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Abstract. The purpose of this paper is to demonstrate the application of particle swarm optimisation to 
line drawings reconstruction. The paper’s new contribution is the application of swarm intelligence in 
dealing with machine perception of sketch-based modelling interfaces. Traditional descent or gradient-
based optimisation algorithms are not always practical in this context because of the severe numerical 
noise and ill-defined objective function of the optimisation-based reconstruction problem Our results point 
to particle swarm optimisation as a promising alternative. 
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Introduction 

Particle Swarm Optimisation (PSO) is based on a simplified social model that is closely tied to Swarming 
Theory [1]. PSO belongs to the family of non-gradient based probabilistic search algorithms. These algorithms 
are generally easy to implement do not require continuity in response functions and are well suited for finding 
global or near global solutions. However, they exhibit potentially high computational cost. 

On the other hand, sketching-based geometric modellers (see Fig. 1) are aimed to improve design 
support systems [2]. Optimisation has been used with some success in this sketch-based modelling approach 
[3], [4], but typical failure rates for 3D reconstruction by optimisation approaches (due to local minima) are 
still important. Consequently, one of the main challenges in optimisation-based 3D reconstruction is the 
mathematical formulation of perceptual cues, also called artefacts, or regularities and the other is the search 
for more efficient and robust “global” optimisation algorithms. 

In this paper we include first a related work section, to justify the state of the art in both PSO and 
optimisation-based 3D reconstruction. Next a brief description of PSO algorithm is included to introduce the 
notation and to clarify the particular version of PSO we do employ in our sketching-based geometric modeller. 
The main contributions of the paper are on section “Optimisation Strategy and Parameters”, where the 
approach followed to adapt PSO to a 3D reconstruction problem is presented. Discussion of tests done to 
validate the approach and some conclusions are included at the end. 

 
 

Figure 1. 3D reconstruction process from sketch to model through line-drawing 
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1. Related Work 

Particle swarm optimisation is based on the universal behaviour of individuals, which can be summarized as: 
evaluate, compare and imitate [1]. In the numerical implementation of this simplified social model, the 
population is referred to as a swarm and each individual as a particle. The numerical implementation 
repeatedly updates the position of each particle to simulate the adaptation of the swarm to the environment. 
PSO was first introduced by Kennedy and Eberhart [5], [6]. Currently, they do exist standard textbooks on 
PSO, like [7], treating both the social and computational paradigms. Besides, interesting information can be 
easily obtained through a simple search on the Web, i.e. an extensive bibliography on PSO can be obtained 
from [8]. However, as far as we know, PSO has not yet been applied to solve geometric reconstruction 
problems. 

In the field of geometrical reconstruction, the most recent contributions can be classified as algebraic 
or optimisation based. In the algebraic approach, the emphasis is putted in testing the correctness of line 
drawings and solving a system of algebraic equations that represent the conditions, constraints or requirements 
of the model (see [9]-[13]). 

Optimisation-based 3D reconstruction was first introduced by Marill [3], and was significantly 
improved later by several authors (see [14]-[22]). In this approach, the (xj, yj) coordinates of every junction in 
the drawing are made equal to (xj, yj) coordinates of the corresponding vertex in the 3D model, and the aim is 
to inflate the drawing, in other words, to find a set of z coordinates of all its vertices that represents a 
psychologically plausible 3D model (see Fig.2). 
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Figure 2. Plausible (left) and unplausible model (right) after inflating the same line-drawing. 

Inflation is performed by optimising an objective function: 

F(z)= Σ αj Rj(z)       (1) 

Where, αj is the j-th weighting coefficient that normalise regularities’ ranges and sensitivities. 
Regularities (Rj(z)) are perceptual cues of the line drawing that must correspond to some properties in the 
searched model and are expressed in terms of the independent variables z. Regularities are formulated to be 
equal to zero for a complete compliance of the condition. Regularities have been studied by some authors 
([3],[4],[15],[21]) and dissertations about their formulation and their importance in the reconstruction process 
can be found in [22] and [23]. 

