described below provides a way to

estimate this probability at different traversal steps.

The models obtained at different steps are combined using a linear com-

bination. The weights of the linear combination are defined in the vector

−→
β (from equation 2), whose dimension is the number of traversal steps as

shown in equation 1.

P (wj|ci) =
∑
k=0...l

βkPk(wj|ci) (1)

β0 . . . βl > 0,
∑
k=0...l

βk = 1 (2)

At step 0, the probability of a word wj given a concept of interest ci is

given in equation 3. The equation considers the relative frequency of the

word in the context of the lexical forms of the concept. The function count

returns the number of times the word wj is linked to concept cj by any of

the synonyms associated to the concept.

P0(wj|ci) =
count(wj, ci)∑

wj∈lex(ci)
count(wj, ci)

(3)
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When estimating the probability for a step k larger than 0, the probability

of the word wj for the concept ci is derived from equation 4-8, considering

all the concepts at k steps from ci. The concept of interest is at step 0 and

referred as c0. The final concept of a path is denoted as ck. The probabilities

are summed for all possible paths with length k linking word wj and concept

c0.

In these equations, Rk(c0) returns the concepts reached after k steps from

concept c0. P (cl+1|cl) is the traversal probability estimated using equation 9.

The concepts in the paths of length k can be obtained by traversing the KB

relations using breadth-first search starting at concept c0.

Equation 8, shows how to estimate the probability Pk(wj|c0) for word

wj and concepts at step k from c0. The final equation depends on traversal

probabilities from c0 to concept at step k (ck) and the conditional probability

of the word wj with the concept ck (P0(wj|ck)), which can be estimated as

shown in equation 3.
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Pk(wj|c0) = (4)∑
ck∈Rk(c0)

Pk(wj, ck, ..., c1|c0) = (5)∑
ck∈Rk(c0)

Pk(wj, ck, ..., c0)

P (c0)
= (6)∑

ck∈Rk(c0)

P0(wj|ck)
∏

l=0..k−1
P (cl+1|cl)P (c0)

P (c0)
= (7)∑

ck∈Rk(c0)

P0(wj|ck)
∏

l=0..k−1

P (cl+1|cl) (8)

When estimating P (cl+1|cl), as shown below, the function r(c1, c2) returns

the relations in which concepts c1 and c2 are related in the knowledge base.

The numerator is the count of relations in which concepts cl+1 and cl are

related. The denominator is the count of relations in which concept cl is in.

P (cl+1|cl) =
|r(cl+1, cl) ∈ KB|
|r(·, cl) ∈ KB|

(9)

We have set the initial β weights to βi = 1/n where n is the number

of steps considered. Log probabilities are used to obtain better accuracy in

the probability estimation, which is not shown here for simplicity but it is

available from the source code in bitbucket.

Figure 1 shows a simplified version of how the UMLS concept C0009264

(cold temperature) is considered by the model in a 1-step model. The terms

10



linked to the concept are decomposed into words and counts for the stemmed

words (that appear ended with the * character) can be estimated in relation

to the concept. In this case, the count for the stem temperatur* is 2, the

count for low and cold is 1 respectively. Figure 1 shows as well the related

concept C0016736 (frostbite). Frequency of the related concept is used to

estimate the relation probability.

Figure 1: Simplified version of how the UMLS concept C0009264 (cold temperature) is
considered by the model in a 1-step model

The final model is smoothed based on Jelinek-Mercer smoothing [7] as

shown in the equation 10, where λ has been set to 0.75 based on previous

work by Zhai and Lafferty [46]. The background of each word P (wj|KB) has

been estimated over the KB occurrences by applying an add-one smoothing

as shown in equation 11. |N | is the count of unique words in the KB, while

|wi| is the count of the i-th word in the KB.
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P (wj|ci) = (1− λ)P (wj|ci) + λP (wj|KB) (10)

P (wi|KB) =
α + |wi|

α · |N |+
∑

j=1..N

|wj|
(11)

3.2. Using the model in disambiguation

Disambiguation consists of selecting the sense that best fits the context

D of an ambiguous word. The context typically consists of the set of words

surrounding the ambiguous word. In this work, the context is the MED-

LINE abstract containing the ambiguous word. Disambiguation is performed

similarly to Näıve Bayes classification, using the following equation, which

assumes the independence of words.

