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Abstract 

This paper presents an application of Functional Principal Component Analysis (FPCA) to 

describe inter-subject variability of multiple waveforms. This technique was applied to the study 

of sit-to-stand movement in two groups of people, osteoarthritic patients and healthy subjects. 

Although STS movement has not been much applied to the study of knee osteoarthritis, it can 

provide relevant information about the effect of osteoarthritis disease on knee joint function.  

Two waveforms, knee flexion angle and flexion moment, were simultaneously analysed. Instead of 

using the common multivariate approach we used the functional one, which allows working with 

continuous functions without neither discretization nor time scale normalization. 

The results show that time-scale normalization can alter the FPCA solution. Furthermore, FPCA 

presents a better discriminatory power compared to the classical multivariate approach. Then, this 

technique can be applied as a functional assessment tool, allowing the identification of relevant 

variables to discriminate heterogeneous groups, such as healthy and pathological subjects. 

Keywords: Functional assessment, Sit-to-stand movement, Functional data, Principal component 
analysis. 
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1. Introduction 

Principal Component Analysis (PCA) is a multivariate statistical technique which 

allows describing a set of correlated variables. PCA has been widely used in the 

field of Biomechanics to describe continuous waveforms (1), (2).Their 

applications includes fields such diverse as gait analysis (1, 3-7), equilibrium 

control (8), coordination of thumb joints (9), analysis of lifting techniques  (10, 

11) or analysis of EMG signals (12, 13), to name a few examples. 

According to the objective of the analysis and the source of variability analyzed, 

we can consider two different approaches to use PCA for describe waveforms. 

The first one is focussed on the determination of individual patterns of a 

movement from a set of time variables that describe it. Thus, each time series is 

used as a variable whose observations are the recorded values at each time for one 

or more trials (2, 6, 8, 9), obtaining a set of principal components interpreted as 

the principal modes of each individual movement performance, or 

“eigenpostures” (7). 

This paper is focused in the second approach, whose objective is the analysis of 

the inter-subject variability of a set of continuous waveforms. After time-scale 

normalization, a set of variables can be defined, one for each percentage of the 

performed movement, obtaining a reduced set of Principal Components (PC’s) 

that quantifies the differences of the analysed time series across subjects (3-5, 10, 

11). These PCs can be used to compare groups (patient and controls, for example) 

(1, 10, 11) or as input variables in a classification system (3). 

The applications of PCA to inter-subject variability analysis are usually focused in 

single time series. An attempt to simultaneously analyze a set of waveforms and 

discrete variables is developed in (3). This approach generates an enormous 
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number of discrete variables (almost a thousand), which then needs a high number 

of PC’s to explain a representative percentage of the original variance. On the 

other hand, in these applications, PCA is used from a multivariate perspective: a 

finite set of discrete variables are obtained from one or several continuous time 

series by sampling at arbitrary time intervals. This way, the functional nature of 

the original variables, is lost. 

The specific statistical analysis of continuous functions is dealt with by a new 

statistical family of techniques called Functional Data Analysis (FDA) (14). The 

theoretical basis of (FDA) and its differences and advantages with respect to 

multivariate data analysis (MDA) are described and discussed in the work of 

Ramsay and Dazell  (15). FDA has developed several procedures to extend some 

classical statistical techniques to the field of functional data. The functional 

version of PCA provides functional principal components from a set of 

waveforms without any discretization process. Other features of multivariate 

PCA, such as the rotation of PCs, have their equivalence in the functional version 

(16). 

An important question in the PCA applications is the way in which the time 

variable can be handled. In the multivariate approach, the analysis is made from 

variables defined after a process of linear normalization of the time scale. In the 

functional one, this kind of normalization is not necessary. The normalization of 

the time scale is a widely used practice, although it is questionable in the context 

of PCA, because there is some evidence that the linear normalization can alter the 

shape of temporal patterns, even increasing the variability of some variables (17).  

The objective of this work is double. First, we intend to show the effectiveness of 

functional PCA in defining and interpreting movement patterns from several 

waveforms. Second, we aim to analyze the effect of the time normalization on the 
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results of the PCA, and on its capacity to differentiate normal from abnormal 

patterns.   

Therefore, an application of knee flexion angle and flexion/extension moment in 

sit-to-stand (STS) movement is analyzed for a group of osteoarthritic patients and 

a control group to show the technique and to illustrate the way to interpret the 

results. 

2. Material and methods 

2.1. Experimental setup 

Two groups of subjects were considered in this study: the group of osteoarthritic 

patients, which included 21 volunteers (12 women and 9 men) between 60 and 85 

years old with severe knee osteoarthritis and prescribed for a total knee joint 

replacement; and a control group with 10 healthy volunteers (5 women and 5 

men) of similar age, height and weight to the patients’ group. Recruiting of 

osteoarthritic patients was performed by the Orthopaedic Surgery Department of 

Hospital de la Ribera (Alzira, Spain). All subjects were informed of the purpose 

and procedures of the experiment and their informed consent was obtained. 

Because the variability of STS movement performance among osteoarthritic 

patients is very high compared to the healthy subjects, it was decided to use a 

larger sample size for the patients’ group.  

