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Jump state estimation with multiple sensors with packet dropping and

delaying channels.

Daniel Dolz, Ignacio Peñarrocha∗ and Roberto Sanchis

Departament d’Enginyeria de Sistemes Industrials i Disseny, Universitat Jaume I, Casetelló, Spain

(Received 00 Month 20XX; final version received 00 Month 20XX)

This work addresses the design of a state observer for systems whose outputs are measured through a
communication network. The measurements from each sensor node are assumed to arrive randomly,
scarcely and with a time-varying delay. The proposed model of the plant and the network measurement
scenarios cover the cases of multiple sensors, out-of-sequence measurements, buffered measurements on
a single packet and multi-rate sensor measurements. A jump observer is proposed, that selects a differ-
ent gain depending on the number of periods elapsed between successfully received measurements and
on the available data. A finite set of gains is precalculated off-line with a tractable optimization prob-
lem, where the complexity of the observer implementation is a design parameter. The computational
cost of the observer implementation is much lower than in the Kalman filter, whilst the performance
is similar. Several examples illustrate the observer design for different measurements scenarios and
observer complexity and show the achievable performance.

Keywords: State estimation; Packet dropouts; Networked control systems; Wireless sensor network;
Stochastic stability; Packet-delaying networks; Out-of-sequence measurements (OOSMs);
Multisensor systems; Bufferized measurement

1. Introduction

In the last years many processes in industry are controlled or supervised through sensors, actu-
ators and controllers connected to a shared network (wired or wireless) (see Gupta and Chow
(2010)). The use of a network causes packet dropout, delays or intermittent partial observa-
tions when acquiring data from sensors, and the control and estimation through a network must
overcome these problems.
The Kalman filter tackles the state estimation over networks problem updating the observer

gain at each sampling time with the corresponding observation matrix. This approach leads
to a time varying gain that must be computed online even for linear time invariant systems
(e.g. Sinopoli et al. (2004); Schenato (2007, 2008)). The computational cost of the online imple-
mentation is unaffordable for some applications, what motivates the search for computationally
low cost alternatives.
The use of precalculated gains reduces the implementation cost in terms of computing capacity,

but increases the estimation error and requires both storage and a mechanism to choose the
appropriate gain at each sampling time (e.g. Smith and Seiler (2003); Sahebsara et al. (2007);
Peñarrocha et al. (2012)). A constant gain approach leads to the lower storage requirement
but also to the lower performance. The jump linear estimator approach (Fletcher et al. (2006))
improves the estimation with a set of precalculated gains that are used at each sampling time
depending on the actual available measurements, requiring both storage and the implementation
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of a selection algorithm. If the set of gains is also a function of the history of measurement
availabilities (called finite loss history estimator in Smith and Seiler (2003)) a better performance
is achieved at the cost of more implementation complexity in the selection of the appropriate gain.
An intermediate approach in terms of storage and selector complexity consists of a dependency
on the actual available measurements and on the number of consecutive dropouts since last
available measurement (Peñarrocha et al. (2012); Peñarrocha et al. (2014)).
Computing the gains off-line requires prior knowledge about the network dropout. When the

network behaves as a Markov chain, the design uses the transition probabilities (Smith and Seiler
(2003)), and when the Markov chain is irreducible and aperiodic (i.e., Bernoulli distribution),
the reception probabilities (stationary distribution of the Markov chain) give enough information
for design or analysis purposes (Sinopoli et al. (2004)). Under unknown statistic information and
scarce measurements, the maximum possible number of consecutive dropouts, if it is assumed
to be bounded, gives useful information for the design (Peñarrocha et al. (2012)).
In this paper we propose a jump linear estimator that leads to low cost implementation

and acceptable performance for networks with Bernoulli distributions. The gains depend on
the combination of actual available measurements and on the number of consecutive periods
without data since the last data arrived. As that number is unbounded for Bernoulli distributions,
we propose to use a constant gain when the number of consecutive dropouts exceeds a given
threshold, and derive an expression to determine the effect of this threshold on the achievable
performance. Furthermore, we propose to reduce the number of stored gains by means of sharing
the use of each gain for different combinations of available measurements.
The main difference with the work Smith and Seiler (2003) is an important reduction in the

number of gains and in the complexity of the gain selection mechanism under scarce measure-
ments, while leading to a similar performance. With respect to work Peñarrocha et al. (2012),
the main differences are that we do not need to assume that the number of consecutive packet
dropouts is bounded, and that we do not discard the measurements from which the state is
not detectable. Other differences with those previous works are the integration of delayed mea-
surements and irregular sampling scenarios as out-of-sequence or buffered measurements, and
the proposal of different strategies to reduce the complexity of the observer in order to find a
compromise between implementation cost and performance.
The paper has the following structure: in Section 2 we describe the process, present the observer

algorithm and derive the estimation error. In Section 3 we develop the convex optimization based
observer design, and demonstrate the convergence of the estimator. In section 5 we propose some
possible scenarios groupings to find a compromise between implementation cost and performance.
In Section 6 several examples show the validity of the proposal, compared to the Kalman filter
approach. Finally, the main conclusions are summarized in Section 7.

