
Particle Filter-based Pose
Estimation from Controlled Motion
with Application to Visual Servoing

immediate
� abdul.hafez@hku.edu.tr

Abstract In this paper, we present a Bayesian algorithm
based on particle filters to estimate the camera pose
for vision-based control. The state model is represented
as a relative camera pose between the current and
initial camera frames. The particles in the prior motion
model are drawn using the velocity control signal
collected from the visual controller of the robot. The
pose samples are evaluated using an epipolar geometry
measurement model and a suitable weight is associated
with each sample. The algorithm takes advantage of
the a priori knowledge about motion, i.e., the velocity
computed by the visual servo control, to estimate
the magnitude of the translation in addition to its
direction, hence producing a full camera motion estimate.
Its application to position-based visual servoing is
demonstrated. Experiments are carried out using a real
robot setup. The results show the efficiency of the
proposed filter over the motion measurements of the
robot. In addition, the filter was able to recover the split
performed by the robot joints.

Keywords Visual Servoing, Particle Filter, Pose Estimation,
Controlled Motion

1. Introduction

Based on the type of features that are used in the
error function, there are two basic designs for visual
controllers: image-based and position-based visual servo
controllers [1–3]. In the latter category, an appropriate pose
computation algorithm [4–6] is employed for computing
the present and desired poses from the image cues.
The problem is usually summarized to estimate the
object-camera pose in the current and desired frames. As
such, the relative pose between the current and desired
frames can be also used in many of the control law
designs [5, 7].

The application of the extended Kalman filter (EKF) to
the pose estimation problem is straightforward if the 3D
model of the target object is available [8]. In such a system,
the state vector is the pose vector. In the method presented
in [7], the motion model assumes a constant velocity
motion while the measurement model is the perspective
projection model. The update stage needs to compute the
Jacobian matrix of the projection (measurement) model. If
the 3D model is not available, it should be estimated in the
online step using dual EKFs.

Since estimation using dual filters is erroneous, Deng
and Wilson [7] suggest that the state vector should be

Abdul Hafez Abdul Hafez and Enric Cervera: Particle-filterbased Pose Estimation
from Controlled Motion with Application to Visual Servoing

1

ARTICLE

Int J Adv Robot Syst, 2014, 11:177 | doi: 10.5772/58928

1 Department of Computer Engineering, Faculty of Engineering, Hasan Kalyoncu University, Sahinbey, Gaziantep, Turkey
2 Robotic Intelligence Lab, Jaume-I University, Castelló, Spain
* Corresponding author E-mail: abdul.hafez@hku.edu.tr

Received 20 Mar 2014; Accepted 26 Jul 2014

DOI: 10.5772/58928

∂ 2014 The Author(s). Licensee InTech. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

Abdul Hafez Abdul Hafez1,* and Enric Cervera2

Particle-filter-based Pose
Estimation from Controlled Motion
with Application to Visual Servoing
Regular Paper

International Journal of Advanced Robotic Systems

partitioned and a different measurement function should
be used for each part of the state vector. In particular, they
use the joint measurement of the arm to update the model
vector. This method increases the stability and robustness
of the filter. Later on, Janabi-Sharifi and Marey [9]
proposed an iterative adaptive extended Kalman filter
(IAEKF) that integrates mechanisms for noise adaptation
and iterative-measurement linearization. This shows
robustness in the case of poor a priori initialization of the
pose or state vector.

Tahri and Chaumette [10] presented a pose estimation
method based on virtual visual servoing (VVS). The
method determines the pose of a planar object with
complex shape using 2D moment invariants. The method
considers the problem of pose estimation as a positioning
of a virtual camera using features in the image [11]. The
method is equivalent to non-linear methods that aim at
minimizing a cost function using iterative algorithms.
The method proposed in [12] ïż£requires tracking of the
manipulator relative pose with respect to the camera.
They use a model based pose tracking system. This is
achieved through virtual visual servoing (VVS) in which
the systematic and random errors are compensated.

In the pose estimation problem, the EKF uses the
perspective re-projection error function as a measurement
function in the update stage. The Jacobian matrix of
this measurement function can be easily obtained and
used in the filter, since this function is differentiable.
However, the epipolar geometry between two views
can be used as a measurement function to estimate the
camera motion or the relative pose. Unfortunately, the
measurement function here is not analytically tractable;
thus, it is difficult to compute the Jacobian to be involved
in the update stage of the EKF. As a result, the EKF
cannot be used here but particle filters efficiently use this
measurement function to update the state of the relative
pose. Forsyth et al. [13] investigated the use of general
Monte Carlo sampling, while Qian and Chellappa describe
a method based on sequential importance sampling
(SIS) [14]. However, both of these methods were presented
in the context of traditional offline SFM - indeed, real-time
operation is not discussed. In [14], the scaled pose and
depth are estimated using partitioned particle filters. In
addition, the amplitude of the translation is estimated
separately, since no a priori information about the amount
of translation is given. The method was presented as a
batch algorithm, without dealing with the real-time issues.

The contribution of this paper is a Bayesian tracking-based
pose estimation algorithm for model-free visual servoing.
The proposed algorithm uses a particle filter to estimate
the relative pose between the initial and current camera
frames. The filter draws particles to predict the current
pose using its a priori knowledge about the velocity
control signal since the motion is controlled. Next, as
the correction stage, the two-views measurement model
is used to correct this prediction. It can be considered as
superior to previous offline works like the one presented
in [14] from the following points of view: the particle
filter that estimates the pose in our work uses a priori
knowledge about the motion to include the amount of

translation in the state vector, while the work in [14]
uses different filters in more than one partitioned step to
estimate the magnitude of the translation. The a priori
motion is presented in our work as a velocity signal of
the camera since the camera motion is controlled motion
(visual servoing). This aspect makes the method suitable
for real-time applications, like visual servoing. By using
this technique in visual servoing algorithms, model-free
servoing can be performed by estimating online the 3D
information (depth or pose) which is necessary to the
control law’s design.