P (cj|D) =
P (D|cj)P (cj)

P (D)
∝ P (D|cj) =

∏
wi∈D

P (wi|cj) (12)

A candidate concept for an ambiguous word is selected according to max-

imum a posteriori (MAP) of the above expression given the context D of an

ambiguous word w and the candidate concepts Cw ⊆ C.

c∗(w) = arg max
c∈Cw

P (D|c) (13)

3.3. Model adjustment

In order to establish the β parameters of the traversals, we apply an

expectation-maximization (EM) method over the set of contexts, D, where
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ambiguous words occur. This set of documents can be taken from either

the KB (e.g., concept descriptions or definitions) or from an external corpus

(e.g., MEDLINE abstracts). In any case, the algorithm does not know a

priori the right concept associated to each context, so the method is fully

unsupervised.

In the implementation presented in this work, during the expectation

step, the concept with the highest probability is assigned to each context

D using equation 13, introduced in the previous section. During the max-

imization step, we use the concept assignment to estimate the β weights.

A regularization parameter based on an estimated θ prior (probability of

selecting a word from a given step) is used to avoid overfitting.

The weight associated to this prior (α) is set to 0.3. More complex regu-

larization methods could be applied [43], but their evaluation is beyond the

scope of this paper. A modified version of the log-likelihood including the

prior of each β parameter is used. After each iteration t, the log probability

of the model is estimated, and the EM method stops when the log probability

is not smaller than the previous iteration’s log probability. The estimation

of parameters at each iteration is defined in equation 14. δ is set to 1 when

the ambiguous word w has been disambiguated with concept c in context d.

βt+1
i =

∑
d

∑
w

βt
iPi(w|c)δ(c, d) + αP (θti(w))∑

d

∑
w

∑
j

βt
jPj(w|c)δ(c, d) + αP (θtj(w))

(14)
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3.4. Model refinement

As previously mentioned, the initial word-concept model is estimated

from the KB data only. We propose exploiting the information available in

an external corpora relying on two heuristics. The first heuristic is one sense

per discourse [18], namely: all the occurrences of an ambiguous word in a

document refer to the same sense. The second heuristic is one sense per

collocation [45]. The idea is to identify the terms that tend to happen with

each possible sense of the ambiguous word.

We propose refining the estimates iteratively using statistics from the

target corpus, which is done in two steps. In the first step, the corpus is an-

notated with KB concepts, resolving the ambiguities with the word-concept

model of the current iteration. In the second step, a new word-concept model

is obtained based on the KB statistics and the annotated corpus statistics.

The word-concept count in equation 3 also considers counts from the KB

and the annotated corpus. The counts from the corpus indicate which terms

tend to be used in the same context as the concept. This is different to the

approach used in [24, 25], where terms were removed from the resource. The

concept-concept count in equation 9 also considers counts from the KB and

the corpus. In contrast to previous work, this allows adding information by

assigning a weight to the relations.

In the current implementation, the concept-concept counts are based on

co-occurrences of concepts at sentence level, even though higher precision

information extraction methods can be considered (e.g. syntactic dependen-
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cies and relation extraction [31]). The two steps are repeated until the Log

Likelihood derived from equation 1 does not increase.

Figure 2 shows a simplified version of the state of the UMLS concept

C0009264 (cold temperature) in a 1-step model after a refinement. In con-

trast to the example in Figure 1, the term low temperature appears more

frequently in the corpus in comparison to cold temperature. In this case, the

count for the word temperatur* is 20, the count for low is 18 and the count

for cold is 2. Similarly, frequencies are updated for the other concepts. Fig-

ure 2 shows as well the related concept C0016736 (frostbite) and the newly

related concept C0016736 (cold exposure). Frequencies to the related con-

cepts are updated according to the refinement method. In this example, just

one occurrence with concept C0016736 was found in the corpus, which is

added with the mention from the KB, so its (e.g., MEDLINE abstracts) new

frequency is 2. No relation to concept C0016736 (cold exposure) appeared

in the KB but this concept was found to appear 15 times with the concept

C0009264, thus the frequency is 15.