2. Problem approach

Let us assume a linear time invariant discrete time system defined by equations

x[t+ 1] = Ax[t] +Bu u[t] +Bw w[t] (1)

where x ∈ Rn is the state, u ∈ Rnu is the input, and w ∈ Rnw is the state disturbance, assumed
as a white noise signal of zero mean and known covariance E{w[t]w[t]T } = W . Let us assume
that samples from several sensors are taken synchronously with the input update but received
through a network with packet dropouts and induced time-varying delays. We denote as tk the
instant of sample reception, and define the measurement value by

mi,k = ci,k x[tk − di,k] + vi,k, i = 1, . . . , nm (2)

2
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where mi,k represents the k-th measurement of sensor i, and vi,k the sensor noise on the k-th
sample, assumed an independent zero mean white noise signal with known variance E{v2i,k} = σ2

i .
We assume synchronization between sensors and the estimator unit and time-tagged message
sending, that allows us to know the transmission delay. di,k ∈ N is the network induced delay
measured in number of periods. We introduce an extended order model to avoid running back-
wards the model when dealing with delayed measurements. We take into account in the model
delays up to a value d̄ ∈ N that must be selected in the estimator design procedure.

Remark 2.1. In the observer to be designed we discard measurements with a delay higher than
d̄. Note that d̄ is not a network parameter (the network could have unbounded delays), but an
observer design parameter (see Fig.2 in Schenato (2008)). As d̄ may be lower than the bound on
the real delays, reducing d̄ may decrease the probability of having available measurements, but
will also reduce the model order and hence, the complexity of the estimator. For a given delay
distribution, the selection of d̄ is a tradeoff between estimator complexity (related to the order)
and achievable performance (related to the amount of available data used by the estimator to be
designed). Example 6.2 illustrates this compromise in the choice of d̄.

The model including the delayed states is

x̄[t+ 1] = Āx̄[t] + B̄uu[t] + B̄ww[t], (3)

where x̄[t+ 1] =
[
x[t+ 1]T · · · x[t− d̄+ 1]T

]T
and

Ā =








A 0 · · · 0
I · · · 0

...
...
. . .

...
...

0 · · · I 0







, B̄u =

[
Bu

0

]

, B̄w =

[
Bw

0

]

,

with the measurement equation

mi[tk] = [01×(n)di,k
ci 01×(n)(d̄−di,k)]

︸ ︷︷ ︸

ci[tk]

x̄[tk] + vi,k. (4)

As ci[tk] can take d̄ + 1 different values (depending on the delay di,k), we enumerate with
j ∈ [1, nm(1 + d̄)] each combination of sensor i = 1, . . . , nm plus possible delay d = 0, . . . , d̄, and
consider each one of those combinations as if they were measurements from different (fictitious)
sensors. The enumeration we choose follows the law j = (i− 1)(1 + d̄) + (d+1), and we express
the measurement equations of the fictitious sensors j with a constant output matrix as

m̄j[tk] = c̄j x̄[tk] + v̄j,k, j = 1, . . . , n̄m (5)

with n̄m = nm(1 + d̄) the number of total (real and fictitious) sensors, and

c̄j = [01×(n)d ci 01×(n)(d̄−d)].

This notation allows us to deal with out-of-sequence received measurements, with received
packets including measurements from one sensor sampled on different instants (i.e., buffered
measurements), and avoids the use of time varying matrices ci[tk].
We propose the following state estimation algorithm. At each control period, the model is run

3
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in open loop leading to

ˆ̄x[t−] = Ā ˆ̄x[t− 1] + B̄u u[t− 1]. (6)

If no measurement is received, the best estimation of the system state is the open loop one, i.e.,
ˆ̄x[t] = ˆ̄x[t−]. If some message arrives at time t = tk, the state is updated as

ˆ̄x[tk] = ˆ̄x[t−k ] +

n̄m∑

j=1

lj,k(m̄j,k − cj ˆ̄x[t
−
k ]), (7)

where lj,k is the updating gain that applies to the k-th sample of sensor j if available at the
estimator node. The design of lj,k is one of the main concerns of this work and it will be discussed
later in detail.
Let us define the sensor availability factor αj [t] of the j-th sensor (j = 1, . . . , n̄m) for every

control period as

αj[t] =

{
0 when m̄j is lost in t

1 when m̄j is received in t
(8)

Let us define the availability matrix as1 α[t] =
⊕n̄m

j=1 αj[t], that is a binary diagonal matrix

with ones only at positions jj such that αj [t] = 1. Using this matrix, we rewrite the received
measurements at instant t as m̄[t] = α[t]

(
C̄x̄[t] + v̄[t]

)
, with m̄[t] = [m̄1[t] · · · m̄n̄m

[t]]T , v̄k =

[v̄1[t] · · · v̄n̄m
[t]]T , where a null value is assumed when a measurement is lost, the rows of C̄ are

c̄j , and where v̄[t] is the measurement noise vector with covariance

E{v̄[t]v̄[t]T } = V =

nm⊕

i=1





1+d̄⊕

j=1

σ2
i



 (9)

assuming a non correlated noise. A control period in which all information from sensors is lost
leads to α[t] = 0. If at a given control period all the information from each sensor is available,
then α[t] = I (as we assume delayed measurements this means an arrival of a packet with
information of each sensor from t− d̄ to t).
With the previous notation, and considering a null value on the unavailable measurements,

we rewrite the update equation (7) as

ˆ̄x[tk] = ˆ̄x[t−k ] + Lkαk(m̄k − C̄ ˆ̄x[t−k ]), (10)

where Lk is the updating matrix. Defining the estimation error at the updating periods as
x̃[tk] = x̄[tk]− ˆ̄x[tk], the estimation error dynamic is

x̃[tk] =(I − LkαkC̄)