The remainder of this paper is organized as follows. The
next section presents the background and basic concepts
of multiple views geometry and the imaging process.
Section 3 presents our proposed relative camera pose
estimation based on an epipolar geometry. Section 4
presents the application of the pose estimation algorithm
to model-free 3D visual servoing. Finally, experimental
results are presented and discussed in section 5 while a
concluding discussion is presented in section 6.

2. Background of Multiple View Geometry

We review in this section the basics of perspective
projection and 3D reconstruction from multiple views [15].
The imaging process using the perspective (pin-hole)
model can be described as follows.

Let us represent the moving camera at two time instances
as two identical cameras with a relative pose: (R, t). This
situation can be modelled by two cameras, where the first
one has the matrix P1 = K : (I, 0) and the second camera
has the matrix P2 = K : (R, t). The matrix K is a 3 × 3
matrix consisting of the intrinsic camera parameters.

Let M be a 3D point whose images are m1 in the first image
and m2 in the second image. These image points and the
3D point satisfy the following:

m1 = P1M (1)

m2 = P2M

In fact, these two equations can be rewritten as:

m × (PM) = AM = 0. (2)

This equation can be solved by finding a non-trivial
solution to this system which is linear in M, where A =
m ×P .

We can write the relation between the image points in the
first and second images as:

mT
2 F m1 = 0. (3)

The coordinates of the two points m1 and m2 are given
in the physical image plane and measured in pixels. The
matrix F is called the fundamental matrix.

One can note that l1 = FTm2 is the epipolar line in the
first image that corresponds to the image point m2 in the
second image. Similarly, the epipolar line l2 = Fm1 in
the second image corresponds to the image point m1 in the

Int J Adv Robot Syst, 2014, 11:177 | doi: 10.5772/589282

Figure 1. Block diagram of the pose estimation. The prediction
and update stages are the important blocks of the pose estimation
algorithm.

first image. It is easy to show that the vectors e1, and e2
that represent the positions of the epipoles in both images
are in the null space of F .

In the calibrated case, we denote the points in the
normalized image space by m̃1 and m̃2. The coordinates
of the points are given in metres and written as m1 = Km̃1
and m2 = Km̃2. Substituting in Equation (3), we can write:

m̃2
T E m̃1 = 0. (4)

The matrix E is called the essential matrix. It is related to
the fundamental matrix as F = K−TEK−1.

In fact, the relative pose between the two camera frames is
embedded within the matrix where E = [t]× R and where
[a]× is the skew-symmetric matrix corresponding to the
vector a.

3. Epipolar-based Relative Pose Estimation

In this section, an algorithm for camera motion (pose)
estimation is presented. Particle filter is used with epipolar
constraints as the measurement function. The motion
and measurement models are presented as prediction
and update stages. First, an overview of the proposed
algorithm is presented. In the remaining subsections, the
detailed stages of the proposed algorithm are presented.

3.1 Overview of the Proposed Method

An overview of the real time solution for estimating
camera motion from visual servoing motion is illustrated
in Figure 1. The pose estimation process involves
prediction and update stages, feature extraction and a
matching stage. The frame to frame a priori displacement is
estimated using the velocity signal produced by the visual
controller.

The prediction stage uses the velocity information Vt and
the pose estimate Pt/t at time t to estimate the pose
at the time t + 1 given the previous pose state Pt+1/t.
The state vector consists of three translation parameters
and four quaternion rotation parameters. Quaternion
parametrization is useful to avoid singularity due to the
Euler angles. Particle filter uses the velocity value of the
system to estimate the current distribution of the frame

to frame displacement which is accumulated to estimate
the total pose between the initial and current views. This
is different from previous particle filter methods [14, 16]
that consider a random motion model centred around the
previous state estimate. That adds a parameter tuning
step, while in our methods tuning is needed only for the
time interval as common in all filtering methods. This
plays a major role in allowing the algorithm to work in
the real time. In previous methods [14, 16], the scale of the
translation and the depth of feature have been estimated
in two additional stages.

The update stage is performed using epipolar-based
measurement model. The measurement function is
nothing but the epipolar constraints that relate the initial
and current image features. The measurement (likelihood)
function is selected in the simplest form that is the relation
between the image measurements and the epipolar line
in current view that are corresponding to one image
measurement in the initial view. Applicability of this
measurement model justifies the use of particle filter
instead of Kalman filter. The difficulties in differentiating
this measurement function are solved by using a particle
filter since individual samples represent the a priori
distribution that is used to evaluate the measurement
function and compute the corresponding weights. The
pose estimates computed in the prediction stage are
corrected by the epipolar relations between the image
measurements in the initial and current view.

3.2 Bayesian Filtering for Pose Estimation

Bayes filters are effective for addressing the problem of
estimating the state vector P of a dynamical system with
the help of sensor measurements [17–21]. Here, we
provide a probabilistic Bayesian model to estimate camera
relative pose P in visual servoing environment. Consider
a camera mounted on a robot arm manipulator observing
an object in the 3D world, the dynamical system consists of
the robot arm, eye-in-hand camera, and the 3D scene. The
state vector of the system is the pose of the camera with
respect to reference frame. Bayes filter assumes that the
environment is Markov, that is, the past and future data are
conditionally independent if the current state is known.

In the state estimation of a dynamic system, the vector
P represents the state of the dynamic system. The
measurement data available from the system output is
m. The measurement data describes the action which
is produced by the dynamic system by the control u.
Bayes filters estimate the probability density function over
the state space, conditionally to the measurements data
and action produced by the system (control command).
This probability is called the belief of the state vector and
denoted as π(Pt).

π(Pt) = p(Pt | m0...t, u0...t). (5)

Without loss of generality, we assume that the
measurements and the control commands arrive
alternatively. In other words, the control command
ut−1 is the motion during the time interval [t − 1, t] while
the current measurements at the time t is mt.