3.5. Using the proposed model in document ranking

In addition to disambiguation, we propose using the model in document

ranking. The ranking of the documents D for a given concept c can be

derived from cross-entropy (CE) [25] between the word-concept P (wi|c) and

word-document P (wi|D) models as follows:
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Figure 2: Simplified version of how the UMLS concept C0009264 (cold temperature) is
considered by the model in a 1-step model after an example refinement

CE(c,D) =
∑
wi∈D

P (wi|c) · logP (wi|D) (15)

Word-document probability can be estimated as shown in equation 16,

which combines the maximum likelihood estimation (MLE) with a back-

ground probability G using Jelinek-Mercer smoothing. As before, λ is ini-

tially set to 0.75.

P (wi|D) = (1− λ)
count(wi)∑

w∈D
count(w)

+ λP (wi|G) (16)
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3.6. Experimental setup

3.6.1. Biomedical knowledge base

The biomedical KB used in our experiments is the UMLS. The UMLS is

a compendium of a large number of biomedical terminologies and ontologies,

and is the largest biomedical terminological resource.

We used the 2012 UMLS version AA with the default installation. We

estimated the model using two UMLS Metathesaurus tables available in Rich

Release Format (RRF). The MRCONSO table was used to estimate the

word-concept probabilities in equation 9. The terms linked to the concepts

are lowercased, tokenized into individual words, stemmed with the Porter

stemmer [34] and filtered using a standard stop word list3. The MRREL table

was used to calculate the traversal probabilities in equation 9. Since synonym

information is already obtained from MRCONSO and it is not clear how to

interpret a synonym relation in MRREL, this information from MRREL is

ignored. More details about these tables can be found from the UMLS web

site4.

3.6.2. Biomedical corpora

We used two data sets, one for model refinement and disambiguation

evaluation, and another one for evaluating the retrieval performance. Both

sets are derived from MEDLINE.

3Stopword list from the SMART system: ftp://ftp.cs.cornell.edu/pub/smart
4UMLS site: http://www.nlm.nih.gov/research/umls
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The first set is the WSD corpus called MSH (MeSH) WSD [26]5. This

corpus has been generated using MeSH indexing of MEDLINE to determine

the correct UMLS concept assigned to an ambiguous word. Using MeSH as

reference allows us to automatically build a a large disambiguation corpora

which is typically a time intensive processAlthough, the corpus is limited

to MeSH headings that can be mapped to UMLS concepts, it contains a

more comprehensive set of possible ambiguities than other biomedical WSD

corpora (e.g. [44]). MSH WSD contains 203 ambiguous terms, with an

average of 2.3 senses per term and a maximum of 100 examples per sense. The

context of the ambiguous word is composed of the words in the citation in

which the ambiguous word appears. As in the processing of the MRCONSO

file, the text is lowercased, tokenized, processed with the Porter stemmer and

filtered using the same stopword list.

The ranking set is based on a corpus developed for the evaluation and

comparison of algorithms for MeSH indexing 6. Citations belong to a subset

from the 2013 MEDLINE and have been split into 2/3 (94,942 citations)

for training and 1/3 (48,911 citations) for testing purposes. MEDLINE is

indexed manually using terms from the MeSH controlled vocabulary, thus this

indexing was used to build the retrieval data set. As in the disambiguation

task, the text is lowercased, tokenized, processed with the Porter stemmer

and filtered using the same stopword list.

5MSH WSD: http://wsd.nlm.nih.gov/collaboration.shtml
6http://ii.nlm.nih.gov/DataSets/index.shtml#2013 MTI ML
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For retrieval evaluation, we have reused the ambiguous terms from the

MSH data set as queries, since they can be mapped to MeSH terms. Then,

we selected the ones with at least 100 citations in the training set, determined

by the MeSH indexing. This totaled 82 terms used as queries.

4. Results

The generated model and its refinement based on the UMLS as KB and a

corpus derived from MEDLINE for the refinement have been evaluated in the

ranking and disambiguation tasks. We determine statistical significance with

a randomization version of the two sample t-test [17], which avoids making

assumptions on the distribution of the data and allows for a better estimation

of significance between the difference of the methods performance.