Most of the osteoarthritic patients had serious difficulties to rise from a standard 

chair requiring knee flexion higher than 70 degrees. Thus, all subjects were 

studied while performing sit-to-stand (STS) movement from an armless high chair 

with the seat tilt forward. This kind of chair was used in order to allow the STS 

movement performance for every subject. 
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 A total of three trials were performed by each subject. Every individual was 

asked to cross his or her arms and hold them against the chest during the rising 

manoeuvre to avoid covering the lower limb markers. Motion was recorded from 

the time the subjects were told to rise until they reached a relaxed standing 

position. Motion velocity was not controlled, allowing every subject to stand up at 

a self-selected speed. The feet positions were not restricted either, so as to 

facilitate the easiest rising strategy for every subject. The purpose of the study was 

to evaluate the natural kinematics and kinetics in every subject, considering all 

possible sources of variability for later analysis and comparison between both 

groups. 

Motion of one lower limb (the most affected one in the case of patients) was 

recorded with a two-camera video-based motion tracking system 

KINESCAN/IBV at a frame rate of 50 Hz and obtained through a stereo-

photogrammetry technique. Three reflective spherical markers were attached to 

the lateral side of each lower limb segment using a rigid frame. In addition, 

ground reaction forces on the studied leg were recorded by a force plate 

DINASCAN/IBV, synchronized with the motion analysis system (Figure 1).  

A three-segment model of the lower limb was employed in the analysis, where 

each segment was assumed to be a rigid body and the ankle and knee joints were 

considered to be spherical joints. Full kinematics and kinetics of the knee joint 

were obtained by an in -house developed kinematics software and an inverse 

dynamic analysis model of the lower limb respectively.  Three dimensional joint 

angles and displacements were calculated by means of Euler angles between the 

anatomical frames of the different segments of the leg. The anatomical frames 

were defined from anatomical landmarks located on each segment. The 3D 

position and orientation of anatomical frames was estimated through matrix 
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transformation from the local technical frames defined by the markers. 

Relationship between technical and anatomical frames was obtained through a 

previous calibration of anatomical landmarks with regard to technical markers by 

stereo-photogrammetry.  The positions of the joint centers were estimated relative 

to the position of the anatomical landmarks and the knee joint centre was located 

at the midpoint of a line between the centers of the lateral and medial femoral 

condyles. 

Resultant external forces and moments at the knee were calculated through the 

Newton-Euler formulation, based on the joint angles, body segment 

anthropometric data and the reaction forces obtained from the force plate. 

Total duration of STS movement was obtained from recorded kinematics and 

kinetics waveforms. Initial time instant was set from the ground reaction 

waveform, at the time when compression force value was above a certain 

minimum threshold, indicating the beginning of load transfer from the chair to the 

floor and consequently, on the lower limb. End of the STS movement was 

obtained from the knee flexion angle waveform, at the time when the subject 

reached a steady low flexion-extension value after rising from the chair.   

Although a complete set of 3D data was obtained, just sagittal plane kinematics 

and kinetics will be addressed here, and particularly, knee flexion angle and net 

external knee flexion/extension moment. There are several reasons for this 

selection: Flexion is the main degree of freedom of the knee and has the largest 

range of motion of all the kinematical variables studied at this joint. It is also the 

main motion of the STS movement.  Flexion-extension moments are the most 

relevant moments at the knee and play a significant role in identifying functional 

differences or changes at this joint when studying the execution of many different 

daily activities (18-21). Moreover, previous studies (22) have shown that variables 



8 

associated to knee flexion angles and moments are the most relevant variables for 

identifying differences between osteoarthritic patients and healthy subjects in STS 

movement performance; so it is interesting to analyze the same variables from a 

functional point of view. Last but not least, artifacts associated to skin and soft 

tissues can significantly affect the accuracy of motions in coronal and frontal 

planes (medial-lateral motions and internal-external rotations), whereas motion in 

the sagittal plane as well as the related kinetic variables are more consistent or less 

affected by this type of measuring error (23). 

In order to allow comparison among different subjects regardless of body size, 

knee moments were normalized and reported as a percentage of subject’s body 

weight times shank’s length. 

 

2.2. Data processing 

Data have been processed in three different ways. Firstly, a set of ten discrete 

measures (each one specified by a single value) was extracted from the 

waveforms obtained in each trial. These variables are described in Table 1. For 

each subject, the average measures of the three trials were computed. Therefore, 

the first approach considers an analysis matrix of size 31x10. 

Selection of discrete variables was done according to previous literature related to 

STS movement analysis (18-22). Most authors choose peak flexion moment, 

initial and final flexion angles, range of flexion and total movement duration as 

the main scalar parameters to be considered in the study of knee biomechanics 

during STS movement. Since knee flexion-extension moment pattern observed in 

patients was quite variable and rather different from the flexion moment pattern 

typical of healthy subjects, other descriptive parameters like peak extension 
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moment as well as mean and final moments were also considered in the present 

study. 

The second and third approaches used the two waveforms introduced in Section 

2.1. In the second approach, waveform measures were time normalized: each 

waveform was defined by 101 values, one for each percent of the movement, i.e. 

each waveform is considered in terms of its individual STS movement duration, 

and it is sampled at each 1% from 0% to 100%. Afterwards, the three trials of 

each subject were averaged. Therefore, the second approach considers two (time 

normalized) waveforms for each one of the 31 subjects. 

