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Abstract

We propose a new constructive procedure to factorize the fundamental
real matrix of a linear system of differential equations as the product of the
exponentials of a symmetric and a skew-symmetric matrix. Both matrices
are explicitly constructed as series whose terms are computed recursively.
The procedure is shown to converge for sufficiently small times. In this
way, explicit exponential representations for the factors in the analytic
polar decomposition are found. An additional advantage of the algorithm
proposed here is that, if the exact solution evolves in a certain Lie group,
then it provides approximations that also belong to the same Lie group,
thus preserving important qualitative properties.
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MSC (2000): 15A23, 34A45, 65L99

1 Introduction

Given the non-autonomous system of linear ordinary differential equations

dU

dt
= A(t)U, U(0) = I (1)

with A(t) a real analytic N × N matrix, the Magnus expansion allows one to
represent the fundamental matrix U(t) locally as

U(t) = exp(Ω(t)), Ω(0) = O, (2)

where the exponent Ω(t) is given by an infinite series

Ω(t) =

∞∑
m=1

Ωm(t) (3)

∗Corresponding author. Email: ana.arnal@uji.es
†Email: Fernando.Casas@uji.es
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whose terms are linear combinations of integrals and nested commutators in-
volving the matrix A at different times [13]. The series converges in the interval
t ∈ [0, τ) such that

∫ τ
0 ‖A(s)‖ds < π and the sum Ω(t) verifies exp Ω(t) = U(t).

Different approximations to the solution of (1) are obtained when the series of
Ω is truncated, all of them preserving important qualitative properties of the
exact solution. Magnus expansion has been widely used as an analytic tool in
many different areas of physics and chemistry, and also numerical integrators
have been constructed which have proved to be highly competitive with other,
more conventional numerical schemes in terms of accuracy and computational
cost (see [2] and references therein).

Although the representation (2)-(3) and the approximations obtained when
the series is truncated has several advantages, it is not always able to reproduce
all the qualitative features of U(t). In particular, suppose that the matrix-
valued function A(t) is periodic with period T . Then the Floquet theorems
ensures the factorization of the solution as a periodic part and a purely ex-
ponential factor: U(t) = P (t) exp(tF ), where F and P are N × N matrices,
P (t+ T ) = P (t) for all t and F is constant. It is clear, then, that the Magnus
expansion does not explicitly provide this structure. In that case, however, it
is possible to reformulate the procedure so that both matrices P (t) and F can
be constructed recursively [4].

Another example concerns symplectic matrices. As is well known, the
most general 2N × 2N symplectic matrix M can be written as the prod-
uct of two exponentials of elements in the symplectic group Lie algebra as
M = exp(X) exp(Y ), and each of the elements is of a special type, namely
X = JSa and Y (t) = JSc, where J is the standard canonical matrix,

J =

(
ON IN
−IN ON

)
,

Sa is a real symmetric matrix that anti commutes with J and Sc is a real
symmetric matrix that commutes with J [8]. Since X is symmetric and Y is
skew-symmetric, notice that the factorization exp(X) exp(Y ) is a special type
of polar decomposition for the matrix M . According with this property, if A(t)
belongs to the symplectic Lie algebra sp(2N), i.e., it verifies ATJ + JA = O,
then the fundamental solution U(t) evolves in the symplectic group Sp(2N)
(i.e., UT (t)J U(t) = J for all t) and therefore admits a factorization

U(t) = exp(X(t)) exp(Y (t)), (4)

where X(t) = JSa(t) is a symmetric matrix and Y (t) = JSc(t) is skew-
symmetric. A natural question is whether the Magnus expansion can be adapted
to treat this problem in order to provide explicit analytic expressions for both
X(t) and Y (t), just as in the case of a periodic matrix A(t). More generally,
one might try to adapt the Magnus expansion to construct explicitly a polar
factorization of the form (4) for the fundamental matrix of (1). In other words,
the idea is then to build explicitly the solution of (1) as (4) with both matrices
X(t) and Y (t) constructed as series of the form

X(t) =
∑
i≥1

Xi(t), Y (t) =
∑
i≥1

Yi(t). (5)
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This issue is addressed in the sequel. More specifically, we present a procedure
that allows us to compute recursively Xi, Yi in terms of nested integrals and
nested commutators involving the matrix A(t). Moreover, these series are shown
to be convergent, at least for sufficiently small times. Thus, in the convergence
domain, we have explicit exponential representations for the factors H(t) and
Q(t) in the analytic polar decomposition of U(t):

U(t) = H(t)Q(t). (6)

As is well known, given an arbitrary time-varying nonsingular real analytic
matrix function U(t) on an interval [a, b] so that U(t), U̇(t) and U(t)−1 are
bounded, there exists an analytic polar decomposition (6), with Q(t) orthog-
onal, H(t) symmetric (but not definite) and both are real analytic on [a, b]
[15].