As mentioned before, we have limited the model to 2-step paths due

to computation time and memory requirements. After estimating the beta

values for the probabilities in each step k using the EM method, we obtained

the beta values: β0=0.6654, β1=0.0678, β2=0.2668. That is, the 0-step model

(i.e., considering only words in lex(c)) holds the highest weight, followed by

the 2-step model. The estimation of the model, which includes the traversal

of the KB, took around 2 hours on an Intel Xeon @ 2.40GHz with 5GB of

RAM.

The target corpus was processed with MetaMap [5] to map spans of text

to UMLS Metathesaurus concepts. No disambiguation provided by MetaMap

has been used (default option) so all possible concepts identified by MetaMap
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are available for model refinement. This is because the disambiguation has

to be done by the proposed model that will provide different disambiguation

results at each iteration. Candidate senses for ambiguous mappings are based

on the result of the EM algorithm. Once the EM algorithm has converged, the

most likely concept for each ambiguous word is selected. Once the MetaMap

annotations are disambiguated, it is possible to identify which words tend to

be used to denote a concept and which concepts are related to each other

in the corpus used for refinement. Then, the statistics on term to concept

and concept to concept relations are calculated and the EM algorithm is run

with these models. The counts in equations 3 and 9 are updated adding these

frequencies.

After the refinement of the word-concept model with the target corpus,

we obtained a new set of β values: β0=0.8315, β1=0.0711, β2=0.0975. In this

case, much more weight is given to the 0-step model. This is because the

refinement produces profiles that are considerably larger since more words

are linked to the concepts derived from the new relations obtained from co-

occurrences found in the corpus. The refinement process took approximately

1 day on an Intel Xeon @ 2.40GHz with 5GB of RAM.

Tables 1 and 2 show the probabilities of words for concepts linked to

the ambiguous word cold. These concepts are C0009264 (cold temperature),

C0024117 (chronic obstructive airway disease) and C0009443 (common cold).

Table 1 shows the top words ranked by decreasing probability estimated from

the KB for each concept. The top words typically come from synonyms of
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the concepts followed by words from related concepts.

In Table , 2 probabilities are higher for words linked to common uses of

each of the senses of cold. For concept C0009443 (common cold), words as-

sociated with the preferred term, common cold, have a higher probability of

occurring with the concept than terms acute coryza and acute nasopharyngi-

tis due to their lower occurrence in the corpus. For concept C0009264, we find

that even though the top words are the same, the remaining words change, ac-

commodating the words from concepts that tend to co-occur with C0009264.

The removed words like frosbite come from related concepts in the KB. These

words do not seem to appear in the context of this concept in the corpus.

Accuracy for the ambiguous word cold increases from 0.82 with the initial

model to almost 0.9 with the refined model.

CUI:C0009264 CUI:C0024117 CUI:C0009443
Word Probability Word Probability Word Probability
cold 0.364455 chronic 0.154269 cold 0.162294
temperatur* 0.296702 obstruct* 0.153241 common 0.135191
low 0.035278 diseas* 0.132414 acut* 0.101557
frostbit* 0.004125 pulmonari* 0.069153 coryza 0.064442
refriger* 0.004123 copd 0.056498 nasopharyng* 0.056429
cryoscienc* 0.004120 lung 0.051505 rhiniti* 0.038304
shiver 0.004111 airwai* 0.025152 infect* 0.036675
hypothermia 0.003935 di* 0.019244 respiratori* 0.014978
freez* 0.002973 no 0.010173 diseas* 0.012207
cryosurgeri* 0.002852 pulm* 0.009851 viral 0.012051

Table 1: Probabilities for words (stemmed using Porter stemmer (stemmed form ended
with *)) related to UMLS concepts C0009264 (cold temperature), C0024117 (chronic ob-
structive airway disease) and C0009443 (common cold) (P (wi|cj)) related to the term cold
after tuning the model.
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CUI:C0009264 CUI:C0024117 CUI:C0009443
Word Probability Word Probability Word Probability
cold 0.511172 chronic 0.191317 cold 0.479154
temperatur* 0.172350 obstruct* 0.190142 common 0.274660
low 0.149683 diseas* 0.189146 acut* 0.017842
exposur* 0.000891 pulmonari* 0.138241 coryza 0.015999
studi* 0.000613 lung 0.048191 nasopharyng* 0.009669
gene 0.000605 copd 0.045529 infect* 0.007214
activ* 0.000592 cold 0.023634 rhiniti* 0.006479
stress 0.000568 airwai* 0.004760 respiratori* 0.003581
protein 0.000563 patient* 0.003714 upper 0.003322
rat 0.000475 di* 0.002211 viral 0.003287