In the third approach, no time normalization process was performed in order to 

avoid a loss or alteration of temporal patterns. The STS movements were 

observed during the time interval [0, 3.5] sec (3.5 was chosen because at this time 

all subjects had completed the movement). Although, the durations of STS 

movement for each trial were different, the observations beyond the movement 

end simply correspond to the final stationary value of the waveform. The three 

trials of each subject were also averaged. Therefore, the third approach considers 

two (raw) waveforms for each one of the 31 subjects. 

The second and third approaches deal with waveforms. Although they are 

recorded discretely (the waveform xi might consist of ni pairs (tij, xij), j=1,…, ni), a 

continuous curve or function (xi(t) with t∈ [0,100] and t∈ [0,3.5] for the second 

and third approach respectively) lies behind these data. In order to convert the 

waveform observations into a true functional form, we approximate (smooth) each 

curve by a weighted sum (a linear combination) of 60 B-spline basis functions of 

order 6 and determine the coefficients of the expansion by fitting data by least 

squares, as done in (24). Each curve is, therefore, completely determined by the 

coefficients in this basis, and xi(t) is computable for any desired argument value t.  
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Let us see how to apply PCA familiar in MDA in this infinite dimensional 

domain. A short answer would be that summations change into integrations, but 

details are given in the following section. 

2.2.1. PCA for functional data 

In order to see how PCA works in the functional context, let us recall PCA for 

MDA. In MDA, principal components are obtained by solving the eigenequation 

ρξξ =V   (1) 

where V is the sample variance-covariance matrix, V=(N-1)-1 X’X, where, in turn, 

X is the centred data matrix, N is the number of individuals observed, and X’ 

indicates the transpose of X. Furthermore, ξ is an eigenvector of V, and ρ is an 

eigenvalue of V.  

In the functional version of PCA, vectors are not considered any more, but PCs 

are replaced by functions or curves. Let {x1(t),…, xN(t)} be the set of observed 

functions. The mean function can be defined as the average of the functions point-

wise across replications ( ∑
=

−=
N

i
i txNtx

1

1 )()( ). Let us assume that we work with 

centred data (the mean function has been subtracted), and define the covariance 

function v(s,t) analogously by ∑
=

−−=
N

i
ii txsxNtsv

1

1 )()()1(),( . As explained in 

(16), the functional counterpart of equation (1) is the following functional 

eigenequation 

∫ = )()(),( sdtttsv ρξξ   (2) 

where ρ is still an eigenvalue, but now ξ(s)  is an eigenfunction of the variance-

covariance function, rather than an eigenvector. Now, the principal component 

score corresponding to ξ(s) is computed by using the inner product for functions 
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∫= dsssxs ii )()( ξ   (3) 

Note that for multivariate data, the index s is not continuous, but a discrete index j 

replaces it:  ∑=
j

jiji xs ξ  

There are several strategies for solving the eigenanalysis problem in equation (2). 

In order to retain the continuity of the original functional data and to reduce the 

amount of information, we have used the approach proposed in [16]. Instead of 

using a lot of variables obtained by discretizing the original functions, this type of 

analysis works with the coefficients of the functions expressed as a linear 

combination of known basis functions (B-splines in our case). Functional PCA 

can be carried out easily by using the free library FDA for MATLAB available at 

http://www.functionaldata.org. For a complete review of computational methods 

for functional PCA, see (16).  

Regarding the problem of how many PCs can be computed, let us note that in the 

functional context, “variables” now correspond to values of t, and there is no limit 

to these. Therefore, a maximum of N – 1 components can be computed. However, 

if the number of basis functions K (60 B-splines in our case) defining the 

waveforms is less than N, K would be the maximum. Nevertheless, the first 

components usually explain most of the variation, and it is not necessary to 

compute all components. 

We can think of principal components as a set of orthogonal basis functions or 

curves constructed so as to account for as much variation at each stage as 

possible. Once we have a set of orthogonal components spanning as much 

variation as we want, we can always rotate these orthogonally to get a new set 

spanning the same space. The advantage is that rotated components may be easier 

to interpret. We have used the VARIMAX rotation method (the sum of the 
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variances of the squared coefficients within each eigenvector is maximized). 

Again, the procedure can be found in (16) and it is available at the library FDA. 

2.2.2. Functional PCA with multiple waveforms 

Human movement analysis implies often multiple kinematic or kinetic variables; 

therefore, several waveforms must be simultaneously described and analyzed. In 

our case, we work with two functional data: flexion knee angles and flexion-

extension knee moment. 

Functional PCA can deal with two functional observations per individual, two 

curves x(t) and y(t).  Let {(x1(t),y1(t)),…, (xN(t),yN(t))} be the set of pairs of 

observed functions. Two mean functions ( )(),( tytx ) and two covariance functions 

(vXX(s,t), vYY(s,t)) can be computed for each kind of function respectively.  

Furthermore, we can calculate the cross-covariance function of the centred data 

by: ∑
=

−−=
N

i
iiXY tysxNtsv

1

1 )()()1(),( . 