Optimisation-based reconstruction is prone to local minima. For instance, the input line drawing 
becomes a local minimum when edge parallelism, or face planarity regularities are used, since they are 
trivially accomplished in the line drawing. The strategies developed to avoid this trivial optimum lead to 
“tentative” initial models [22] (models that tend to drive optimisation near the global optimum). However, 
global-search optimisation still seems to be a good alternative to tentative models; at least in those cases 
where tentative models cannot be obtained at all, or have a high computational cost. In this context, Brown 
and Wang’s [18] proposed (although apparently did not implement) the use of standard methods for 
minimizing local minima difficulties. Later, it has been said that the introduction of Simulated Annealing 
algorithms, which were supposed to be able to find the global minimum, resulted in similar failure rates to 
those of local optimisation algorithms [19]. Nevertheless, as far as we know, no other promising families of 
global search algorithms haven been tested in this context. 
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2. Particle Swarm Optimisation Algorithm 

The basic process followed by PSO can be outlined as follows: 
1. Create an initial swarm of N particles, with a random distribution and random velocities. 

2. Calculate a velocity vector for each particle, using the knowledge gained by the swarm and the 
particle’s memory. 

3. Update the position of each particle, in terms of its velocity vector and previous position (see equation 
(3)). 

4. Go to Step 2 and repeat until convergence. 
 
In our implementation of particle swarm optimisation, the position of the i-th particle is represented as: 

 zi = (zi
1 , zi

2 , ..., zi
m)     /  i= 1,2,..., N    (2) 

Where N	
   is the number of particles and m	
   is the number of vertices in the drawing. The position of 
each particle zi

	
  at iteration k+1 changes in function of its position in the previous iteration (zi
k), a vector called 

velocity (vi = (vi
1 , vi

2, ..., vi
m)) and a time step value (Δt): 

zi
k+1 =zi

k +vi
k+1 Δt       (3) 

A unit time step (Δt = 1) is the usual criterion, and so is done throughout the present work. 
Velocity can be formulated in different ways but a formulation widely used and accepted in the 

literature is shown in (4): 

 vi
k+1 =w vi

k +c1 r1 (pi-zi
k) +c2 r2 (pg-zi

k)    (4) 
New velocity of every particle is determined according to its previous velocity (vi

k), the distance of its 
current position (zi

k) from its own best position, and the distance of its current position from the group’s best 
position. With this formulation previous velocity effect is controlled by a weight factor (w), called inertia; r1	
  

and r2	
  are random numbers with values between 0 and 1; c1 and c2 are factors of confidence in the position of 
the particle and in the position of the swarm, pi is the best position of particle i so far and pg

	
  is the best position 
in the swarm along the process until now: 

pi = (pi
1 , pi

2 , ..., pi
m)    /  i= 1,2,..., N  and pg = (pg

1 , pg
2 , ..., pg

m) (5) 

In order to apply PSO for reconstructing 3D model from line drawings, specific parameters and initial 
values have to be set. 

 

3. Optimisation strategy and parameters 

To solve the step 1 in the PSO process described above, the initial swarm is created with all particles 
randomly distributed throughout the design space, each with a random initial velocity vector: 

zi
0 = r1 2 e Δxy – e Δxy     / i=1,2,...,m  (6) 

   vi
0 = r2 2 e Δxy – e Δxy     / i=1,2,...,m  (7) 

with    Δxy =  max (|xmax-xmin| , |ymax-ymin|)     (8) 

Where r1	
   and r2	
   are random numbers between 0 and 1, and xmax= max(x1, x2,...,xm), xmin= min(x1, 
x2,...,xm), ymax= max(y1, y2,...,ym) and ymin= min(y1, y2,...,ym). In other words, we recognise benefits of a 
proportional model [22], and, hence, the design space range of z coordinates is made proportional to the line-
drawing dimensions. The value of e is fixed to 0.5, to place initial position of particles between [-Δxy, Δxy]. 