(

ĀNk x̃[tk−1] +

Nk−1∑

i=0

ĀiB̄ww[tk−1 + i]

)

− Lkαkv̄k, (11)

where Nk denotes the number of consecutive periods without measurements, i.e., Nk = tk−tk−1.
To obtain equation (11) we firstly run the estimator (6) in open loop from tk−1 to tk and apply
the update equation (10), secondly we run the model (3) from tk−1 to tk, and finally we substract
the two results (see Peñarrocha et al. (2012)).

1⊕ denotes the direct sum of matrices

4



January 23, 2014 International Journal of Systems Science jump˙lossy˙performance

Each combination of available measurements leads to a different value of matrix α[t] at each
control period. These values are within a known set

α[t] ∈ Ξ = {η0, η1, . . . , ηr}, (12)

where ηi denotes each possible combination (sampling scenario). In the general case, any com-
bination of available sensor measurements and delays is possible, leading to r = 2n̄m − 1. Matrix
η0 denotes the scenario without available measurements, i.e., η0 = 0, and the set of scenarios
including some available measurement is denoted as Ξ̄ = Ξ \ η0 = {η1, . . . , ηr}.
Remark 2.2. In each real application, the set Ξ gathers the possible cases, and becomes a
parameter design if the sensors have some processing capabilities. If the sensor nodes collect
measurements on a buffer of size b̄ and transmit the full buffer every period (as in works Schenato
(2008); Moayedi et al. (2011); Zhu et al. (2012)), then each ηi will have ones in the positions
related to the sensors from which the gathered delayed measurements are sent, if they are received
for the first time and their associated delay is lower than d̄ . In the multi-rate approach of Liang
et al. (2010), each ηi will represent the possible measurement combinations in the global period.

The probability of each case on Ξ characterizes the network and is the prior knowledge that
allows us to make a design with stochastic properties. Let us denote the probability of having
a given set of measurements at period t as pi = P{α[t] = ηi}, where p0 denotes the probability
of having no measurements. Once a packet with data from several sensors arrives at tk, the
probability of having N − 1 consecutive periods without data is given by

P







tk+(N−1)
⋂

t=tk+1

α[t] = η0






= pN−1

0 . (13)

Remark 2.3. If the arrival from each sensor with a given delay is an independent and identically
distributed process (as in Wang et al. (2012); Wu et al. (2012); Jia et al. (2012)), we compute
the probabilities of each sampling scenario as follows. Let us denote as βj the probability of a
measurement from fictitious sensor j being available at a given control period, i.e. βj = P{αj [t] =
1}. The complementary probability of failing on receiving an output sample from sensor j is
P{αj [t] = 0} = 1−βj , and the probability of having no measurement available at a given control
period is

p0 = P{α[t] = η0} =

n̄m∏

j=1

(1− βj). (14)

The probability of having some sensor available is P{α[t] ∈ Ξ̄} = 1 − p0, and the probability of
having a given combination of available sensors ηi ∈ Ξ̄ is

pi = P{α[t] = ηi} =

n̄m∏

j=1
∀ηi,j=0

(1− βj)

n̄m∏

j=1
∀ηi,j=1

βj , i = 1, . . . , r (15)

where ηi,j refers to the j-th diagonal entry of ηi.

The aim of this work is to compute the gain matrices Lk that minimize the state estimation
error in the mean square sense requiring low computing and storage capabilities (see Section 3).
We first differentiate the computational cost of online and offline gains computing, and then
differentiate the storage requirements between precomputed gains approaches.

5
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Using a Kalman filter Schenato (2008) leads to a time varying gain Lk whose online implemen-
tation requires 2n̄3+n̄2nw+n̄n2

w+4n̄2n̄m+2n̄n̄2
m+5n̄3

m+2n̄2+n̄nu+2n̄n̄m+n̄2
m+2n̄+n̄m (where

n̄ = n(d̄+1)) floating-point operations (FLOPs) per period, leading to high computation require-
ments and to possible numerical problems due to the inversion of a matrix of at most n̄m × n̄m.
Using a jump linear estimator with a finite set of stored gains leads to n̄2+ n̄nu+2n̄n̄m+2n̄+ n̄m

FLOPs per period, that is much lower than the previous one.
In the motivation example in Smith and Seiler (2003), the authors show that the gains obtained

with a Kalman filter depend on the history of combination of sensor availability . From this
observation they propose a finite history jump linear estimator whose gains depend on α[t], t =
tk−h, . . . , tk, and chose a history bound h, what requires storing (2n̄m−1) 2n̄m (h−1) gains. In that
motivation example, the gains depend also strongly on the number of consecutive periods without
data between receptions (Nk). From that observation, we propose a jump linear estimation that
depends both on Nk and αk and stores at most (2n̄m − 1) N̄ gains, with N̄ our history bound
that must be chosen as a compromise between observer complexity (number of stored gains) and
achievable performance. We define the gains as follow

Lk =

{
LN,i if Nk = N < N̄ and αk = ηi
LN̄,i if Nk ≥ N̄ , and αk = ηi

(16)

for αk = η1, . . . , ηr. The matrices are computed off-line leading to the set of matrices

Lk ∈ L = {L1,1, . . . , L1,r, . . . , LN̄,r}, (17)

that will be used to implement the jump linear estimator.