Abdul Hafez Abdul Hafez and Enric Cervera: Particle-filterbased Pose Estimation
from Controlled Motion with Application to Visual Servoing

3

Based on the above assumptions, we can write the belief
π(Pt) as

π(Pt) = p(Pt | mt, ut−1, mt−1, ut−2, mt−3, . . . , m0). (6)

The initial belief π(P0) represents the initial knowledge
about the system state. This initial knowledge is given by
a probability function computed using the model of the
system. This function is assumed to be uniform in the
absence of an initial knowledge.

To derive the recursive update equation of the belief π(Pt),
we use the Bayes rule, the Markov assumption, and we
integrate over the state Pt−1 to write Equation (6) as

π(Pt) = α p(mt | Pt)
∫

p(Pt | Pt−1, ut−1) π(Pt−1)dPt−1, (7)

where α is a normalizing constant [17].

The belief state π(Pt) is updated recursively at each
iteration using the measurement data supplied at time
t. Since the data, measurements and actions arrive
alternatively, the algorithm can be divided into two stages:
(1) prediction stage and (2) update stage. During the
prediction stage, the system model (motion model) is used
to get the a priori estimate of the state variable at time t
using the famous Chapman-Kolomogorov equations [22]

π(P̂t) =
∫

p(Pt | Pt−1, ut−1) π(Pt−1)dPt−1. (8)

The motion model p(Pt | Pt−1, ut−1) is defined as the state
transition equation assuming the state is affected by a
known Gaussian noise vt−1. The update stage consists of
obtaining the measurements mt and using it to update the
a priori state estimate π(P̂t). The posteriori density of the
current state is given as

π(Pt) = α p(mt | Pt)π(P̂t). (9)

The likelihood function p(mt | Pt) is defined by the system
measurements. It is affected by known Gaussian noise n.
One can note that the measurements play the key role in
the update stage.

Therefore, starting from initial belief or a given knowledge
about the system state, we have a recursive estimator
of the state of the system that is partially observable.
To implement Equation (7), we need to know the three
distribution functions: the probability p(Pt | Pt−1, ut−1),
the initial belief π(P0), and the probability p(mt | Pt). The
first one is the motion model of the system. The probability
p(mt | Pt) is the sensor (measurement) model. One can
note that the two models p(Pt | Pt−1, ut−1) and p(mt | Pt)
are time invariant and they do not depend on the specific
time t. We will see in the next section how particle filters
can be used to implement the recursive update equation
given in Equation (7).

The sequential importance resampling (SIR) algorithm is a
popular particle filtering algorithm: this approximates the
filtering distribution p(Pt|m0, . . . , mt) by a weighted set of
particles:

{(w(i)
k , P(i)

t) : i = 1, . . . , M}. (10)

The importance weights w(i)
t are approximations of

the relative posterior probabilities (or densities) of the

particles such that ∑M
i=1 w(i)

t = 1.

Since particle filters estimate an approximation of the
state vector, it is very important to address the issue
of its convergence with the true solution. More
specifically, under what conditions is this convergence
valid? An extensive treatment of the currently existing
convergence results can be found in the excellent survey
paper [23], where the authors consider stability, uniform
convergence, central limit theorems and large deviations.
The previously shown results prove the convergence
of probability measures yet they only treat bounded
functions, effectively excluding the most commonly used
state estimate - the mean value. Later, in [24, 25], they
prove the convergence of the particle filter for a somewhat
general class of unbounded functions in the sense of
Lp-convergence for an arbitrary p ≥ 2, applicable in many
practical situations.

SIR filters with transition prior as importance function, are
commonly known as ’bootstrap filters’ or ’condensation
algorithms’. Other alternative varieties to particle filter
are: Sequential importance sampling (SIS Gaussian
particle filters, unscented particle filters, Monte Carlo
particle filters and Gauss-Hermite particle filters. SIS is the
same as SIR, but without the resampling stage.

3.3 Motion Model: Prediction Stage

Consider a world frame F0 attached to the initial camera
frame. This frame is considered fixed and all other frames
will be defined with respect to it. Let the vector:

P =

(
t
q

)
= (tX , tY , tZ, q1, q2, q3, q4)

T (11)

be the pose vector that represents the motion of the camera,
where P is the pose vector of the camera frame related
to a reference frame. In addition, let t = (tX , tY , tZ)

T

be the translation vector and q = (q1, q2, q3, q4)
T be

the rotation vector represented by the quaternion of the
current camera frame. The translation and rotation are
expressed in the initial camera frame, which is the world
frame. One can note that the quaternion parametrization
of the rotation requires a normalization step at each time
iteration to ensure that it corresponds to the real rotation.
A true rotation satisfies:

q2
1 + q2

2 + q2
3 + q2

4 = 1. (12)

Let us recall from Eq (7) that our aim is to compute
the posterior p(Pt | mt). The probabilistic transition
state model p(Pt | Pt−1, ut−1) is considered such that the
prediction equation is:

Pt = Pt−1 + ∆Pt. (13)

The quantity ∆Pt characterizes the motion model of the
system. The smooth motion assumption is valid during
the motion of the visual servoing system. Indeed, we
choose the constant velocity model. This assumes that

Int J Adv Robot Syst, 2014, 11:177 | doi: 10.5772/589284

the camera travels at a constant velocity between any two
time iterations or steps. In addition, the visual servoing
controller produces a camera velocity at the current time
step that is independent of the velocity at the previous time
moment.

However, the velocity vector is still affected by noise and
it needs to be augmented in order to set the state vector.
Augmenting the velocity vector V = (vT , wT)T with the
pose vector, the state vector becomes:

P =
(

tT qT vT wT)T . (14)

The change in the state vector is written as:

∆Pt =
(

∆tvT ∆t∆qT 0T 0T)T . (15)

The vector ∆q is a function of the Cartesian velocity
computed by the visual servoing controller. To compute
the vector ∆q, we need to transform the changes in the
rotation motion, i.e., the rotational velocity, from the Euler
angles representation wT = (wx, wy, wz) to the quaternion
representation ∆qT = (q̇1, q̇2, q̇3, q̇4). We can write ∆q as
follows:

∆q =
1
2

W.q =
1
2




0 −wx −wy −wz
wx 0 −wz wy
wy wz 0 −wx
wz −wy wx 0







q1
q2
q3
q4


 , (16)

where the matrix W is the transformation of the Euler
rotation velocity parametrizations to the quaternion
parametrizations.