Polar decomposition of time-varying matrices has proved to be useful in
several contexts. Thus, for instance, it appears in numerical methods for com-
puting analytic singular value decompositions [15] and as a path to inversion of
time dependent nonsingular square matrices [10]. Polar decomposition is also
used in computer graphics and in the study of stress and strain in continuous
media [14]. Since both factors possess best approximation properties, it can be
applied in optimal orthogonalization problems [11].

Theoretical general results on decompositions of a time varying matrix U(t)
of class Ck can be found in [7], where sufficient conditions for existence of QR,
Schur, SVD and polar factorizations are given and differential equations for the
factors are derived.

The procedure we present here for computing the factorization (4) for the
fundamental matrix of (1) has several additional advantages. First, even when
the series are truncated, the structure of the polar decomposition still remains
for the resulting approximations. Second, the algorithm can be easily imple-
mented in a symbolic algebra package and may be extended without difficulty
to get convergent approximations to the analytic polar decomposition of a more
general class of nonsingular time dependent matrices and also of the exponential
of constant matrices. Third, if A(t) belongs to a certain matrix Lie subalgebra,
so that U(t) evolves in the corresponding Lie group, it provides approximations
in this Lie group, and thus they preserve important qualitative features of the
exact solution. The symplectic case considered before is a case in point here.
Fourth, if A(t) depends on some parameters, this procedure leads to approx-
imate factorizations to the exact solution involving directly these parameters,
which in turn allows one to analyze different regions of the parameter space
with just one calculation. In this sense, it differs from other more numeri-
cally oriented techniques for computing the polar decomposition existing in the
literature (e.g. [3, 10, 15]).

It is important to stress that the formalism proposed here is not specifically
designed to get efficient numerical algorithms for computing the analytic polar
decomposition of an arbitrary matrix U(t), but instead it is oriented to get a
factorization of the form (4) for the fundamental matrix of eq. (1) which could
be specially well adapted when the coefficient matrix A(t) involves one or more
parameters and belongs to some special matrix Lie subgroup.
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2 Constructing the exponential polar factorization

2.1 Equations satisfied by X(t) and Y (t)

The first step in the procedure is to establish the differential equations satisfied
by both X(t) and Y (t) in the factorization U(t) = eX(t)eY (t). This is done by
differentiating (4), taking into account the expression for the derivative of a
matrix exponential [2, 12]:

d

dt
exp(Ω(t)) = d expΩ(t)(Ω̇(t)) exp(Ω(t)) = exp(Ω(t)) d exp−Ω(t)(Ω̇(t)),

where

d expΩ(t)(Ω̇(t)) ≡
∞∑
k=0

1

(k + 1)!
adkΩ Ω̇. (7)

Here adA stands for the adjoint operator of A, which acts according to

adAB = [A,B], adjAB = [A, adj−1
A B], ad0

AB = B, j = 1, 2, . . . ,
(8)

where [A,B] = AB − BA denotes the commutator. After inserting the corre-
sponding expressions into (1) we get

d expX Ẋ eX(t)eY (t) + eX(t)d expY Ẏ eY (t) = A(t)eX(t)eY (t), (9)

or equivalently

e−X(t)
(
A(t)− d expX Ẋ

)
eX(t) = d expY Ẏ . (10)

In general, A(t) can be decomposed in a unique way into its symmetric and
skew-symmetric part:

A(t) = P (t) +K(t), where P (t) =
1

2
(A+AT ), K(t) =

1

2
(A−AT ).

If we denote by k the set of skew-symmetric matrices and by p the set of symmet-
ric matrices of a given dimension N , it is clear that the following commutation
relations hold for arbitrary elements in each set:

[k, k] ⊆ k, [k, p] ⊆ p, [p, p] ⊆ k.