Remark 2.4. In this work, Nk is assumed to be unbounded and N̄ is a tuning parameter that
affects to the number of stored gains, but it is not a parameter that describes the network
behaviour. In Sanchis et al. (2007); Peñarrocha et al. (2012) the nodes are assumed to guarantee
somehow that Nk remains below N̄ = max{Nk}, where N̄ defines both the network behavior and
the number of stored gains.

3. Observer design

In the following theorem we obtain the recursion that defines the evolution of the covariance
matrix of the state estimation error. We will use this result later to compute the observer gains.

Theorem 3.1. Let Pk−1 = E{x̃k−1x̃
T
k−1} be the covariance matrix for the state estimation error

updated at the measurement instant tk−1. Then, the expected value of the covariance matrix at
the measurement instant tk is given by

E{Pk} =

N̄−1∑

N=1

pN−1
0

r∑

i=1

piLN,i ηiV ηTi L
T
N,i (18)

+
pN̄−1
0

1− p0

r∑

i=1

piLN̄,i ηiV ηTi L
T
N̄,i

+

N̄−1∑

N=1

pN−1
0

r∑

i=1

piFN,i

(
ĀNPk−1(Ā

N )T + SW,N

)
F T
N,i

+

r∑

i=1

piFN̄ ,i(p
N̄−1
0 ĀN̄SP,k−1(Ā

N̄ )T + S̄W )F T
N̄,i

6
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where SP,k−1 =
∑∞

i=0 p
i
0Ā

iPk−1(Ā
i)T , expressed as

SP,k−1 = vec−1
(
(I − p0Ā⊗ Ā)−1vec(Pk−1)

)
, (19)

fulfills SP,k−1 − p0ĀSP,k−1Ā
T = Pk−1, and

FN,i = I − LN,i ηiC̄, (20)

SW,N =

N∑

j=1

Āj−1B̄wWB̄T
w(Ā

j−1)T , (21)

S̄W =
pN̄−1
0

1− p0

(

SW,N̄ + p0Ā
N̄S′

W,∞(ĀN̄ )T
)

, (22)

S′
W,∞ = vec−1

(
(I − p0Ā⊗ Ā)−1vec(B̄wWB̄T

w)
)
. (23)

Proof. Let us assume that at t = tk−1 a new measurement is available and the state esti-
mation is updated with equation (7) leading to a covariance matrix for the estimation error
E{x̃[tk−1]x̃[tk−1]

T } = Pk−1. The expected value of the covariance matrix for the estimation error
at the next update period is

E{Pk} = E
{

(I − LkαkC̄)ĀNkPk−1(Ā
Nk)

T
(I − LkαkC̄)T

}

+ E
{

(I − LkαkC̄)

Nk−1∑

i=0

ĀiB̄wWB̄T
w(Ā

i)
T
(I − LkαkC̄)T

}

+ E
{
LkαkV αkL

T
k

}
,

considering the independency between x[tk−1], vk and w[tk−1 + i] for i = 0, . . . , Nk − 1, and
assuming w[t] an uncorrelated noise. We express the different expectations considering the prob-
ability of the number of intersample periods Nk, the gain matrix dependency (16), and the rule
of average conditional expectations. After algebraic computation and variable substitution it
follows (18).

The previous theorem shows a recursion on the covariance matrix that we write Pk = E{Pk−1},
being E{Pk−1} the linear operator that returns the right hand of equation (18). In order to
compute the observer gains off-line, one must find the stable solution to equation E{Pk−1} =
Pk−1, but the relationship between SP,k−1 and Pk−1 in (19) prevents from using standard Riccati
solvers. We compute the set of gains L solving the optimization problem2

min
L,P

tr(P ), s.t. E{P} − P � 0, (24)

that allows us to include different constraints on the set of gains to reduce the observer com-
plexity. We present the following numerical solution to this problem based on linear matrix
inequalities and bilinear equality constraints that makes it easy to include different constraints
over observer gains.

2 A � 0 means that matrix A is negative semidefinite, and A � B means that A−B is negative semidefinite. Similar applies
to ≺, ≻ and �.

7
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Theorem 3.2. If there exist matrices P , Q, R and a set of matrices L = {L1,1, L1,r, . . . , LN̄ ,r}
such that







P M̄ ¯̄A M̄ W̄ X̄ V̄
¯̄AT M̄T Q̄ 0 0
W̄ T M̄T 0 W̄ 0
V̄ T X̄T 0 0 V̄






� 0, (25)

P Q = I, SP R = I, (26)

with3

SP = vec−1
(
(I − p0Ā⊗ Ā)−1vec(P )

)
,

X̄ = [
√
p1L1,1 η1 · · · √p1L1,r ηr · · · √pNLN̄,r ηr],

M̄ = [M1 · · · MN̄ ], MN = [
√
p1FN,1 · · · √prFN,r],

¯̄A =

N̄⊕

N=1

pN−1
0

(
r⊕

i=1

ĀN

)

,

W̄ =





N̄−1⊕

N=1

pN−1
0

(
r⊕

i=1

SW,N

)

⊕
(

r⊕

i=1

S̄W

)

,

V̄ =





N̄−1⊕

N=1

pN−1
o

(
r⊕

i=1

V

)

⊕
(

r⊕

i=1

pN̄−1
0

1− p0
V

)

,

Q̄ =





N̄−1⊕

N=1

pN−1
o

(
r⊕

i=1

Q

)

⊕
(

r⊕

i=1

pN̄−1
0 R

)

.

then, recursion E{·} over P fulfills E{P} − P � 0. Furthermore, the optimization problem

min
P

tr(P ) subject to (25), (26), (27)

is a solution of (24).