The corruption of the velocity is modelled by the vector
n = (nT

v , nT
w), which is a zero mean Gaussian noise. Hence,

the total motion model of the state vector is written as:

Pt = Pt−1 + ∆Pt +N . (17)

Pt = Pt−1 + ∆Pt +




nv∆t
f (q, nw)∆t

nv
nw


 , (18)

where f (q, nw) is the noise affecting the rotational velocity
represented using quaternion parametrizations. Note that
we use in the prediction stage the a priori estimate of the
velocity vector V given as the velocity signal produced by
the visual controller.

3.4 Measurement Model: Update Stage

The measurement model considers the image points as
image measurements. The measurement model is the
epipolar constraint between two views. The essential
matrix between two views can be written as a function of
the rotation and translation between these two views as
follows [15, 26]:

E = [t]×R. (19)

Since the camera is calibrated, the fundamental matrix
F is computed from the essential matrix E using F =
K−TEK−1, which relates two image points, expressed in
the pixel coordinates in the two views, as follows:

[u2, v2, 1] F [u1, v1, 1]T = 0. (20)

Figure 2. Drawing M pose particles between the two views gives
M epipolar lines which correspond to image point m1. In the
figure, the solid drawn epipolar line l̂2 - corresponding to image
point m1 and pose particle Pi - is the nearest epipolar line with
distance di to the image measurement m2. Thus, the pose particle
P̂i is the most likely candidate to be the best estimate of the relative
pose between the two views.

The above equation is called the ’epipolar constraint’
between two images. The above equality holds only in
cases where the fundamental matrix has been correctly
computed. Geometrically, this equality means that the
image point m2 = [u2, v2, 1]T in the second image belongs
to the epipolar line:

l2 = Fm1 = F [u1, v1, 1]T . (21)

This line l2 corresponds to the image point m1 =
[u1, v1, 1]T from the first image. The image measurement
is considered correctly extracted up to this moment. Later,
robustness techniques will be introduced to adapt to noisy
image measurements. If we have an incorrect estimate
of the fundamental matrix F̂ , the right-hand side of
Equation (20) is not zero, and is denoted as:

d = mT
2 F̂m1 = dist2(m2, F̂m1). (22)

Here, the value of this function h is the distance between
the image point m2 = [u2, v2, 1]T and the epipolar line l2
produced by substituting F̂ in equation (21) as it is shown
in Fig 2.

The objective of the measurement model is to evaluate the
hypotheses that represent the a priori motion distribution
Pt+1/t. This distribution is computed using the Bayesian
particle filter and the transition equation explained in
the last subsection. The distribution is represented
by M equally weighted particles π(Pt) ≈ {Pi

t , wi
t =

1/M}M
i=1 These particles are evaluated using the epipolar

constraints. Drawing M pose particles from the priority
distribution given in (18) gives M a rigid transformation
{Ti = [Ri, ti]}M

i=1. Here, the samples Ri are computed from
the quaternion vector q.

A set of M fundamental matrices {F}M
i=1, corresponding

to the pose particles that represent the motion distribution,
are computed using Equations (19). For a given image
point m1 = (u1, v1, 1)T in the first image, there are M
epipolar lines {li

2}M
i=1 in the current image. Let us denote

the distances {hi
n}M

i=1 as the image distance between the
image point m2n and the epipolar line li

2n corresponding

Abdul Hafez Abdul Hafez and Enric Cervera: Particle-filterbased Pose Estimation
from Controlled Motion with Application to Visual Servoing

5

to the image point m1n and the pose sample Pi. Here,
n = 1, . . . , N, where N is the number of image points.

The weight w∗(i) for each particle is computed as
proportional to the following likelihood function:

w∗(i) ∼ p(m | Pi) = exp
(

Di = −ΣN
n=1 di

n

)
, (23)

where N is the number of the image features. The
above measurement (likelihood) function is selected in the
simplest form. It is the relationship between the image
measurements and the epipolar line in the current view,
corresponding to the image measurement in the initial
view. The larger the summation ΣN

n=1 hi
n, the further the

pose sample is from the correct pose value. Indeed, the

weight w∗(i) ∼ p(m | Pi) = exp
(

Di = −ΣN
n=1 hi

n

)
is

smaller. Similarly, if the summation is smaller then the
pose sample is nearer, and the weight is larger.

Since the weight factors form a distribution, they need to
be normalized. The normalized weights wi

t are given as:

wi = w∗(i)/
M

∑
i=1

w∗(i). (24)

These weights w∗(i)
t are the likelihoods of the samples Pi

with respect to the image measurement m. The resulting
distribution {Pi

t , wi
t}M

i=1 needs to be re-sampled to avoid
the degenerate case. Details about resampling techniques
can be found in [19]. The maximum likelihood sample is
given as:

P̄ = arg max
Pi

{p(mt | Pi)}. (25)

The state vector, i.e., the pose vector Pt|t, is updated at time
t as the centre of gravity of the sample cloud, which is
given as Pt|t = ∑M

i=1 wiPi. Some other methods that update
the state vector by that sample that has the maximum
likelihood or weight. This sample is precisely that given
in Equation (25).

The geometrical representation of the particles of the pose
vectors and the corresponding epipolar lines with respect
to image point m1 is given in Figure 2.

At each iteration, the estimated pose is used to estimate
the 3D coordinates of the point features, as we have
seen in Section 2 and particularly in Equation (2). The
pose estimate along with the depth of features may be
used in the position-based, image-based and hybrid visual
servoing control laws. The use of the pose estimate and the
depth estimate for visual servoing is discussed in the next
section.