A typical PC is defined by a two-vector ξ=(ξX, ξY) of weight functions (two 

curves). They are solutions of the eigenequation system ρξξ =V , which in this 

case can be written as 

∫ ∫
∫ ∫

=+

=+

)()(),()(),(

)()(),()(),(

sdtttsvdtttsv

sdtttsvdtttsv

YYYYXXY

XYXYXXX

ρξξξ

ρξξξ
  (4) 

Now, the PC score for the i-th bivariate function (xi(t),yi(t)) is computed by 

∫∫ += YiXii yxs ξξ because the inner product between bivariate functions is 

defined by the addition of the inner products of the two components. This 

amounts to stringing two functions together to form a composite function. 

To solve the eigenequation system, each function xi(t) and yi(t) is replaced by a 

vector of values or basis coefficients, and a single synthetic function is built by 
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joining them together. When PCs have been computed, we separate the parts 

belonging to each coordinate. Again, this procedure is implemented on the FDA 

library and is completely explained in (16). Analogously, the varimax rotation 

method has been used to improve the ease of interpretation. 

2.3. Statistical Analysis 

In order to analyze the information provided by the three considered approaches, 

data have been summarized by descriptive measures, and differences between 

control and patients’ groups analyzed, according to each approach. For the first 

approach, this difference has been quantified by means of the nonparametric test 

(Mann-Whitney U test (25)), that has been applied to each one of the ten 

variables. For the second and third approach, we have computed only the first four 

components, since in both cases they explain more than 95% of the variation. The 

proportion of variance explained by each eigenfunction is computed as in the 

multivariate case, by each eigenvalue ρ divided by the sum of all eigenvalues. 

Furthermore, for each PC, the variation accounted for each original curve x(t) and 

y(t) is given by ∫ dsss XX )()( ξξ  and ∫ dsss YY )()( ξξ  respectively, because their 

sum is one by definition; in this way, we can know the weight of each curve, 

flexion knee angles and flexion-extension knee moment, in the PCs obtained.  

The PC scores of each individual on each component have also been described, 

and, subjected to the Mann-Whitney U test for testing differences between control 

and patients groups. 

Finally, a discriminant analysis has been carried out for each approach and the 

effectiveness of each approach in classifying both groups was analyzed. The 

misclassification error rates for each approach were calculated by a cross-
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validation procedure, “leave-one-out” method, so each individual was classified 

from the functions obtained with its own exclusion from the sample. 

3. RESULTS 

3.1. CLASSICAL SCALAR APPROACH 

Statistical analysis of discrete variables reveals that osteoarthritic patients and 

healthy subjects are significantly different in initial flexion angle, final flexion 

angle and range of flexion values. Osteoarthritic patients have a lower initial knee 

flexion angle and higher final flexion, consequently having a smaller range of 

knee flexion (Table 2).  

Regarding the flexion-extension moment, both groups are significantly different 

in the maximum flexion moment (Mmin), which is lower for the osteoarthritic 

group, and the mean moment (Mmean), which has negative values for the control 

group and positive values or near to zero for the patients.  There are not 

significant differences regarding the maximum extension moment (Mmax) neither 

the final moment (Mfinal).    

Concerning the time variables, there are no statistically significant differences 

between groups in any of the three variables considered. Total duration of 

movement is generally longer in osteoarthritic patients; however, the difference 

with healthy subjects is not significant. Also the time of the Mmin event seems to 

happen first in the control group, but this difference is not statistically significant 

either. 

In general, the patients’ group has a higher variability in most of the variables 

considered (initial and final flexion angle, as well as in the maximum, mean and 

final moment and in the total duration of motion).  

3.2. FUNCTIONAL PCA OF NORMALIZED WAVEFORMS 
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The first four principal components obtained from the analysis of normalized 

waveforms explain 97.8% of the whole variance associated to the two functional 

variables (Table 3). Variances of nPC1 and nPC2 are mainly explained by the 

normalized knee moment (99.3% and 97.9%, respectively), whereas variance of 

nPC4 is mainly associated with the flexion angle. Finally, variance of nPC3 is 

associated to both variables, although it is more related to the moment than to the 

knee angle (79.1% and 21.9%, respectively) (Table 3). 

The first PC reveals significant differences in the knee flexion moment between 

osteoarthritic patients and control group (Table 3). Healthy subjects are 

characterized by a flexion moment pattern, represented by the negative scores on 

nPC1 and the negative peak of corresponding waveform of figure 2b. On the other 

side, osteoarthritic patients show a predominantly extension moment pattern while 

rising from a chair, related to positive scores on nPC1 and a positive peak on the 

moment waveform.  

Differences in flexion angle waveforms are irrelevant in this PC, since it mainly 

depends on moments. 

The component nPC2 also reveals a difference between the moment patterns of 

both groups, especially on the second half of the STS movement; although it is 

not statistically significant because of the great variability among patients (Table 

3).  Positive scores, mainly related to osteoarthritic patients, correspond to 

moment values higher than the mean in the second half of the movement and a 

positive final moment, which means a final extension moment; whereas negative 

scores, mainly linked to control group, denote moments lower than the mean and 

a final flexion moment pattern (figure 2d).  