Therefore, since Y and Ẏ are skew-symmetric, then d expY Ẏ ∈ k, and so the
left hand side of eq. (10) also belongs to k. We must analyze this term and
separate its symmetric contribution, which obviously has to vanish.

We first note that

e−X(t)A(t) eX(t) = e−adXA(t) = e−adXK(t) + e−adXP (t)

= cosh(u) (K)− sinh(u) (K) + cosh(u) (P )− sinh(u) (P )

=− sinh(u) (K) + cosh(u) (P ) (∈ p)

+ cosh(u) (K)− sinh(u) (P ) (∈ k)
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where u ≡ adX and the functions involving u have to be understood as formal
power series. On the other hand,

e−X(t)d expX Ẋ eX(t) = d exp−X Ẋ =
∞∑
j=0

(−1)j

(j + 1)!
adjXẊ

=

∞∑
p=0

(−1)2p

(2p+ 1)!
ad2p

X Ẋ +

∞∑
p=0

(−1)2p+1

(2p+ 2)!
ad2p+1

X Ẋ

=
1

u
sinh(u) (Ẋ) (∈ p)

+
1

u
(1− cosh(u)) (Ẋ) (∈ k)

In consequence,

− sinh(u) (K) + cosh(u) (P )− 1

u
sinh(u) (Ẋ) = O (11)

and finally we arrive at the differential equation satisfied by X:

Ẋ = −uK + u
cosh(u)

sinh(u)
P, X(0) = O. (12)

Observe that this equation only involves X(t). Explicitly, it reads

Ẋ = −adXK +
∞∑
k=0

22kB2k

(2k)!
ad2k

X P, X(0) = O, (13)

with Bj denoting the Bernoulli numbers [16].
In a similar way, we can obtain the equation satisfied by Y (t). Specifically,

by considering the projection of equation (10) into k one has

d expY Ẏ = cosh(u) (K)− sinh(u) (P ) +
cosh(u)− 1

u
Ẋ, (14)

where, as before, u ≡ adX . Inserting equation (11) into (14) results in

d expY Ẏ = K +
1− cosh(u)

sinh(u)
P (15)

and finally

Ẏ = d exp−1
Y

(
K +

1− cosh(u)

sinh(u)
P

)
, Y (0) = O, (16)

where

d exp−1
Y V =

∞∑
j=0

Bj
j!

adjY V ≡
adY

eadY − 1
V.

By considering the power series of the function (1−coshu)/ sinhu, we can write

Ẏ =

∞∑
j=0

Bj
j!

adjY

(
K − 2

∞∑
k=2

(2k − 1)Bk
k!

adk−1
X P

)
, Y (0) = O. (17)
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Notice that solving for Y (t) requires to previously compute X(t). As a matter
of fact, it can be shown that, unless A is a constant matrix, one cannot write a
differential equation for Y independent of X. In spite of that, in the sequel we
show that it is indeed possible to construct both X(t) and Y (t) as power series
by recurrence.

2.2 Constructing the series of X(t) and Y (t)

To solve equation (13), let us introduce a parameter ε > 0 and replace A(t) in
equation (1) by εA(t). Then, the corresponding decomposition (4) reads

U(ε, t) = eX(ε,t) eY (ε,t)

and the goal is to determine the matrices X(ε, t), Y (ε, t) perturbatively as an
infinite series in ε:

X(ε, t) =

∞∑
n=1

εnXn(t), Y (ε, t) =

∞∑
n=1

εnYn(t), (18)

so that we will recover the factorization (4) when ε = 1. The equation satisfied
by X(ε, t) is obviously

∂X

∂t
= −ε adXK +

∞∑
k=0

22kB2k

(2k)!
ad2k

X (εP ), X(ε, 0) = O. (19)

Now, applying the standard procedure of inserting the series (18) into equation
(19), working out the series adX and equating powers of ε (see e.g. [5] for more
details), we finally arrive at

Ẋ1(t) = P (t) (20)

Ẋn(t) = −adXn−1(t)K(t) +

n−1∑
j=2

cj
∑

k1+···+kj=n−1

k1≥1,...,kj≥1

adXk1
(t) · · · adXkj

(t)P (t),

for n ≥ 2. Alternatively, for the series C =
∑

n≥1Cn and the matrix B we can

introduce the operator S
(j)
n (t, C,B) defined as

S(1)
n (t, C,B) = [Cn−1, B],

S(j)
n (t, C,B) =

n−j∑
m=1

[Cm, S
(j−1)
n−m (t, C,B)], 2 ≤ j ≤ n− 1.