4. Model-free 3D Visual Servoing

The camera pose alignment problem can be presented
as a minimization problem of a suitable hybrid 2D/3D
cost function. The positioning task is to move the robot
end-effector from an initial pose P ∈ R3 × SO(3) to reach
a desired pose P∗. In other words, the problem is to
minimize an error vector e(s) of the visual features s(P)
by finding a vector ∆P that minimizes a cost function
E(s(P)). Viewing the problem as a nonlinear least

Figure 3. The current and desired 3D feature vectors: (a) our
model-free method, s3D(P) = [C0

TC , C0
(uθ)C]

T , and (b) the
classical model-based method, s3D(P) = [C∗

TC , C∗
(uθ)C]

T

squares minimization problem allows us to formulate the
following cost function:

E(s(P)) =
1
2

e(s)Te(s). (26)

where:
e(s) = (s(P)− s(P∗)). (27)

To minimize the cost function, Gauss-Newton
minimization is used. The required change in the
pose is thus:

V = ∆P = −λJ+(P)e(s), (28)

where ∂E(s(P))
∂P = J(P) and the matrix

J+(P) =
(
(JT(P)J(P)

)−1
JT(P)

is the pseudo-inverse of the matrix J. This method is
widely used in robot control and visual servoing [27, 28].

3D visual features, such as position and orientation, can be
part of the feature vector s3D(P) = [Tx, Ty, Tz, uθ]T . Here,
the notion uθ is the Euler axis/angle parametrization [15]
of the rotation. The desired features are s3D(P∗) =
[T∗, uθ∗]T . Hence, we can write:

E3D(s(P)) =
1
2

ep(P)Tep(P), (29)

where:
ep(P) = s3D(P)− s3D(P∗). (30)

Let us select the vector of 3D features as s3D(P) =

[C0
TC, C0

(uθ)C]
T , i.e., the relative pose between the

current camera frame FC and the initial one FC0 .
The desired features can be set here as s3D(P∗) =

[C0
TC∗ , C0

(uθ)C∗]T , i.e., the relative pose between the
desired camera frame FC∗ and the initial one FC0 . The set of
desired features s3D(P∗) can be computed once in advance
of the servoing process as an offline step. Decomposing the
homography or the essential matrix [15, 29] produces an
estimate of the scaled translation C0

TC∗ and the rotation
C0
(uθ)C∗ . One might note that this selection of features,

i.e., a 3D pose vector within PBVS, does not require the 3D
model of the target object.

Int J Adv Robot Syst, 2014, 11:177 | doi: 10.5772/589286

We use the pose estimation algorithm presented in the
previous section to estimate the camera motion between
the initial and current images. This relative pose is nothing
but the feature vector s3D(P). The a priori camera motion
distribution is computed using the velocity control signal
sent by the visual controller to the robot joint controller.

The Cartesian Jacobian Jp(P) is given in this case by:

Jp(P) =

[
C0

RC 0(3×3)

0(3×3)
C0
(Lw)C

]
, (31)

while the error function is:

ep(P) = s3D(P)− s3D(P∗) =

[
C0

TC −C0
TC∗

C0
(uθ)C − C0

(uθ)C∗

]
. (32)

One might note that the 3D feature used for this
position-based visual servoing are different from previous
algorithms that have appeared in the literature. We
use the relative pose between the current and the initial
camera frames, while earlier algorithms use the relative
pose between the current and the target camera frames.
Figure 3(a) illustrates the 3D feature s3D(P) used in our
algorithm, while the earlier feature vector is shown in
Figure 3(b). This new choice of features is justified,
since our proposed pose estimation algorithm estimates
the relative pose between the initial and current camera
poses. In fact, the pose estimation algorithm accumulates
the velocities and recursively corrects them at every time
instance using the particle filter.

5. Experimental Results

In this section, we present the results from two
experiments. First, we present the results from testing
our algorithm regarding pose estimation for a specific
controlled motion. Then, another experiment is carried
out using the position-based visual servoing algorithm
presented in this paper that utilizes our proposed pose
estimation algorithm. The task here is pure rotation about
the camera optical axis. This is one of the most challenging
tasks in the visual servoing literature [30].

5.1 Results for Pose Estimation

The algorithm is tested using the real robot setup available
at the Robotic Intelligence Lab of Jaume-I University,
Spain. The robot is a PA-10 7-DOF manipulator arm
manufactured by Mitsubishi. An external view of the
setup is shown in Figure 6. A single IEEE-1394 camera
is attached to the end-effector. The camera has been
calibrated by imaging a planar calibration grid from 20
viewpoints over the hemisphere and using the camera
calibration toolbox for MATLAB [31] to compute the
intrinsic and extrinsic parameters. Image processing and
robot control are performed by the ViSP library [32],
while the particle filter is implemented with the Bayesian
Filtering Library [33].

The target consists of four white circles of 1 cm radius
over a black background arranged in a square with 15 cm

sides. The feature points are computed as the first-order
moments (centroids) of the segmented circles. It has been
shown that the Jacobian matrix related to such coordinates
is a generalization of the Jacobian matrix related to the
coordinates of a point [34]. Such an approximation is not a
problem since robustness with respect to modelling errors
is a well-known feature of closed-loop visual servoing.

In this experiment, the robot runs a specific controlled
motion task. The task consists of a considerable amount
of translation and rotation. It is complex enough to show
the efficiency of the filter in estimating rotational and
translational motion as well as the scale of the translational
motion. The algorithm runs independently to estimate
the actual motion of the arm. We measured the time
elapsed from frame acquisition to the filter update during
the experiment. This time is measured in microseconds,
averaging slightly less than 70 ms; thus, the frame rate is
about 15 frame/second (fps). Methods that use VVS for
pose estimation, like [12, 35, 36], have reported the same
frame rate of 15 fps. The filter prediction and update stages
take approximately 35 ms. The remaining time is spent
for feature extraction and image acquisition. This time is
slightly less than that reported in [9] for the EKF, i.e., 36
ms, but much less than the iterative extended Kalman filter
(IEKF) and the IAEKF, i.e., 62 ms and 78 ms, respectively.
However, it was reported in [9] that the IEKF and the
IAEKF produce a similar error to ours, i.e., within scale
of one millimetre and 0.01 radians; meanwhile, the error
produced by the EKF is much larger, i.e., within a scale of
10 millimetres and 0.1 radians.