The principal component nPC3 reveals significant differences between both 

groups not only regarding the moment pattern, but also the knee flexion range. 
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Patients’ group has positive mean values in this PC, in contrast to the negative 

mean value of the control group; this difference being statistically significant 

(Table 3).   

This PC is related to both, angle (21% of variance) and knee moment (79% of 

variance). Osteoarthritic patients (positive scores waveforms) are characterized by 

a lower initial flexion angle and consequently by a smaller range of knee flexion 

than the control group (figure 2e). With regard to moments, osteoarthritic and 

healthy groups show a different moment pattern in the first part of the movement 

as well as divergence in the magnitude and location of the moment peaks (figure 

2f). Osteoarthritic patients begin the movement with an extension moment, 

characterized by a first positive peak moment, not shown by control subjects. 

Besides, patients have a much lower flexion moment than controls, represented by 

the lower negative peak moment in their waveform. Similar to nPC1 results, 

control group moves with a flexion moment pattern throughout the whole 

movement.  

To finish, the principal component nPC4 is mainly related to flexion angle. 

Positive scores are representative of both higher initial and final flexion angle and 

subsequently, a flexion angle higher than the mean all over the curve (figure 2g).  

Nevertheless, differences between healthy subjects and patients corresponding to 

this last component are not statistically significant. 

3.3. FUNCTIONAL PCA OF RAW WAVEFORMS 

As in the previous approach, the first four principal components explain most of 

the total variance (95.8%) of the whole set of non-normalized waveforms (Table 

4).  

The component rPC1 explains 43% of the total variance and is mostly associated 

to differences in the flexion/extension moment. Those recordings with positive 
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scores in rPC1 have a positive or extension final moment, while negative scores 

are related to a negative or flexion final moment.  Moreover, this PC reveals 

differences in the shape of the moment waveform; positive scores are 

characterized by a clearly marked flexion moment peak that later decreases and 

finally reaches a final extension moment, whereas those moment waveforms with 

negative scores do not have such an evident peak, but an increase in the flexion 

moment that then remains practically invariable until the end of movement (figure 

3b). 

Differences between the control and patients’ scores in rPC1 are not statistically 

significant; hence this principal component must be associated to individual 

differences that are not produced by osteoarthritis. However, there is a noticeable 

difference between the standard deviations of both groups, with the osteoarthritic 

patients having a much higher variance than the healthy subjects.  

The component rPC2 explains 31.9% of total variance and reveals different 

moment patterns between osteoarthritic patients and healthy subjects; this 

difference being statistically significant (Table 4). Osteoarthritic patients show an 

extension moment pattern, characterized by a positive and smaller moment peak 

corresponding to positive score waveforms (figure 3d). Control group is 

distinguished by a flexion moment pattern, with a higher negative peak on their 

moment waveforms (negative scores in rPC2). 

The angle component of rPC2 also shows different patterns of motion. 

Osteoarthritic group has a lower initial flexion angle and a slower motion 

performance (figure 3c).  

The principal component rPC3 explains 10.5% of the total variance and is 

representative of the variability in the angle waveforms (Table 4). The meaning of 

this PC is related to the final flexion value and therefore to the differences in the 
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range of flexion. Osteoarthritic patients have positive scores, which means a 

certain knee flexion at the end of the movement (figure 3e). In contrast, control 

subjects achieve a complete knee extension at the standing posture. As in the case 

of rPC2, the difference between both groups related to rPC3 is statistically 

significant.    

The component rPC4 is also mainly related to flexion angle. However, it is not 

related to pathology differences, since mean values of patients and controls’ 

scores do not differ significantly.  Positive scores are representative of a higher 

initial flexion angle and a time gap with regard to those curves having negative 

scores (figure 3g). This delay is not due to a lower motion velocity but to the 

larger range of flexion. 

3.4. DISCRIMINANT ANALYSIS 

To conclude, the discriminatory power between control and patients’ groups of 

the variables used in every one of the studied approaches was compared. Ten 

variables were included in the traditional approach based on discrete variables and 

the scores in four principal components in each of the functional PCA methods. A 

discriminant analysis was performed in each case. Misclassification error rates for 

each approach are gathered in Table 5. The best results in classification are those 

of the functional PCA on the raw waveforms without time normalization (6.5% of 

errors). The discriminatory power is a bit worse when applying the PCA to time-

normalized waveforms (9.7% of errors). The traditional approach using 10 

discrete variables to represent the whole waveform gives the worst result (16.1% 

of errors), in spite of using more than twice the number of variables than the 

functional approaches (10 compared to 4). 
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4. DISCUSSION  
This study shows the possibilities of functional PCA as a useful technique for 

analysing multiple waveforms associated to human movements, as well as for 

identifying continuous temporal patterns from this kind of data. We have applied 

this technique to analyze the STS movement. STS movement has been previously 

used to characterize the differences between healthy and pathologic people, but 

the published papers on this subject do not use a functional approach (18, 20-22, 

26, 27). 

