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 

 

Abstract— We report on deterministic femtosecond multi-

filamentation in fused silica by encoding a diffractive microlens 

array into a spatial light modulator.  The efficiency and focal 

length of each microlens are modified through the addressing 

voltage. This allows for a precise control on the energy coupled to 

the filaments thus obtaining a homogenized supercontinuum 

pattern from an inhomogeneous irradiance input distribution. 

Slight changes in the focal length of the microlenses allow for  

independent tailoring of the supercontinuum spectra. 

   

 
Index Terms—Optical pulse shaping, optical arrays, 

supercontinuum generation.  

 

I. INTRODUCTION 

ILAMENTATION [1] is a regime of nonlinear propagation 

where the equilibrium between the self-focusing process, 

caused by Kerr effect, and the plasma induced defocusing, 

leads to the self-guiding of light for distances considerably 

larger than the Rayleigh length [2]. This phenomenon can 

eventually give rise to an extreme spectral broadening, ranging 

from the ultraviolet to the infrared regions, termed 

supercontinuum (SC) generation [3, 4]. Currently, the ongoing 

research in filamentation ranges from the modeling of the 

process to the generation of filaments with high flexibility for 

many different applications. 

 Spectral control of the SC is desired in applications like 

femtosecond time-resolved spectroscopy [5], spectral 

interferometry [6], or in optical parametric amplifiers [7]. 

When the laser power is much higher than the critical power 

for self-focusing, the beam undergoes a break-up into multiple 

filaments. It has been demonstrated that multiple filamentation 
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(MF) originates from transverse modulation instabilities [8, 9], 

thus producing a random distribution of filaments. Gaining 

control over the spatial filaments distribution is an important 

task in applications such as filamentation-based tumor 

treatment [10], a novel technique which has been recently 

proposed for cancer therapy. In such case, careful 

management of both the position and the energy of the 

filaments, is decisive to control the radiological dose and 

avoid damage of the adjacent healthy tissue. Another example 

is the inscription of optical waveguides in dielectrics by direct 

irradiation with femtosecond pulses that requires the control of 

the weak plasma generated in the bulk [11]. Although these 

applications would benefit from MF in terms of speed, they 

demand for flexible setups that allow for a precise control of 

the parameters governing the process, such as the energy or 

the numerical aperture. 

Up to now, several strategies have been proposed for 

deterministic MF: amplitude modulation by a periodic mesh 

[12, 13], nonlinear interaction of two overlapping beams [14], 

Dammann lenses [15] and wavefront shaping [16], among 

others. In this sense, focusing the beam by a microlens array is 

an attractive approach. Watanabe et al. were the first to report 

a SC array by focusing femtosecond laser pulses into a liquid 

with a microlens array [17]. Cook and co-workers 

demonstrated the generation of coherent continuum filaments 

in B270 glass by using an array of diffractive microlenses 

(DMLs) [18]. More recently, Camino et al.  [19] proposed 

deterministic MF in fused silica by adjusting the diffraction 

pattern generated by a loosely focusing 2D periodic lens array.  

However, it is still necessary to gain further control over the 

individual filaments, in terms of energy and spectrum, if real 

industrial, scientific or biomedical applications want to be 

developed.  

 Current megapixel spatial light modulators (SLMs) offer the 

possibility for versatile and fine control of light beams at the 

micrometric scale. The use of SLMs has benefited a wide 

range of applications in adaptive optics [20, 21], scattering 

media [22] or optical microscopy [23]. In this Letter, we 

report active control of MF in a solid medium by codifying a 

diffractive microlens array in a phase-only SLM. We 

demonstrate for the first time, to our knowledge, precise 

control on the energy coupled to each one of the filaments thus 

obtaining a homogeneous SC beam. This is achieved by 

changing independently the efficiency of each microlens. 

Moreover, the spectrum of the generated SC was tuned by 

slightly changing the focal length of the lenses, in agreement 

with previous observations [24].  

Controlled multi-beam supercontinuum 

generation with a spatial light modulator 
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II. EXPERIMENT SETUP 

A scheme of the experimental setup is shown in Fig. 1. For 

the experiment we used a Ti:Sapphire femtosecond laser that 

emits linearly polarized pulses of about 30 fs (full width half 

maximum in intensity), centered at λ0=800 nm, with 50 nm of 

spectral bandwidth and a repetition rate of 1 kHz.  