Figure 4 shows a comparison of the actual motion of the
robot measured by the joint angles with the robot motion
estimated using our particle filter algorithm. The plots in
column (a) show the motion measured by the robot joints.
Column (b) represents the motion which is estimated by
the filter. Column (c) shows the difference error between
the robot motion measured by the robot joints and the
motion estimated by the proposed filter. Column (d)
shows the motion produced by simply accumulating the
velocity signal produced by the visual controller without
correction. The translational motion is in the upper row
while the rotational motion is in the lower row. The plots
in (c) show a small amount of error between the actual
measured robot motion and the estimated motion using
the filter. Figure 5 shows the camera movement in the
3D space for the robot motion, the filter estimate and the
accumulated velocity.

Looking at the results reported in Figure 4, one can see
that the error is bounded within an acceptable range.
The error in the linear motion is on average about 1-2
millimetres. In addition, one can see the difference
between the commanded motion, i.e., the accumulated
velocity signal in (d) and the actual motion measured
by the robot joints. The amount of rotational motion
produced by accumulating the velocity signal is almost
-0.47 radians. In contrast, the amount of rotational motion
estimated by the filter is -0.55 radians. This gives a result
with an error of 0.08 radians drift motion by the robot,
while the error in rotational motion between the filter
estimate and actual robot motion is 0.015 radians. One

Abdul Hafez Abdul Hafez and Enric Cervera: Particle-filterbased Pose Estimation
from Controlled Motion with Application to Visual Servoing

7

0 200 400 600
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Iterations (15 fps)

Li
ne

ar
 m

ot
io

n
in

 (m
et

er
)

Robot motion

Vx

Vy

Vz

0 200 400 600
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Iterations (15 fps)

Li
ne

ar
 m

ot
io

n
in

 (m
et

er
)

Filter estimate

Vx

Vy

Vz

0 200 400 600
−6

−4

−2

0

2

4

6

8
x 10−3

Iterations (15 fps)

Li
ne

ar
 m

ot
io

n
er

ro
r i

n
(m

et
er

)

Robot−Filter

Vx

Vy

Vz

0 200 400 600
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Iterations (15 fps)

Li
ne

ar
 m

ot
io

n
in

 (m
et

er
)

Accumulated velocity

Vx

Vy

Vz

0 200 400 600
−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

Iterations (15 fps)

R
ot

at
io

na
l m

ot
io

n
in

 (r
ad

ia
n)

Wx
Wy
Wz

0 200 400 600
−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

Iterations (15 fps)

R
ot

at
io

na
l m

ot
io

n
in

 (r
ad

ia
n)

Wx
Wy
Wz

0 200 400 600
−0.02

−0.01

0

0.01

0.02

0.03

0.04

Iterations (15 fps)

R
ot

at
io

na
l m

ot
io

n
er

ro
r i

n
(ra

di
an

) Wx
Wy
Wz

0 200 400 600
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

Iterations (15 fps)

R
ot

at
io

na
l m

ot
io

n
in

 (r
ad

ia
n)

Wx
Wy
Wz

(a) (b) (c) (d)

Figure 4. Comparison of the actual robot motion with the estimated robot motion using the particle filter during a specific motion
command given to the robot testing the pose estimation accuracy. The translational motion is at the top while the rotational motion is at
the bottom. The plots in column (a) show the motion measured by the robot joints. Column (b) represents the filter estimate of the motion.
Column (c) shows the difference between the robot motion estimated by the robot joints and the motion estimated by the proposed filter.
The small error shown in (c) reflects the accuracy of the filter. Finally, column (d) shows the motion resulting by the accumulation of the
velocity signal alone. One can clearly see here that the considerable amount of drift motion added by the arm joints with respect to the
velocity control signal is corrected by the filter.

−0.005 0 0.005 0.01 0.015 0.02 0.025 −0.02

0

0.02

0

0.05

0.1

0.15

0.2

0.25

V
y
 (meter)

V
x
 (meter)

Camera movement in the 3D space

V z (m
et

er
)

Accumulated velocity
Filter estimate
Robot motion

Start

End

Figure 5. The camera motion in the 3D space

Figure 6. External view of the experimental setup

can clearly see here that the considerable amount of drift
motion added by the arm joints with respect to the velocity
control signal is corrected by the filter. This proves the
efficiency of the proposed filter.

One more thing to note from the figures is that the error
in translational motion is relatively less erroneous than for
the rotational motion. This is the reason why we focus on
rotational motion in the next experiment, i.e., 3D visuals
based on the proposed pose estimation method. In the
next subsection, a visual servoing experiment is presented.
The selected task is pure rotation around the optical axis,
since it is perceived to be the most critical task in the visual
servoing literature [30].

5.2 Results from Visual Servoing

As we have shown earlier in this paper, the objective of
this work is to estimate, in real-time, the 3D parameters
(here, the camera pose) to be used by the visual servoing
algorithm. In the following, we present a model-free visual
servoing example using the pose estimation algorithm
which was presented in this paper.

The proposed task is one of the most challenging in
visual servoing, i.e., a rotation of 90◦ about the camera’s
optical axis. The servoing process aims to minimize the
error between the initial current camera pose and the
initial desired camera pose. The proposed visual servoing
control law computes this pose error and then produces a
velocity control signal proportional to this error. This error
is equal to the relative pose between the initial and desired

Int J Adv Robot Syst, 2014, 11:177 | doi: 10.5772/589288

0 100 200 300 400 500 600

0

50

100

150

200

250

300

350

400

450

Image points

Pixels

P
ix

e
ls 0 100 200 300 400 500 600 700 800 900 1000

−1

−0.5

0

0.5

1

Iterations (15 fps)

L
in

e
a
r

v
e
lo

c
it
y
 i
n
 m

/s
e
c Vx

Vy
Vz

0 100 200 300 400 500 600 700 800 900 1000
−0.1

−0.05

0

0.05

0.1

Iterations (15 fps)

A
n
g
u
la

r
v
e
lo

c
it
y
 i
n
 r

a
d
/s

e
c

Wx
Wy
Wz

(a) (b)

Figure 7. Trajectories in the image space in (a) and the screw velocity in (b) of the vision control algorithm based on the epipolar pose
estimation algorithm. The task is 90◦ rotation about the optical camera axis. The linear velocity control signal is null and is produced by
zero estimated translation, which is identical to the real case. This proves the efficiency of the filter. Similarly, the rotation motion is pure
rotation about the camera’s optical axis. This reflects the fact that both the rotation and translation estimation processes are efficient.