PCA has been widely applied to identify individual patterns of motion by 

extracting principal modes of variation of a set of time variables. In this approach, 

each time series is used as a variable whose observations are the recorded values 

at each time for one or more trials (2, 6, 8, 9). The obtained principal modes do 

not quantify the variability across subjects, although aggregated patterns of 

movement or classification processes can be performed from the individual 

principal modes, implicitly assuming that the structure of such eigenpostures is 

the same for all subjects (7). 

Our work is focused in a different approach whose objective is to describe inter-

subject variability of a set of time variables. This approach has been used in 

previous papers in a multivariate way: a finite set of discrete variables are 

obtained from one or several continuous time series by sampling at arbitrary 

values of time. This way, the functional nature of the original variables, is not 

considered. For this application, PCA is usually applied to single waveforms after 

a linear normalization of the time scale. When more than one variable is 

considered (joint angles, velocities, kinetic variables) a separate PCA is performed 

for each variable and one set of principal components (PCs) for each functional 

variable is obtained (1, 4, 10, 11). This approach increases the number of PCs; 
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moreover, these PCs can be correlated because they have been obtained from the 

same movement by means of separated analyses of related variables. In this study 

we have worked with the raw data, without applying any time-scale 

normalization, and we simultaneously analyze two continuous waveforms 

corresponding to  kinematic (flexion angle) and kinetic (knee moment) variables. 

This approach is similar to that developed by Astephen and Deluzio  (3), although 

the use of PCA in that paper is not functional but multivariate, since the original 

waveforms are decomposed into a set of variables after a linear normalization of 

the time scale. Therefore, the continuous representation of the original variables in 

(3) implies the use of a thousand intermediate variables. In contrast, we have used 

in this paper functional methods in which the original waveforms are not 

discretized but are described by means of B-spline bases. This maintains the 

continuous nature of functional data without the need to use so many intermediate 

variables. 

The application of functional PCA to the study of STS movement in two samples 

of people (patients with knee osteoarthritis and control group) shows how 

kinematic and kinetic variables can be simultaneously analyzed to define normal 

and pathological temporal patterns. From the original waveforms, we obtained 

four principal components explaining most of the total variance. Two of these 

components are related to differences in the movement patterns of osteoarthritic 

patients and healthy group. 

The first rPC is associated to variability in the knee moment pattern. Positive 

scores correspond to waveforms with a marked peak of knee flexion moment and 

a final extension moment while the negative ones correspond to a more flat 

pattern with some degree of final flexion moment. This component could be 

associated to individual differences not related with osteoarthritis disease, since 
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the differences between control group and patients are not statistically significant. 

However, the related dispersion is higher in the patients group.   

The second component indeed reveals differences between controls and patients. 

It is related to the more or less dynamic nature of the movement and to differences 

in the knee moment pattern. Waveforms with a flexion moment pattern are 

associated to the control group and distinguished from those with an extension 

pattern, representative of the patients’ group. This is in agreement with results 

obtained by Su et al (22). They studied the STS movement of osteoarthritic 

patients and compared it with function of normal subjects and patients after 

successful total knee replacement. They observed a lower maximum flexion 

moment in osteoarthritic patients than in normal subjects. Moreover, flexion angle 

patterns are also different, patients having a smaller range of motion, lower initial 

flexion angle and slower motion performance than controls. 

The third rPC also shows significant differences between both groups and is 

related to the variance of the flexion angle waveforms. Osteoarthritic group is 

characterized by a smaller range of motion, related to some remaining knee 

flexion after reaching the final standing posture. This remaining flexion might be 

caused by some degree of knee flexion contracture, characteristic of patients with 

knee osteoarthritis. Concerning the range of knee flexion, no other published 

studies have found a significant difference between osteoarthritic and healthy 

subjects while performing the STS movement. Nevertheless so far, the only 

published study on the topic of the effect of osteoarthritis in knee function during 

the STS movement performance is the one by (22). They just considered the 

maximal knee flexion angle as kinematic comparative variable between groups. 

Most published studies have mainly focused on function recovery after total knee 

arthroplasty (18, 27-29)  or the effect of age on STS movement performance  (20, 
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21, 26) . Jevsevar et al (18) found that patients after TKA had a smaller range of 

knee flexion and lower maximum flexion moments than healthy subjects.  

Finally, the fourth component is not related to the disease either, but it is 

associated with individual differences in the range of flexion angle, as well as 

with phase differences during motion performance. 

Thus, important differences were found in the knee mechanical behaviour of both 

groups. The biomechanical interpretation of these differences would be that 

patients develop a motion strategy with compensatory mechanisms in order to 

decrease or avoid the flexion moment on their diseased knee, since higher flexion 

moments entail higher joint compression forces as well as a higher force demand 

for the quadriceps and, subsequently, a pain increase. Su et al (22) have described 

some of these compensatory manoeuvres to reduce peak knee flexion moments 

like increasing horizontal anterior displacement and velocity of the body centre of 

mass, leaning more forward, increasing hip flexion angle or reducing knee flexion 

angle. 

On the other side, knee moment and angle patterns observed in the control group 

are very similar to those obtained in other studies of STS movement in normal 

subjects (19, 30). 