Table 2: Probabilities for words (stemmed using Porter stemmer (stemmed form ended
with *)) related to concepts C0009264 (cold temperature), C0024117 (chronic obstructive
airway disease) and C0009443 (common cold) (P (wi|cj)) related to the term cold after
tuning the refined model

4.1. Disambiguation performance

The disambiguation results are compared to state-of-the-art algorithms

already evaluated on the MSH WSD dataset (see Table 3), which are briefly

described in turn. Machine Readable Dictionary (MRD) and 2-MRD build a

concept profile vector assigning weights to words related to concepts [20, 26].

Automatic Extracted Corpus (AEC) uses the UMLS Metathesaurus to build

queries used to collect training data for each ambiguous concept and then

train a Näıve Bayes classifier. Structural Semantic Integration (SSI) and

SSI+Information Content (SSI+IC) [38] use a model from the Metathesaurus

that is enriched by co-occurrence information available from the UMLS dis-

tribution. PageRank [2] uses a graph based approach to perform the selection

(we use the results presented in [16]). MRD+KMeans and AEC+KMeans
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combine MRD and AEC predictions with k-means [22]. CPIDF builds con-

cept profiles for the whole of MEDLINE based on the same queries as the

AEC method [21].

Näıve Bayes (NB) has been used as well as baseline, even though it is

consider an upper bound of the results since a supervised method is expected

to perform better than an unsupervised method on this task. NB results were

obtained in 10-fold cross-validation using the MSH WSD data set. More

details are available from [26].

We find that the proposed method outperforms existing unsupervised

methods, including the AEC algorithm and the SSI+IC that already combine

KB data and co-occurrence information from MEDLINE. This improvement

is statistically significant (p<0.00001) compared to MRD and AEC, and

the refined model significantly outperforms all the methods (p<0.00001).

Improvements are significant even when Bonferroni corrections are applied

to correct for multiple comparisons.

4.2. Document ranking

We have also evaluated the capability of the model to rank documents.

The ranking benchmark queries are based on a subset of the MeSH headings

available from the MSH WSD set. The queries are built using the words

extracted for each one of the relevant concepts from UMLS. MeSH indexing

of the citation is used as ground truth, as indicated before. For each retrieval

evaluated method, the top 1000 retrieved documents sorted by relevance are
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Method Accuracy
MRD [26] 0.807
2-MRD [26] 0.780
AEC [26] 0.838
SSI [38] 0.743
SSI+IC [38] 0.860
PageRank [16] 0.786
MRD+KMeans [22] 0.874
AEC+KMeans [22] 0.865
CPIDF [21] 0.877
Näıve Bayes [26] 0.930
0-step model 0.829
2-step model 0.863
Refined model 0.891

Table 3: Disambiguation results on the MSH WSD data set. Baseline WSD methods
results are shown with the reference to the article reporting the result.

selected for each query. Trec eval7 was used to perform the evaluation with

the standard retrieval measures.

The baseline is based on a Kullback-Leibler retrieval (pr.simple kl dir)

using Lemur [4]. We also included using pseudo-relevance feedback with the

top 10 documents (pr.mixfb kl dir). In addition, we have implemented the

pseudo-feedback method by Tao and Zhai [42] (kl feedback) with the basic

version of Kullback-Leibler retrieval (kl divergence).

Another baseline is based on the supervised learning algorithm, Support

Vector Machine (SVM)8. The model has been trained on a subset of 95

thousand citations, and documents in the evaluation set have been ranked

7http://trec.nist.gov/trec eval
8http://ii.nlm.nih.gov/MTI ML
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according to the distance to the hyperplane. This method is an upper bound

baseline, since it is not expected that any unsupervised method would im-

prove it.

Results show that the proposed method significantly performs better than

standard IR methods (p < 0.001, which is significant even when Bonferroni

corrections are applied to correct for multiple comparisons), and that the

refinement method outperforms pseudo-relevance feedback approaches.