It must be highlighted that random initial swarm effectively prevents the appearance of the trivial 
optimum associated with, for instance, line parallelism and face-planarity regularities. 

We consider the convergence, cited in the 4th step, is achieved when the first of the next three stopping 
criterions is fulfilled: 
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• Maximum number of iterations is achieved. 
• Costs of objective function are monitored, and the process is finished whenever a value less or equal to 

a threshold (usually 0.01) is obtained. 
• The maximum change in the objective function for a specified number of consecutive iterations is less 

than a predefined allowable change (i.e. if any improvement exists for 20 consecutive iterations). 
It has been described that a relation between number of particles and number of iterations exists: in 

most cases, increasing number of particles allows to reduce the number of iteration required. In our earlier 
experiments we reached the same conclusion. Moreover, we realised that the number of particles should 
increase in parallel to the drawing’s complexity. Hence, we did adopt the criteria of automatically assigning 
the number of particles N as three to ten times the number of vertices in the line drawing, and simultaneously 
giving an appropriated convergence criterion that make to reduce the number of iterations when the optimum 
is reached. 

In spite of the above general configuration, there are three problem dependent parameters in equation 
(4): the “inertia” of the particle’s velocity (w), and c1	
  and c2, that are called trust parameters, learning factors 
or attraction coefficients. The values of the later usually range from [0, 4], and in many studies both are equal 
to 2, i.e. [5]. Trelea [24] did use a single trust parameter instead of two separate ones, and gave 1.7 as the 
optimum. Values of c1=c2=1.5 were adopted since they provide good behaviour in our examples. 

The inertia weight has characteristics similar to the temperature parameter in the simulated annealing 
optimization. Trelea [24] found [-1 , 1] as the valid range and 0.73 as the best inertia value. It is generally 
argued that large inertia values facilitate global searches, which are best during first steps of the optimisation 
process and helps to fasten the whole process. On the other hand, small values facilitate local searches, 
favouring in this way the final refinement of the output model.  

Finally, it was considered that it is more or less usual to limit the velocity in PSO algorithms: the 
maximum velocity value determines maximum change allowed of a particle for each iteration and we fix this 
range in:  

- d . Δxy < vi
k+1 < d . Δxy     (9) 

We limited the search region in order to preserve proportionality. That is a criteria very important in 
3D reconstruction, since it outcomes from the fact that human observers assume that the object has been 
represented by choosing a “general” point of view that clearly enhances the actual proportions [22]. And after 
the observation of the behaviour of some examples we determine d=0.25. 

In addition to adjusting PSO, the reconstruction process must be adjusted too. In this sense, the sum of 
regularities in (1) does not always contain the whole set of regularities, but just the “appropriate” subset of 
them [22-23]. The common criterion is to select such subset depending on the shape to reconstruct. For 
instance, symmetry alone gives good results when planes of symmetry exist, and corner-orthogonality gives 
good result for “rectangular trihedral polyhedra” (example #1 in fig. 3).  

 

4. Results 

In our reconstruction engine, called REFER, the calculations and management of data are implemented in 
C++, GUI is a calligraphic interface implemented on the Wintab API under Windows 2000, and 3D 
visualisation is implemented in OpenGL. Some examples, extracted from the current literature on 
optimisation-based 3D reconstruction, were tested to validate this approach (see Fig.3). Tests were done on a 
Pentium III based personal computer and with graphical interaction active (screen was refreshed during 
execution), since we were checking for reliability and robustness, and we were not mainly concerned on 
efficiency. 
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Figure 3. Line drawings tested in this article. 

In order the ensure repeatability of the experiments, we did use axonometric line-drawings instead of 
sketches, but this means no loose of generality since it has been said elsewhere that those drawings can be 
obtained from sketches by pre-processing steps [22] (see Fig.1). 