Proof. Applying extended Schur complements on (25) and taking into account (26) makes prob-
lem (24) and (27) equivalent.

We show next that if we apply the gains L obtained from problem (27), then the sequence
{Pk} converges to the unique solution P obtained in (27). Let us first introduce the following
lemma borrowed from Sinopoli et al. (2004).

Lemma 3.1. Define the linear operator

L(Y ) =

N̄−1∑

N=1

pN−1
0

r∑

i=1

piFN,iĀ
NY (ĀN )TF T

N,i

3 Operator vec(A) generates a vector by stacking the columns of matrix A. Operator vec−1(x) generates a matrix by
reordering the elements of x into columns.

8
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+

∞∑

N=N̄

pN−1
0

r∑

i=1

piFN̄ ,iĀ
NY (ĀN )TF T

N̄,i
.

Suppose that there exists Ȳ ≻ 0 such that L(Ȳ ) ≺ Ȳ . Then,

a) For all W � 0, limk→∞ Lk(W ) = 0.
b) Let U � 0 and consider the linear system Yk+1 = L(Yk) + U , initialized at Y0, then the

sequence {Yk} is bounded.

Theorem 3.3. Suppose that the set L in (17) solves problem (24), i.e., exists P̄ ≻ 0 such
that E{P̄} � P̄ . Then, for any initial condition P0 � 0 the sequence {Pk} is bounded, i.e.,
{Pk} � MP .

Proof. Considering the linear operator on Lemma 3.1, we have L(P̄ ) ≺ E{P̄} � P̄ . Thus, Lmeets
the condition of Lemma 3.1. The evolution of Pk is expressed as Pk+1 = E{Pk} = L(Pk) + U.

Since U contains the disturbance and noise covariance (both positive definite), then U ≻ 0,
leading that {Pk} is bounded.

Theorem 3.4. Suppose that the set L in (17) solves problem (24). Then, for any initial condition
P0 � 0, the iteration Pk+1 = E{Pk} converges to the unique positive semi-definite solution P̄

obtained in problem (24), i.e., limk→∞ Pk = limk→∞ Ek{P0} = P̄ � 0, where P̄ = E{P̄}

Proof. First, let us show the convergence of sequence {Pk} with initial value Q0 = 0. Let
Qk = E{Qk−1} = Ek{Q0}, then from (18), Q1 � Q0 = 0 and Q1 = E{Q0} � E{Q1} = Q2.
By induction, {Qk} is non decreasing. Also, by Lemma 3.1, {Qk} is bounded and by Theo-
rem 3.3 there exists an MQ0

such that Qk � MQ0
for any k. Hence, the sequence converges and

limk→∞Qk = P̄ � 0, where P̄ is a fixed point, i.e, P̄ = E{P̄}.
Second, we state the convergence of Gk = Ek{G0}, initialized at G0 � P̄ . Since G1 = E{G0} �

E{P̄} = P̄ , then Gk � P̄ for any k. Moreover

0 � Gk+1 − P̄ = E{Gk} − E{P̄} = L(Gk − P̄ ).

As Gk − P̄ � 0, following the results on Lemma 3.1, then 0 � limk→∞(Gk − P̄ ) = 0, i.e., the
sequence {Gk} converges to P̄ .
We demonstrate now that for any initial condition P0 � 0, the iteration Pk = E{Pk−1}

converges to P̄ . Since 0 � Q0 � P0 � G0, we derive by induction that 0 � Qk � Pk � Gk.
Therefore, as {Qk} and {Gk} converges to P̄ , then {Pk} also converges to P̄ and the convergence
is demonstrated.
Finally, we demonstrate that

P̄ = argmin
P

tr(P ) subject to (25), (26).

Suppose this is not true, i.e. P̂ solves the optimization problem but P̂ 6= E{P̂}. Since P̂ is a

feasible solution, then P̂ ≻ E{P̂} =
ˆ̂
P . However, this implies tr(P̂ ) > tr(

ˆ̂
P ), which contradicts

the hypothesis of optimality of matrix P̂ . Therefore P̂ = E{P̂}. Furthermore P̄ is unique since
for a set of observer gains such that

[P̄ , L] = argmin
P,L

tr(P ) subject to (25), (26),

we have shown that the sequence converges to P̄ , and this concludes the theorem.

Problem (24) minimizes the expected value of the state estimation error covariance matrix at
the updating periods tk. However, a more representative measure of the estimation performance

9
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is the value of the covariance matrix at each control period t. The following theorem allow us to
obtain this value.