(21)

Then, from expression (20) and the initial condition X(0) = O, we get

X1(t) =

∫ t

0
P (s)ds

Xn(t) = −
∫ t

0
S(1)
n (τ,X,K) dτ +

n−1∑
j=2

cj

∫ t

0
S(j)
n (τ,X, P ) dτ. (22)
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Proceeding in a similar way for the Y (ε, t) series, and after some elementary
algebra, one arrives at

Y1(t) =

∫ t

0
K(s)ds

Yn(t) =
n−1∑
j=1

Bj
j!

∫ t

0
S(j)
n (τ, Y,K) dτ − 2

n−1∑
j=1

∫ t

0
dj+1S

(j)
n (τ,X, P ) dτ

−2
n−1∑
j=2

j−1∑
s=1

n−j∑
p=1

Bs
s!
dp+1

∫ t

0
S

(s)
j (τ, Y, S

(p)
n−j+1(τ,X, P ))dτ, (23)

where

cj =
2jBj
j!

, dj =
(2j − 1)Bj

j!
.

Notice that the expressions for Xn(t) and Yn(t) only involve the evaluation of
integrals of nested commutators of K, P and terms of the series that have been
already computed.

2.3 Convergence of the series X(t) and Y (t)

We next analyze the convergence of the series (18) (with ε = 1) obtained with
the procedure (22)-(23). For that purpose we consider the usual 2-norm in the
space of matrices. Then, for two generic matrices A and B, we have

‖adAB‖ = ‖[A,B]‖ ≤ 2 ‖A‖ ‖B‖, so that ‖adA‖ ≤ 2 ‖A‖. (24)

Moreover, the 2-norm is unitarily invariant, so that, in general,∥∥∥eadAB
∥∥∥ = ‖eAB e−A‖ = ‖B‖. (25)

Consider first the differential equation (12), or equivalently (13), where u ≡
adX , and in particular the series u cosh(u)

sinh(u)P . If we denote by B1 = euP , B2 =

e−uP , it is clear that∥∥∥∥ucosh(u)

sinh(u)
P

∥∥∥∥ =

∥∥∥∥ u

2 sinh(u)
(euP + e−uP )

∥∥∥∥ ≤ ∥∥∥∥ u

sinh(u)
B1

∥∥∥∥+

∥∥∥∥ u

sinh(u)
B2

∥∥∥∥
≤

∥∥∥∥ u

sinh(u)

∥∥∥∥ (‖B1‖+ ‖B2‖) ≤
∥∥∥∥ u

sinh(u)

∥∥∥∥ ‖P‖ ≡ ‖h(u)‖‖P‖.

Here we have used the unitary invariance of the 2-norm (property (25)). Since
X(t) is a symmetric matrix, then it is orthogonally diagonalizable. In fact,
it can be shown that the same is true for u = adX , considered as a n2 × n2

matrix. In addition, if X has n eigenvalues {λi | i = 1, ..., n}, then adX has the
n2 eigenvalues {λj − λk | j, k = 1, ..., n} [17]. Therefore

h(u) =
u

sinhu
= ST h(D)S, with D = diag (λj − λk), λi ∈ R
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and S is an orthogonal matrix, so that

‖h(u)‖ =
∥∥S−1 h(D)S

∥∥ = ‖h(D)‖ = max{|h(λj − λk)|} ≤ 1

since
∣∣∣ x

sinh(x)

∣∣∣ ≤ 1 for all x ∈ R. In consequence, by integrating (12) we have

‖X(t)‖ ≤
∫ t

0

∥∥∥∥(−uK + u
cosh(u)

sinh(u)
P )

∥∥∥∥ ≤ ∫ t

0
(2 ‖X‖‖K‖+ ‖P‖) ds

≤
∫ t

0
‖A(s)‖ ds+

∫ t

0
2‖A(s)‖ ‖X(s)‖ ds (26)

Direct application of Gronwall’s lemma [9] leads then to

‖X(t)‖ ≤ f(t) +

∫ t

0
2‖A(s)‖f(s) exp

(∫ t

s
2‖A(v)‖dv

)
ds,

where

f(t) ≡
∫ t

0
‖A(s)‖ ds. (27)

In consequence, ‖X(t)‖ is bounded as long as f(t) is bounded.
Let us turn now out attention to the series Y (t). To analyze its (absolute)

convergence, the following generalization of Gronwall’s lemma will be useful [1].