Method MAP P@10 Rretr
pr.simple kl dir 0.2944 0.6146 7339
pr.mixfb kl dir 0.2985 0.6366 7435
kl divergence 0.2955 0.5866 7399
kl feedback [42] 0.3055 0.5902 7776
SVM 0.3544 0.6537 8317
2-step model 0.3025 0.6341 7372
Refined model 0.3176 0.6463 7799

Table 4: Document ranking results in terms of mean average precision (MAP), precision
@ 10 (P@10) and the number of Relevant Retrieved (Rretr).

4.3. Discussion

We have proposed an estimation of a word-concept model that improves

performance in disambiguation and document ranking by capturing statis-

tical data from a large KB. In addition, we showed that the effectiveness

of the proposed model can be further improved by combining corpora co-

occurrence statistics. As shown in Table 3, the 2-step model performs better

than any unsupervised method built solely on KB information. The refined

model, that integrates information as well MEDLINE statistics, performs
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better than any of the compared KB methods. Regardless of the large num-

ber of potentially false positive relations extracted by co-occurrences, the

model refinement improves the performance of the initial model only based

on the KB. The improvement of the resulting model is global, since the re-

finement is done on the whole of the KB, and not by a single concept as

in [25].

In the document ranking results, we showed significant improvement in

ranking over other methods. This may in part be due to the disambiguation

performance. The model integrates words from the synonyms and related

concepts, which effectively improved baseline performance. Despite the dis-

ambiguation performance, the retrieval differences are not equally significant,

which indicates that other factors beyond ambiguity are relevant for retrieval.

Similar impact of WSD but with a different model and different data sets

was observed in [47].

One of the current limitations of the method is the cost of traversing the

KB to estimate the probabilities and the cost of the refinement, which is

quite expensive with the current implementation. However, all this is only

needed to be done once per concept. Once this is done, both disambiguation

and document ranking are performed very quickly.

Additionally, larger k-step models will not only require more time ,but

more memory as well, since the chance of relating all vocabulary words and

concepts is higher. Notice that the number of words and concepts is over 1

million. On the other hand, it is unclear if there will be any positive effect
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in performance when larger k-step models are considered.

The method estimates word-concept probabilities. Higher order n-grams

or terms could be considered as well in the model, which would use more

precise features than single words ( unigrams). A term-concept model could

be estimated in the same way as presented in the Methods section but instead

of words, higher order n-grams or terms should be used. Probabilities from

models based on different features (i.e., unigrams and n-grams) could be

combined to improve the performance of individual models. On the other

hand, while terms are easily identified in the KB, the identification of these

terms in text might not be perfect thus adding noise when using a term-

concept model.

5. Conclusion and Future Work

Results show that the proposed method improves both word sense dis-

ambiguation and document ranking with respect to state-of-the-art methods.

The current work considers only two traversal steps, further research is re-

quired to replace larger traversal steps efficiently.

The current estimation and refinement of the model does not rely on any

training data and performance could be further enhanced if some training

data is made available. Another possible application of the presented statis-

tical method is text categorization, which could profit from the combination

of knowledge based information and information derived from the training

data. Another issue to be explored is to identify Gene Ontology [6] con-
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cepts, which is difficult to perform with traditional named entity resolution

approaches. The Gene Ontology Annotation database [13] could be used to

train the model.

We plan to extend this preliminary work to more general domains than

the biomedical one, by using Wikipedia or more structured data sets like

DBpedia. The proposed model has been evaluated in disambiguation and

document ranking but we are interested in further evaluating it in other text

mining tasks such as knowledge acquisition [35, 25], identification of context

words for language generation [36], similarity between concepts and semantic

distance [32].

The refinement of the model used in this work relies on co-occurrences,

which potentially provides a large number of false positives. We would like to

integrate additional relation extraction methods, but the difficulty is obtain-

ing training data for all possible relation types. Although, methods based on

open information extraction [8] could be considered.

The current refinement implementation does not try identifying new syn-

onyms of existing concepts but only tries to quantify how often they are

being used with a given concept. Furthermore, it does not try identifying

new concepts missing in the KB. It could be worth exploring information

extraction methods to identify new synonyms [10] of existing concepts and

new concepts.
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