(a) (b) (c) (d)

Figure 8. Comparison of the actual robot motion with the estimated motion using a particle filter and the accumulated velocity during
the visual servoing task to show the accuracy of the pose estimation algorithm using our proposed filter. The plots in column (a) show the
motion measured by the robot joints. Column (b) represents the filter estimate of the motion. Column (c) shows the difference between
the robot motion estimated by the robot joints and the motion estimated by the proposed filter. The small error shown in (c) reflects the
accuracy of the filter. Finally, column (d) shows the motion resulting from accumulating the velocity signal alone. One can clearly see here
that the considerable amount of drift motion added by the arm joints with respect to the velocity control signal is corrected by the filter.

views at the initial time. This pose is partially estimated
using the homography matrix, which decomposed to
obtain the rotation ∗R0 and the scaled translation ∗t0
between the two initial and desired views.

The role of our pose estimation algorithm is to compute
the actual motion of the arm. This is the relative pose
between the initial and current views. This is represented
by the rotation iR0 and the translation i t0. This computed
motion is used as the feature to control the robot motion

as indicated by the error function shown in Equation (32)
and Figure 3(a). One can note from Equation (32) that
the scale of translation in PBVS is not critical, since we
are interested in the direction of translation only, while
the scale of it is controlled by the remaining current error
ep(P) = s3D(P)− s3D(P∗). Hence, estimating the desired
initial camera pose up to the scaled translation is sufficient
to start the servoing process, hence moving the arm in the
proper direction.

Abdul Hafez Abdul Hafez and Enric Cervera: Particle-filterbased Pose Estimation
from Controlled Motion with Application to Visual Servoing

9

The selected servoing task is one of the most challenging
tasks in visual servoing, i.e., a rotation of 90◦ about the
camera’s optical axis. Based on the control law designed
in section 4, the performed motion should be pure rotation
about the Z axis, i.e., the camera’s optical axis with a zero
translation vector. The results from this visual servoing
experiment are depicted in Figure 7 and Figure 8. The
image trajectory of the features is shown in Figure 7(a).
The desired position of the features is marked by ’+’. The
velocity signal is shown in Figure 7(b). The linear velocity
is at the top while the rotational velocity is at the bottom.
The linear velocity control signal is null and is produced
by zero estimated translation, which is identical to the real
case. This proves the efficiency of the filter. Similarly,
the rotational motion is pure rotation about the camera’s
optical axis. This reflects the fact that both the rotation and
translation estimation processes are efficient.

The motion which is performed by the above visual
servoing task is depicted in Figure 8. The actual robot
motion measured by its joints in Figure 8(a) is compared
with the motion estimated by the filter in Figure 8(b). The
translation motion should be null, since the task is pure
rotation. Due to the error in the filter estimate, we can
see very small amounts of translational motion, but this
motion is small and insignificant. The error between the
filter estimate and the actual robot motion is shown in
Figure 8(c). In addition, the motion - which is produced by
simply accumulating the velocity - is shown in Figure 8(d).
A considerable amount of drift motion by the robot can be
seen by comparing (a) with (d). The commanded motion
is almost -0.9 radians while the robot has performed -1.57
radians, with a total drift motion of 0.67 radians. However,
the filter is efficiently able to estimate the motion with an
error bounded by 0.05 radians (a factor of 10).

The convergence of the visual servoing process as
indicated in Figure 7 and the error in the filter pose
estimate in Figure 8 prove the accuracy of the pose
estimation results. Once again, let us note here that a
considerable amount of drift motion added by the arm
joints with respect to the velocity control signal is corrected
by the filter.

6. Conclusions

This paper presents a probabilistic method for the
estimation of the current camera pose with respect to
its initial pose. The method uses a particle filter to
estimate the relative pose of the camera between the
initial and the current frames, while a two-view geometry
is used to estimate and reconstruct the 3D model of
the environment or the target object. Unlike previous
probabilistic methods, this work uses a priori knowledge
about the motion to include the amount of translation
in the state vector. This is useful in making the
method suitable for real-time applications, like visual
servoing. Consequently, model-free visual servoing can
be performed for image-based, position-based or hybrid
visual servoing.

7. Acknowledgements

This paper describes research done at the Robotic
Intelligence Laboratory. Support for this laboratory
is provided in part by Ministerio de Economia
y Competitividad (DPI2011-27846), by Generalitat
Valenciana (PROMETEOII/2014/028) and by Universitat
Jaume I (P1-1B2011-54).

8. References

[1] F. Chaumette and S. Hutchinson. Visual servo control,
part I: Basic approaches. IEEE Robotics and Automation
Magazine, 13(4):82–90, December 2006.

[2] A.H. Abdul Hafez and C.V. Jawahar. Visual servoing
by optimization of a 2D/3D hybrid objective function.
In IEEE Int. Conf. on Robotics and Automation, ICRA’07,
Roma, Italia, April 2007.

[3] A.H. Abdul Hafez, E. Cervera, and C.V. Jawahar.
Optimizing image and camera trajectory using on-line
boosting. In IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems, IROS’07, San Diego, CA, October 2007.

[4] A. Penate-Sanchez, J. Andrade-Cetto, and
F. Moreno-Noguer. Exhaustive linearization for
robust camera pose and focal length estimation. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
PAMI, 35(10):2387–2400, 2013.

[5] P. Do-Hwan, K. Jeong-Hoon, and H. In-Joong. Novel
position-based visual servoing approach to robust
global stability under field-of-view constraint. IEEE
Transactions on Industrial Electronics, 59(12):4735–4752,
2012.