Theorem 3.5. Given P = E{x̃kx̃Tk }, the covariance matrix of the estimation error at each
period is given by

Pt = E{x̃[t]x̃[t]T } = (1− p0)P + (28)

p0 vec
−1
(
(I − p0Ā⊗ Ā)−1vec(Sc)

)

where Sc =
(
Ā P ĀT + (1− p0)

−1B̄wWB̄T
w

)
.

Proof. The expected value of the covariance matrix of the estimation error at the control period
(E{x̃[t] x̃[t]T }) is computed P as

(1− p0)P +

∞∑

N=1

pN
0

(

ĀNP (ĀN )T +

N∑

i=1

Āi−1B̄wWB̄T
w(Ā

i−1)T

)

= (1 − p0)P +

∞∑

N=1

pN
0
ĀNP (ĀN )T

+ p0

(
∞∑

i=0

pi
0

)
∞∑

j=0

p
j
0
ĀjB̄wWB̄T

w(Ā
j)T ,

where the infinite addends can be written respectively as

vec−1
(
(I − p0Ā⊗ Ā)vec(p0ĀP ĀT )

)
(29)

vec−1
(
(I − p0Ā⊗ Ā)vec(B̄wWB̄T

w)
)

(30)

Then, it finally leads to (28).

Remark 3.1. Matrix Pt = E{x̃[t]x̃[t]T } is a linear combination of P = E{x̃[tk]x̃[tk]T }. We refer
to the right hand of (28) as a linear operator F{} that applies to P as Pt = F{P}. The set of
observer gains L obtained as the solution of the optimization problem

min tr(F{P}), s.t. (25), (26), (31)

minimizes the expected value of the covariance matrix at each control period (with or without
measurements).

4. Numerical computation

The optimization problem (27) is a nonconvex optimization problem because of the terms Q =
P−1 and R = S−1

P . One approach to obtain the solution of this problem is the reformulation as
a rank-constrained LMI problem, leading to constraints

rank

([
SP − p0Ā SP ĀT I

I Q

])

≤ n̄, rank

([
R I

I SP

])

≤ n̄.

In this work, we address the rank-constrained LMI problem (27) with a cone complementarity
linearization algorithm (CCL) El Ghaoui et al. (1997), leading to

min tr(PQ+ SPR)

10
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s.t. (25), tr(P ) < γ,

[
P I

I Q

]

� 0,

[
SP I

I R

]

� 0, (32)

where SP is the matrix defined in (19) and γ is a real positive value. Condition tr(P ) < γ

can be replaced by tr(F{P}) < γ to minimize the expected value of the covariance matrix at
control periods (see Remark 3.1). We solve the nonlinear minimization problem with a bisection
algorithm over the CCL as follows.

Step 1 Choose a large enough initial γu such that there exists a feasible solution to LMI con-
ditions (25), (32) with γ = γu. Set γl = 0, and γ = 1

2(γl + γu).

Step 2 Set k = 0 and find a feasible solution set
[
P 0, Q0, S0

P , R
0, L0

]
, satisfying (25), (32).

Step 3 Solve the following LMI problem for the decision variables P , Q, SP , R and L:

min tr(P kQ+QkP + Sk
PR+RkSP )

subject to (25), (32)

set k = k + 1, [P k, Qk, Sk
P , R

k] = [P,Q, SP , R].

Step 4 If k < kmax for a given prescribed maximum number of iterations kmax, and (25) is
unsatisfied after replacing Q by P−1 and R by S−1

P , then return to Step 3. If k < kmax

and (25) are satisfied, update the upper bound on γ as γu = γ, store the actual observer
gains LN,i, and go to Step 5. If k = kmax, update the lower bound on γ as γl = γ and go
to Step 5.

Step 5 If γu − γl ≥ δ, for a given small δ, update γ with γ = 1
2 (γl + γu) and go to Step 2. If

γu − γl < δ exit with the last stored set of gains L in Step 4.

5. Complexity reduction

The solution of the previous section leads to a number of stored matrices equal to4 |L| = N̄ · r,
each one used for a different pair (N, ηi). We can reduce the complexity of the observer in terms of
storage choosing a small N̄ and imposing some equality constraints over the set L as LN,i = LN,j.
Problem (27) allows to easily include equality constraints over the set L, and the choice of N̄
only affects on the construction of the matrices of the LMI problem. Reducing the number of
gains also simplifies the numerical burden of (27), as the number of decision variables and the
size of the matrices are decreased. Sharing gains has also implications on the implementation of
the selection mechanism. In the aim of implementing an observer with a simple online looking-
up-table procedure and low storage, we propose the following preconfigured sets of equalities
over the possible sensor availability combinations. The gain selection mechanism is mainly based
on counting the number of available sensors and the number of consecutive periods without data.

• S1. The observer gains depend only on the intersample periods, leading to |LS1| = N̄ , i.e.,
LN,i = LN,j for any pair i 6= j.

• S2. The observer gains depend on the number of real sensors from which measurements
arrive successfully at a control period, leading to |LS2| = nm · N̄ .

• S3. The observer gains depend on the number of real and fictitious sensors from which
measurements arrive successfully at a control period, leading to |LS3| = n̄m · N̄ .

• S4. The observer gains are different depending on the sampling scenario (this is the general
case), leading to |LS4| = (2n̄m − 1) · N̄ .