To avoid the lack of repeatability inherent to PSO, tests were done by repeatedly executing the 
algorithm with the same configuration parameters. In a first scan 10 executions were made, and up to 30 
executions were accomplished when required to “refine” the results in the neighbourhood of best values. 
Results were considered good when F(z) was close to zero and also the shape was perceived as the most 
plausible one. 

As an example, table 1 summarizes results of varying w in the seven examples presented in figure 3. 
The remaining parameters were fixed to their best values: N=10·m, c1=c2=1.5, d=0.25, e=0.5. Those 
parameters were selected according to the reasons expressed in section 3. In each example, percentage of 
success and mean of iterations until a convergence criterion was reached are shown. The regularities 
employed in the reconstruction are presented too. 

Table 1. Success rates versus w variation 

 w=0.7 w=0.5 w =0.3 
Regularities  Success Mean of 

iterations Success Mean of 
iterations Success Mean of 

iterations 
Example #1 100% 79 100% 40 100% 23 Total Symmetry 
Example #2 100% 44 100% 37 100% 32 Total Symmetry 
Example #3 98% 46 98% 40 100% 41 Total Symmetry 
Example #4 100% 222 100% 128 100% 94 Total Symmetry 
Example #5 100% 26 100% 24 100% 18 Total Symmetry 

Example #6 93% 178 100% 221 100% 91 Corner Orthogonality and 
Parallelism 

Example #7 38% 69 75% 84 56% 70 Corner Orthogonality and 
Parallelism 

 
From our experiments we can conclude that: 

• Number of particles larger that the ones proposed (3·m ≤ N ≤ 10·m) increase execution times without 
improving final models. And shorter values cut-off the process before optimum is achieved. N=10·m 
and a number maximum of iterations=1000 maximices the sucess ratio but execution time too. 
Nevertheless, the number of iterations never reaches to this value because of the convergence critera. 

• Convergence criteria give good success rates and low processing times since they effectively cut-off 
the executions when optimum is achieved. 

• Ranges of inertia propossed in the literature are appropriate in 3D reconstruction. But lower values of 
w makes the algorithm’s behavior more conservative, because it produces shorter movements of 
particles in each iteration. That can become the swarm slow, but after testing many examples, results 
in most cases are even better, and the number of iterations employed do not increase. Even more, in 
many cases, number of iterations decreases with w. 

• e parameter is responsible of the initial position of particles. A good initial distribution of particle can 
save time during the optimitation. A value of 0.5 allow to place particles in a space with dimension 2 
times the dimension of original drawing. That seems a good value to obtain fastest convergence while 
guaranteeing the perceptual requisite of keeping proportions. 
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• Limits in velocity of each particle is determined by d and dimensions of original drawing. A small 
value of d can make the limitation too restrictive, but a value of 0.25 is giving good results without 
making to fall the algorithm in local minima for this reason. 
Based in our experience working in 3D reconstruction with descent-based algorithm, computational 

times are higher for PSO in those problems where both algorithms work well. However, the PSO algorithm 
works better with severe numerical noise (i.e. complex objective functions), while descent algorithms are 
easily trapped in local minima (i.e. examples #7 and #4) or even in trivial optimum (without escaping from the 
drawing plane). 

 

5. Conclusions 

Applicability of swarm intelligence in dealing with optimisation-based 3D reconstruction problem has been 
studied. A valid PSO implementation has been presented as a novel method in the domain of the optimisation-
based 3D reconstruction problem. The approach has been tested and usefulness of PSO algorithm in a 3D 
reconstruction environment has been proved.  

PSO is an attractive alternative to descent or gradient-based algorithms, whether use of those 
regularities that have the trivial optimum is required (i.e., line parallelism and face planarity) or the objective 
function becomes too complex and prone to local minima. PSO has an acceptable success rate in avoiding 
local minima, even when using those regularities that are trivially accomplished in the input line drawing. 

However, computational cost is too high and fine adjustment of parameters is required for every 
example, since general coefficients seem not to work fairly well in all cases. Hence, more study is required in 
those areas. 
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