The scores of the four rPCs are used as input variables in the discriminant 

analysis. This analysis successfully separates the controls and patients patterns 

with a misclassification error rate of 6.5%. This rate is similar to the one obtained 

in (3) to classify controls and osteoarthritic gait patterns from 25 PCs obtained by 

means of conventional multivariate PCA, which was 6%. This result suggests that 

the main differences between movement patterns could be captured by means of a 

reduced set of kinematic and kinetic waveform measures: adding many more 
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variables could bring only redundant information that does not improve the 

discriminatory power of the variables set.  

The results of this study reveal important differences between knee osteoarthritic 

patients and healthy subjects related to flexion-extension moment patterns as well 

as range of flexion angle during STS movement performance. This means that 

STS movement analysis can be applied as a functional evaluation tool of knee 

osteoarthritis. The application of functional PCA in this particular case allowed 

the identification of two biomechanical features useful for detection and 

assessment of knee osteoarthritis. That is, calculation of rPC scores from knee 

flexion angle and moment waveforms would allow classification of new subjects 

as well as evaluation of their function according to their proximity to each one of 

the considered groups. 

A relevant question in the application of functional PCA is the role of the time 

normalization scale. Usually, the original waveforms are normalized in order to 

obtain a 0-100 time scale. This normalization can greatly affect the variability of 

original data and consequently to the results of PCA. The results of our study 

confirm this hypothesis and different PCs are obtained from the same data 

depending on whether time scale is normalized or not. It can be questioned which 

of the kinds of analyses represents better the original information. Both of them 

result on four PCs and the amounts of variability captured by both set of factors 

are very similar. Nevertheless, the normalization changes the timing information 

and can alter the interpretation of the meaning of PCs. For example, the slope of 

angle waveforms is directly related to the speed of motion in the raw data but 

have no physical meaning after time normalization. Because the magnitude of 

peaks of kinetic variables can be associated to the speed of motion (throughout the 

inertia forces) it could be more appropriate to work with raw data, at least when 
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kinetic and kinematic variables are included in the same analysis. A comparison 

between rPC2 and nPC1 (figures 2 and 3) shows that both of them are associated 

to different patterns in knee moment and that negative scores imply marked peak 

of flexion moment. Nevertheless, the angle component of rPC2 shows how the 

higher flexion peak is associated to a faster motion performance. This information 

is lost in the angular component of nPC1. 

On the other hand, the time normalization process does not improve the 

discriminatory power of the PCs. In fact, results of table 5 show that the rate of 

misclassification errors is a little smaller when rPCs are used as input variables in 

the discriminant analysis instead the normalized ones nPCs. 

Functional PCA can be used as a first exploratory analysis useful to select discrete 

variables with clinical interest. For example, in our study only rPC2 and rPC3 

reveal significant differences between controls and patients. Comparing, in those 

factors, the patterns associated to the patients (positive scores) and the controls 

(negative scores), it is possible qualitatively to identify some discrete variables 

useful for a later comparison between groups: initial knee flexion angle (figure 

3c), final flexion angle (figure 3e), range of flexion, total duration of movement 

(figure 3c) and peak flexion moment (figure 3d). All these variables display 

significant differences between groups, except the total duration for which the 

dispersion is very large (see table 2). This way it is possible to improve the a 

priori selection of variables, a process that sometimes is carried out in a subjective 

way and that usually provides many correlated variables (3). 

In any case, the information provided by functional PCA is more complete than 

that obtained from a conventional analysis by means of a finite set of discrete 

variables. The results of table 5 show  that the classification achieved by using 10 
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discrete variables is worse than that obtained with only 4 PCs, both when using  

normalized waveforms as well when using raw data. 

Finally, it is necessary to point out that, although functional PCA can be applied 

to a large number of functional variables, it is advisable to be conservative when 

selecting the variables to be introduced into the model. The use of a large set of 

time series usually does not provides more relevant information, but makes more 

difficult to interpret the results. In fact, functional PCA presents two difficulties 

that are common to any PCA problem: deciding on the number of components to 

extract in the analysis, and interpreting the components, which is not always an 

entirely straightforward matter. 
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TABLE 1.  Variables selected for analysis: waveforms and associated discrete 

measures. 

 

WAVEFORM DISCRETE MEASURES 

FLEXION-EXTENSION 

MOMENT: 

 

(Positive values mean 

extension moment while 

negative values mean 

flexion moment) 

Mmax (%BWxShL): Maximum moment of the 

whole curve, equivalent to maximum extension 

moment 

t_Mmax (sec):  time instant of maximum moment 

Mmin (%BWxShL): Minimum moment of the whole 

curve, equivalent to maximum flexion moment 

t_Mmin (sec):  time instant of minimum moment 

Mmean (%BWxShL): Mean moment (mean value of 

the curve) 

Mfinal (%BWxShL): Final moment (moment in the 

last instant) 

FLEXION-EXTENSION 

ANGLE  

(Positive values mean 

flexion while negative 

values mean hyper-

extension of the knee) 

i_flex (degree): Initial flexion (flexion al the first 

point of the curve) 

f_flex (degree):  Final flexion (flexion in the last 

point of the curve) 

R_o_flex (degree): Range of flexion (difference 

between initial and final flexion values) 

 

BOTH t_tot (sec): Total duration of STS movement 
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TABLE 2. Results of statistical analysis from discrete variables extracted from 

individual waveforms. First two columns show mean values and standard 

deviation for control and patients’ groups. Last column shows the results of the 

Mann-Whitney U test to quantify differences between both groups (bold in this 

column indicates variables with significant differences). 