The selection one of the previous gain grouping alternatives, together with the choice of N̄ ,
allows to define a compromise between implementation cost and performance. The lowest cost

4|L| denotes the cardinal of the set L, i.e., the number of elements of L

11
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and worst performance is obtained for S1 and a low value of N̄ , while the highest cost and best
performance corresponds to S4 and a high value of N̄ . The examples illustrate this idea.

6. Examples

6.1 Example 1

In this example we analyze the different gain scheduling strategies proposed in Section 5, as well
as the relationship between number of stored gains and achieved performance. We consider three
different state matrices

A1 =

[
0.8821 −0.0351
−0.0351 0.7347

]

, A2 =

[
0.8373 −0.7207
0.7207 0.8373

]

,

A3 =

[
1.6684 0.3197
−0.1003 0.6782

]

,

where A1, A2, A3 have real stable, complex conjugate unstable and one unstable eigenvalue,
respectively. In the three cases we use

Bu =

[
−0.3359
0.3466

]

, C =

[
0.5325 0.3987
0.7258 0.3584

]

Bw =

[
0.0121 0.1347
0.0112 0.0831

]

.

and state disturbance and sensor noises with covariances

W =

[
0.2632 −0.0027
−0.0027 0.2466

]

,

[
σ2
1

σ2
2

]

=

[
0.0086
0.0079

]

.

The measurements are independently acquired through a communication network that induces
a delay that varies from 0 to 1 periods. The amount of fictitious sensors is 4, and the number
of possible sampling scenarios is 24 = 16. Table 1 details the availability probabilities that
are assumed for each of the fictitious sensors in each example. They are defined such that the
problem (31) is feasible.

Table 1. Probabilities assignment.

sensor delay βA1,A2
βA3

1 0 0.1391 0.3340
1 1 0.1751 0.3064
2 0 0.1397 0.3761
2 1 0.1334 0.3403

Let us first analyze the observer performance as a function of the number of stored gain
matrices in the set (17), according to the scheduling approaches detailed on Section 5. Fig. 1
shows the dependency of the trace of the expected covariance matrix at control periods Pt (28)
with respect to the number of gain matrices for the four proposed scheduling approaches. We
considered different intersample periods N̄ = 1, . . . , 7, leading to different number of stored gains
(each point in the plot means a given value for N̄). For the system with state matrix A1 (stable
with real eigenvalues), increasing the number of observer gains either by increasing N̄ or due to
the possible scheduling approaches do not improve significantly the performance, because the
estimation performance (tr(Pt)) of the constant gain approach (S1) is only a 1.7% worse than

12
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the optimal performance (with scheduling S4 and N → ∞, tr(P ⋆
t )). In this case, a constant gain

approach (S1) would be a good compromise between estimation performance and storage or
implementation cost. For the system with state matrix A2 (unstable with complex eigenvalues),
the performance of the estimator can be increased significantly by using N̄ ≥ 2 with respect to
N̄ = 1. The effect of using a more complex approach than S2 (with set S3 or S4) is negligible for
the performance, but implies a high number of stored gains. In this case, selecting S2 and N̄ = 2
(storing only 4 gains) leads to an acceptable compromise solution. For the state matrix A3 it is
better to increase the considered scenarios in the scheduling approach in terms of performance
and memory storage, rather than increasing N̄ . In this case a good compromise could be to
select S3 and N̄ = 1 (storing only 4 gains).
Now, let us compare for the case of state matrix A3 the results of the implementation of a

Kalman filter algorithm adapted from Schenato (2008) and the proposed algorithm (in the cases
indicated with a black filled symbol in Fig. 1(c)). Table 2 shows, for each studied case, the number
of needed observer gains, the obtained trace of the covariance matrix for the state estimation error
at the control period (through simulation) and the computational cost (upper-bound of FLOPs
per iteration). The Kalman filter gives the best performance but needs almost fifteen times more
operations than the proposed algorithm, with a slight improvement in performance. Regarding
the proposed approach, it can be noticed that increasing the number of gains improves the
performance (getting closer to the Kalman one) but the storage requirement is also increased.
Furthermore, the numerical values for tr(Pt) obtained from simulations (shown in Table 2)
converge to the optimal values presented graphically in Fig. 1(c).
Case S4 with N̄ = 1 corresponds to the same approach presented in Smith and Seiler (2003)

with no history loss. However, adding only one period of history to improve the estimation
performance of Smith and Seiler (2003) implies the use of 15 · 24·(2−1) = 240 different gains. Our
approach needs to store only 60 gains to achieve a performance, tr(Pt), just a 6% higher than
the one obtained with the Kalman filter, and just 8 gains to perform an 18% worse (Table 2).
This example shows a compromise between the estimation performance, storage and scheduling

complexity. The designer can use this information to decide a maximum number of observer gains
to be stored and then to chose its dependency either on the intersample period or on the possible
scenarios to minimize the estimation error.