 

 

 

 

 

The beam was incident on a reflective liquid crystal on 

silicon SLM (Holoeye Pluto) after reflecting on a beam 

splitter. The SLM has 1920×1080 pixels with 8 μm of pixel 

pitch. The reflected beam from the SLM passed through the  

beam splitter, and then, a 1× telescope  composed by a pair of 

lenses L1 and L2 of focal lengths f1=f2=100 mm, imaged the 

SLM at the focal plane of L2 (labelled as SLM’ in Fig. 1).  

The phase encoded onto the SLM consisted of an array of 

3x3 lenses (1.73x1.73 mm
2
 each). The phase for each DML 

corresponds to that of a kinoform profile given by [15]: 

 𝜑𝑗(𝑟) = 𝑚𝑜𝑑 [
𝜋𝑟2

𝜆0𝑓𝑗
, 2]   (1) 

where j-index refers to each DML, 0 is the central 

wavelength of the incident pulse, fj is the focal length, r is the 

radial coordinate from the center of the j-th lens, and the 

function mod(x, y) gives the remainder on division of x by y. 

This phase ranges from 0 to 2. In order to gain control over 

the energy coupled in this focus for each DMLs Eq. (1) is 

multiplied by j. The parameter j varies from 0 to 1 and 

allows for the control of the diffraction efficiency of the lens 

[30, 31]. In this way, the new encoded phase is    

𝛹𝑗(𝑟) = 𝛼𝑗𝜑𝑗(𝑟)    (2) 

For j=1 nearly all the light reflected in the corresponding j-

th lens of the array is directed into the focus. However, when  

j1 the energy coupled to the main focus is reduced. 

The relation between the value of  and the corresponding 

efficiency  for the generated pattern is given by [25]: 

𝜂𝑗 = 𝑠𝑖𝑛𝑐2(𝛼𝑗 − 1)     (3) 

where  sinc(x)=sin(x)/ (x).  

The parameters of the codified microlens array were 

uniformly set to fj=60 mm and j=1 in the beginning. A fused 

silica sample (5x10x20 mm
3
, all faces polished to optical 

grade) was placed in such a way that the multiple beams 

entered through the 5 mm long face and focused inside the 

sample (see Fig. 1). The pulse energy, controlled by a variable 

attenuator, was carefully adjusted just above the threshold to 

the produce SC with the central beam. 

Note that, although sapphire is preferable in terms of 

stability and bandgap, the energy provided by our laser was 

not sufficient to generate a 9x9 array due to its larger SC 

threshold. 

At the rear face of the fused silica sample, the non-

converted infrared beam was removed by means of a band-

pass filter (FGB37, Thorlabs). The SC light was collected with 

a lens L3 (f3=100 mm) and projected onto a white screen. 

Images of the projected SC patterns were recorded with a 

CMOS camera (Canon EOS, 1100-D). Spectrum 

measurements of the SC patterns were taken by removing the 

white screen and placing a diffusing plate and a fiber coupled 

to a spectrometer (StellarNet Inc, CXR-SR-200) instead. The 

lateral profiles of the generated filaments were imaged 

through a f=60 mm lens onto a CMOS-based camera (uEye, 

IDS 1460-C). 

 

III. EXPERIMENTAL RESULTS 

 

Owing to the Gaussian distribution of our beam profile the 

energy is mainly concentrated on the center and, therefore, a 

different fraction of the incident energy will be delivered to 

the different microlenses (termed A, B….I, see Fig. 2.a).  As a 

consequence, the values of the efficiency parameters, j, are 

required to be determined in order to get a uniform 

distribution of the intensity for all the foci of the microlenses. 

In order to do that, we measured the threshold pulse energy 

(incident on the beam-splitter) for SC generation in each one 

of the 9 microlenses. The threshold is defined as the minimum 

pulse energy required to just start SC generation (detected 

with the spectrometer). The measured values ranged from 30 

J for the central microlens (E) to 160 J in the case of one of 

the external lenses (I). Please note that these values refer to the 

energy impinging the array, not a single lens. Due to the losses 

in the beam-splitter and in the SLM, we estimate a 10.5% of 

the total energy reaching the fused silica sample. From the 

threshold energies, the efficiency parameters were individually 

calculated as the rate 

𝛼𝑗 = 𝑈𝑗/𝑚𝑎𝑥(𝑈𝑗)    (4) 

and the obtained values were codified in the DLM.  