[6] O. Tahri, H. Araujo, Y. Mezouar, and F. Chaumette.
Efficient decoupled pose estimation from a set of
points. In IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems, IROS’2013, Tokyo, Japan, November 2013.

[7] L. Deng, W.J. Wilson, and F. Janabi-Sharifi. Decoupled
EKF for simultaneous target model and relative pose
estimation using feature points. In 2005 IEEE
Conference on Control Applications, pages 749–754,
Toronto, Canada, August 2005.

[8] S.Y. Chen. Kalman filter for robot vision: A
survey. IEEE Transactions on Industrial Electronics,
59(11):4409–4420, 2012.

[9] F. Janabi-Sharifi and M. Marey. A Kalman-filter-based
method for pose estimation in visual servoing. IEEE
Trans. on Robotics, 26(5):939–947, October 2010.

[10] O. Tahri and F. Chaumette. Complex objects pose
estimation based on image moment invariants. In IEEE
Int. Conf. on Robotics and Automation, ICRA’05, pages
438–443, Barcelona, Spain, April 2005.

[11] E. Marchand and F. Chaumette. Virtual visual
servoing: a framework for real-time augmented reality.
Computer Graphics Forum, 21(3):289–298, September
2002.

[12] X. Gratal, J. Bohg, J. Romero, and D. Kragic.
Visual servoing on unknown objects. Mechatronics,
22(4):423–435, 2012.

[13] D.A. Forsyth, J. Haddon, and S. Ioffe. The joy of
sampling. International Journal of Computer Vision, 41(1
and 2):109134, 2001.

Int J Adv Robot Syst, 2014, 11:177 | doi: 10.5772/5892810

[14] G. Qian and R. Chellappa. Structure from motion
using sequential Monte Carlo methods. International
Journal of Computer Vision, 59(1):5–31, 2004.

[15] R. Hartley and A. Zisserman. Multiple View Geometry
in Computer Vision. Cambridge University Press,
second edition, 2003.

[16] M. Pupilli and A. Calway. Real-time camera
tracking using a particle filter. In British Machine
Vision Conference, BMVC’05, pages 519–528, Oxford,
September 2005.

[17] S. Thrun, W. Burgard, and D. Fox. Probabilistic
Robotics. The MIT Press, 2005.

[18] A. Doucet. On sequential simulation-based
methods for Bayesian filtering. Technical Report
CUED/F-INFENG/TR. 310, Cambridge University
Department of Engineering, 1998.

[19] S. Arulampalam, S. Maskell, N. Gordon, and
T. Clapp. A tutorial on particle filters for on-line
non-linear/non-Gaussian Bayesian tracking. IEEE
Transactions on Signal Processing, 50(2):174–188,
February 2002.

[20] R.E. Kalman and B. Schiele. A new approach to linear
filtering and prediction problems. Transactions of the
ASME - Journal of Basic Engineering, 82:35–45, 1960.

[21] M. Vihola. Random Sets for Multitarget Tracking
and Data Fusion. PhD thesis, Tampere University of
Technology, Tampere, 2004.

[22] A. Papoulis. Probability, Random Variables and
Stochastic Processes. McGraw-Hill series in electrical
engineering, New York, 2nd edition, 1984.

[23] D. Crisan and A. Doucet. A survey of
convergence results on particle filtering methods for
practitioners. IEEE Transactions on Signal Processing,
50(3):736âĂŞ-746, 2002.

[24] X.-L. Hu, T. B. Schön, and L. Ljung. A general
convergence result for particle filtering. IEEE
Transactions on Signal Processing, 59(7):3424–3429, July
2011.

[25] X.-L. Hu, T. B. Schön, and L. Ljung. A basic
convergence result for particle filtering. IEEE
Transactions on Signal Processing, 56(4):1337–1348, April
2008.

[26] O. Faugeras. Three-Dimensional Computer Vision: A
Geometric View point. MIT Press, Cambridge, MA, USA,
1993.

[27] B. Espiau, F. Chaumette, and P. Rives. A new
approach to visual servoing in robotics. IEEE Trans.
on Robotics and Automation, 8(3):313–326, June 1992.

[28] E. Malis. Improving vision-based control using
efficient second-order minimization techniques. In
IEEE Int. Conf. on Robotics and Automation, ICRA’04,
New Orleans, USA, April 2004.

[29] E. Malis, F. Chaumette, and S. Boudet. 2 1/2 D visual
servoing. IEEE Transactions on Robotics and Automation,
15(2):238–250, April 1999.

[30] F. Chaumette. Potential problems of stability and
convergence in image-based and position-based visual
servoing. In D. Kriegman, G . Hager, and A.S. Morse,
editors, The Confluence of Vision and Control, pages
66–78. LNCIS Series, No 237, Springer-Verlag, 1998.

[31] J.Y. Bouguet. Camera calibration toolbox for
MATLAB, 2008.

[32] E. Marchand, F. Spindler, and F. Chaumette. Visp
for visual servoing: a generic software platform with
a wide class of robot control skills. IEEE Robotics and
Automation Magazine, 12(4):40–52, December 2005.

[33] K. Gadeyne. BFL: Bayesian Filtering Library. http:
//www.orocos.org/bfl, 2001.

[34] F. Chaumette. Image moments: a general and useful
set of features for visual servoing. IEEE Trans. on
Robotics, 20(4):713–723, August 2004.

[35] X. Gratal, J. Romero, and D. Kragic. Virtual visual
servoing for real-time robot pose estimation. In 18th
IFAC World Congress, Milano, Italy, August 2011.

[36] A.I. Comport, E. Marchand, M. Pressigout, and
F. Chaumette. Real-time markerless tracking for
augmented reality: the virtual visual servoing
framework. IEEE Trans. on Visualization and Computer
Graphics, 12(4), July 2006.

Abdul Hafez Abdul Hafez and Enric Cervera: Particle-filterbased Pose Estimation
from Controlled Motion with Application to Visual Servoing

11