Table 2. Observers comparison for system A3.
Case S1 S2 S3 S3 S4 Kalman
|L| 1 2 4 8 60 -
tr(Pt) 0.1585 0.0781 0.0553 0.0498 0.0451 0.0423
FLOP 64 64 64 64 64 976

6.2 Example 2

This example analyzes the influence of parameter d̄ on the estimation performance and on the
computational cost. Let us consider the system defined by A1 and that only measurements from
the first sensor are available. We assume that the probability of having a measurement available
from the first sensor with a given delay, i.e βj = Pr{αj = 1} ,∀j = 1, . . . ,∞, is given by a
negative binomial distribution where the probability of success is 0.5 and the number of failures
is 3. The assumed probability distribution of the network induced delays is shown in Fig. 2. Only
the values for d < 20 have been plotted as the probability of higher delays is negligible.
Fig. 3 shows the values of tr(Pt) (defined in (28)), the number of FLOPs per period (presented

in Section 2) and the values of the probability of having no measurement available p0 (defined
in (14)), for different choices of d̄ in the set {0, 1, . . . , 6} within case S4. Choosing a higher d̄

reduces p0 and leads to a better performance (tr(Pt) is lower). However, the order of the observer
increases with d̄ as well as the computational effort to obtain a solution for problem (31) and the
number of FLOPs used in the online implementation. Moreover, at a given point incrementing
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(c) Case of one unstable pole, A3.

Figure 1. Quotient between the trace of the expected value of the estimation error covariance matrix at each control period
tr(Pt) and the minimum reachable value (with scheduling S4 and N → ∞, tr(P ⋆

t
)) for different number of observer gains

and for different scheduling approaches.

14



January 23, 2014 International Journal of Systems Science jump˙lossy˙performance

the value of d̄ does not significantly improve the estimation performance. Therefore, parameter d̄
must be chosen as a trade-off between estimation performance and observer complexity (number
of FLOPs) plus computational effort to solve the optimization problem.
For the examined example, the case d̄ = 4 could be a good choice if there is enough online

computational capability available because the obtained estimation performance is only 7% worst
than the optimal (with d̄ → ∞). If the number of FLOPs is an important constraint, the cases
with d̄ = 3 and d̄ = 2 reduce the number of FLOPS in a 29% and 53% respectively at the
expense of increasing the estimation error to a 20% and 51% above the optimum.
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Figure 2. Probability distribution of the network induced delays, which follows a negative binomial distribution where the
probability of success is 0.5 and the number of failures is 3.
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Figure 3. Normalized trace of the expected value of the estimation error covariance matrix at each control period tr(Pt),
number of FLOPs, and probability of having no measurement available p0 for different maximum considered delay d̄.

6.3 Example 3

In this example, we design the observer assuming the application of the buffer approach presented
in Schenato (2008) and explained in Remark 2.2. Let us consider the detectable and unstable
system defined by A3 in the first example. Let us assume that each sensor has a probability
of sending a buffered packet (with the actual and the last b̄ measurements) of β1 = 0.66 and
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β2 = 0.11, respectively, but when the packet is received, the delay is 0. A parameter d̄ = b̄ is
selected in this case, to take into account all the measurements present in the received packets.
The value of tr(Pt) decreases when the buffer is enlarged (with scheduling approach S4), and
therefore the estimation is improved (Fig. 4). The buffer approach allows to reduce the use of the

tr
(P

t
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N̄

d̄ = 0

d̄ = 1

d̄ = 2

d̄ = 3

1 3 5 7
0.09

0.11

0.13

0.15

0.17

Figure 4. Trace of the expected value of the estimation error covariance matrix at each control period tr(Pt) as a function
of the maximum intersample period N̄ (with S4) for different buffer lengths b̄.

network. To illustrate this phenomena, let us consider that only the first sensor of the considered
systems is available and that we want a performance tr(Pt) ≤ 0.03, with the lowest network
resources (measured as the probability of available measurement). We search for the minimum
probability (network usage) with different buffer lengths b̄ and different intersampling periods
N̄ . The achievable performance varies with each strategy and with the value of probability β1
(see Fig. 5, with approach S4). Thus, for tr(Pt) = 0.03, the probability of having available the
measurement from the sensor can be decreased in a 12% from the worst case (N̄ = 1, b̄ = 0,
β1 = 0.9730) to the best one (N̄ = 4, b̄ = 3, β1 = 0.8530).
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Figure 5. Trace of the expected value of the estimation error covariance matrix at each control period tr(Pt) (with S4) as a
function of the probability of having available the measurement for different buffer lengths (d̄ = 0 and d̄ = 3) and different
intersample periods (N̄ = 1 and N̄ = 4).
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7. Conclusions

In this work we designed a jump state estimator for networked control systems where the com-
plexity in terms of storage requirements and selection mechanism is a design parameter, and we
quantified the degradation that comes with the reduction of the observer complexity. The pro-
posed approach allows to find a compromise between online computational implementation cost
and performance. The result is a finite set of gains that are applied depending on the number
of consecutive periods without measurements and on the available measurements. We modeled
the sampling scenario due to the network through the probabilities associated to the successful
reception of each sample. As a consequence, the number of control periods between consecu-
tive measurements, Nk, is unbounded, and the associated delays are time-varying. We used a
model that accepts out-of-sequence measurements, buffered measurements on a single packet or
multi-rate sensor measurements. The computational cost of the on-line implementation is lower
than the Kalman filter approaches with extended model, while the achieved performance is close
to that one. The performance is better than the constant gain approaches at the cost of more
storage requirements, and is similar to the one obtained with finite history loss jump estimators,
while requiring less storage. Our approach requires additional work to become applicable under
Markov chain models of the missing data, and further research must be done to determine a
priori the feasibility of the LMI problem and the degradation for the use of common gains and
for the choice of N̄ and d̄.
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