 In Fig. 2 b) we show the visible output signal projected on a 

screen for an input energy of 76 J with all the efficiency 

parameters set to j=1. As it can be seen in the figure, SC is 

produced only in the central and the four adjacent foci 

provided the energy delivered to the external lenses does not 

exceed the threshold. Moreover, the visible spectrum 

generated with the 5 central lenses was not identical as 

expected from the different intensities reached at their 

corresponding foci.  Then, we implemented in the DLM the j 

values obtained from Eq. 4 and we increased the input energy 

to 170 J. This value is slightly above the SC threshold to 

guarantee that no structural damage was inflicted upon the 

plate. Under this configuration, the energy delivered to all the 

foci was just above the SC threshold and a homogeneous 

Figure 1. Experimental setup. The input pulse is divided at the 55:45 beam 
splitter (BD: beam dumper) and reaches the SLM. The pattern generated by 

the microlens array is focalized in the fused silica (FS) sample. The exiting 

light is filtered out with a band-pass filter (BF) and collected with a lens and 
a diffusing plate (DP) into an spectrometer. 
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visible signal was generated (see Fig. 2c), both in the spectrum 

as in the conversion efficiency. An inspection of the fused 

silica plate revealed that no permanent damage was induced in 

the sample under these experimental conditions. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

So far, we have corrected the influence of spatial 

inhomogeneties of the incident beam in the intensity and 

spectrum of the SC via the parameters j. In a second set of 

experiments, we pursued control over the spectral properties 

of the so-generated beams. A direct way to do that is, for 

instance, increasing the incident pulse energy. However, in 

practical applications an increase in the input energy is 

undesirable because it could easily lead to a permanent 

damage in the sample [26]. Recently, it has been demonstrated 

[24] that when a femtosecond beam is focused with a 

diffractive lens, wavelength tunability in the SC signal can be 

achieved by simply changing the lens-sample relative 

distance. It was found that the depth at which the filament is 

formed is closely connected to the SC spectrum [27]. Based on 

this, the position of the filament, and thus the spectral content 

of the SC generated signal, could be controlled by slightly 

modifying the focal length of the DMLs and keeping the pulse 

energy constant. Obviously, when changing the focal length, 

the numerical aperture of the focusing beams is also slightly 

changed.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We implemented this idea in the SLM. The pulse energy 

was set to 200 J and the values of j were set to the 

computed values for foci homogeneization. Then, we codified 

in the DML phases corresponding to different focal lengths. 

As expected, the spectra of the generated SC changed in 

agreement with our expectations, as it can be seen in Fig. 3 b. 

As an example of the flexibility of our setup, we set different 

focal lengths for each row of lenses (i.e. fA=fB=fC=61 mm, 

fD=fE=fF=56.3 mm and fG=fH=fI=60 mm). The filaments 

produced inside the silica sample, moved accordingly (see Fig. 

3a). Moreover, the DMLs with the longer focal lengths (A-C) 

formed short filaments, clipped by the rear face of the sample. 

This is associated with spectra tuned towards the shortest 

wavelengths, which is in accordance with the observations in 

[26]. In contrast, for the shortest focal lengths (D-F), filaments 

developed slightly behind the front face. Under these 

conditions, three colored patters were observed at the output 

of the sample (see Fig. 3c).  

IV. CONCLUSION 

In conclusion, we have reported controlled MF in fused 

silica by encoding a DML array in a phase-only SLM for SC 

generation. We have demonstrated a precise and independent 

control on (i) the energy coupled to each of the filaments by 

means of the  parameter, and (ii) the spectrum of the 

generated SC light by changing the focal length of the DMLs. 

We believe that the results of these investigations can be 

useful in applications which demand for homogenized MF 

patterns and/or spectral tunability, including femtosecond laser 

inscription, time-resolved spectroscopy or tumor treatment.  
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