 

 Mean (std) p-value 

VARIABLE (units) CONTROLS PATIENTS  

i_flex (degree) 61.7 (9.9) 47.7 (13.4) 0.007 

f_flex (degree) 0.9 (4.0) 7.8 (9.0) 0.005 

R_o_flex (degree) 60.7 (9.1) 40.0 (8.8) 0.000 

Mmin x10-2 

(%BWxShL) 
-14.7 (4.9) -4.2 (4.2) 0.000 

Mmax x10-2 

(%BWxShL) 
2.3 (1.8) 3.7 (3.7) 0.398 

Mmean x10-2 

(%BWxShL) 
-5.2 (2.2) 0.1 (4.1) 0.001 

Mfinal x10-2 

(%BWxShL) 
1.6 (1.4) 1.7 (4.0) 1.000 

t_Mmin (sec) 0.34 (0.09) 0.51 (0.47) 0.237 

t_Mmax (sec) 0.99 (0.43) 0.81 (0.38) 0.353 

t_tot  (sec) 1.25 (0.2) 1.49 (0.64) 0.331 
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TABLE 3. Results of functional PCA made from normalized knee flexion angle 

and flexion/extension moment waveforms. Principal components obtained from 

time-normalized waveforms are denoted as nPCi (i=1 to 4), in order to distinguish 

them from the ones obtained from raw waveforms (rPCi). The first row describes 

the variances explained by the first four nPCs after varimax rotation. The 

importance of knee angle or moment variables within each nPC is quantified by 

the percentage of explained variance (second and third rows). The differences 

between control and patients groups (represented by the differences between the 

means of the PC scores for each group) are described in the last rows and they 

have been quantified by means of the Mann-Whitney U test.  

 

Functional PC nPC1 nPC2 nPC3 nPC4 

Explained variance (%) 47.1 24.1 17.2 9.4 

% explained by angle 
variable 

0.7 2.1 20.9 96.3 

% explained by moment 
variable 

99.3 97.9 79.1 3.7 

CONTROLS:  mean 
(std) 

-175. 4 
(163.4) 

-74.9 
(92.7) 

-123.5 
(77.7) 

0.9 
(54.1) 

PATIENTS: mean (std) 83.5 
(149.2) 

35.7 
(145.4) 

58.8 
(82.4) 

- 0.5 
(99.9) 

p-value 0.001 0.066 0.000 0.720 
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TABLE 4. Results of functional PCA made from raw knee flexion angle and 

flexion/extension moment waveforms, that is, without time normalization. 

Principal components obtained from raw waveforms are denoted as rPCi (i=1 to 

4). The first row describes the variances explained by the first four rPCs after 

varimax rotation. The importance of knee angle or moment variables within each 

rPC is quantified by the percentage of explained variance (second and third rows). 

The differences between control and patients groups (represented by the 

differences between the means of the PC scores for each group) are described in 

the last rows and they have been quantified by means of the Mann-Whitney U 

test.  

 

Functional PC rPC1 rPC2 rPC3 rPC4 
Explained variance (%) 43.0 31.9 10.5 10.4 

% explained by angle 
variable 

3.0 6.3 93.5 94.0 

% explained by moment 
variable 

97.0 93.7 6.5 9.0 

CONTROLS:  mean (std) -1.2 
(10.2) 

-25.5 
(14.5) 

-10.2 
(5.8) 

1.8 (7.6) 

PATIENTS: mean (std) 0.6 
(34.0) 

12.2 
(17.8) 

4.9 
(14.2) 

- 0.9 
(16.2) 

p-value 0.882 0.000 0.002 0.513 
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TABLE  5. Results of the discriminant analysis of each approach. Comparison of 

corresponding misclassification error rates. 

 

 Misclassification error rate 
(%) 

APPROACH Patients Controls Total 

 Discrete Variables 9.5 30.0 16.1 

Functional PCA (time 
normalized) 

4.8 20.0 9.7 

Functional PCA (raw 
waveforms) 

0.0 20.0 6.5 
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Figure 1. Picture of the experimental set-up. Only technical markers are shown.  
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Figure 2. Effect of positive and negative scores of nPCi on the shape of flexion 

angle (left column) and flexion-extension moment (right column) curves. Solid 

line represents the mean of time normalized waveforms; (+) line represents the 

effect on the mean curve of adding a standard deviation of nPC1 scores (plots a 

and b), nPC2 scores (plots c and d), nPC3 scores (plots e and f) and nPC4 scores 

(plots g and h), respectively; (-) line represents the mean minus a standard 

deviation of nPCi scores. 
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Figure 3. Effect of positive and negative scores of rPCi on the shape of flexion 

angle (left column) and flexion-extension moment (right column) curves. Solid 

line represent the mean of raw waveforms;  (+) line represents the effect on the 

mean curve of adding a standard deviation of rPC1 scores (plots a and b), rPC2 

scores (plots c and d), rPC3 scores (plots e and f) and rPC4 scores (plots g and h), 

respectively. 

 

 