Lemma 1 Let y(t), v(t) be positive continuous functions in t0 ≤ t ≤ T , where
C = const ≥ 0, the functions y(t), v(t) are continuous and non-negative, and
g(y) is a non-negative non-decreasing continuous function with g(y) > 0 for
y > 0. Then, the inequality

y(t) ≤ C +

∫ t

t0

v(s)g(y(s))ds, t0 ≤ t ≤ T

implies the inequality

y(t) ≤ G−1

(
G(C) +

∫ t

t0

v(s)ds

)
,

where

G(u) =

∫ u

u0

ds

g(s)
, u0 > 0

for all t ∈ [t0, T ) such that the function

G(C) +

∫ t

t0

v(s)ds

belongs to the domain of the function G−1.

Our starting point in this case is equation (16), or equivalently

Y (t) =

∫ t

0
d exp−1

Y

(
K tanh

u

2
P
)
ds, (28)
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whence

‖Y (t)‖ ≤
∫ t

0

∥∥∥d exp−1
Y (s)B(s)

∥∥∥ ds, with B(s) ≡ K(s)− tanh
u

2
P (s).

Here both Y (t) and B(t) are skew-symmetric matrices. We can write

d exp−1
Y B =

adY
eadY − 1

B = e−adY/2
adY

eadY/2 − e−adY/2
B = e−v/2

v/2

sinh(v/2)
B

where v ≡ adY . In consequence, by applying property (25), it follows that∥∥d exp−1
Y B

∥∥ =

∥∥∥∥ v/2

sinh(v/2)
B

∥∥∥∥ ≤ ‖Y ‖
sin ‖Y ‖

‖B‖

Notice that we cannot apply here the same procedure to bound ‖h(v)‖ as we did
before for ‖h(u)‖, since it is not guaranteed that v is a diagonalizable matrix.
In any case, it holds that

‖Y (t)‖ ≤
∫ t

0
g (‖Y (s)‖) ‖B(s)‖ ds ≤

∫ t

0
g (‖Y (s)‖)

(
‖K(s)‖+

∥∥∥tanh
u

2
P (s)

∥∥∥) ds
with

g(x) =
x

sinx
,

a non-negative non-decreasing continuous function, with g(x) > 0, for x ∈
(0, π). Now we have to bound the series tanh(u/2)P . Proceeding as we did
with function h(u), it is clear that∥∥∥tanh

u

2

∥∥∥ =
∥∥ST1 (tanhD1)S

∥∥ = max{| tanh(λj − λk)/2|} ≤ 1

and thus ∥∥∥tanh
u

2
P
∥∥∥ ≤ ‖P‖.

In consequence,

‖Y (t)‖ ≤
∫ t

0
g (‖Y (s)‖) (‖K(s)‖+ ‖P (s)‖) ds ≤ 2

∫ t

0
g (‖Y (s)‖) ‖A(s)‖ ds.

Lemma 1 can now be readily applied to the function y(t) = ‖X(t)‖, so that

‖Y (t)‖ < G−1

(
2

∫ t

0
‖A(s)‖ds

)
,

with G(u) =
∫ u
u0

(1/g(s))ds for all t such that

2

∫ t

0
‖A(s)‖ds < G(π) =

∫ π

0

1

g(s)
ds =

∫ π

0

sin s

s
ds = Si(π).

In other words, the series Y (t) is absolutely convergent for t < T such that∫ T

0
‖A(s)‖ds < 1

2
Si(π) = 0.92596852 . . . (29)

We have thus completed the proof of the following

9



Theorem 2 The fundamental matrix of U̇ = A(t)U , where A(t) is a real ana-
lytic matrix, can be factorized as

U(t) = exp(X(t)) exp(Y (t)), (30)

where X(t) is symmetric, Y (t) is skew-symmetric and the series

X(t) =
∑
i≥1

Xi(t), Y (t) =
∑
i≥1

Yi(t), (31)

whose terms are given recursively by (22)-(23), converge at least in the interval
t ∈ [0, T ) such that ∫ T

0
‖A(s)‖ds < 1

2
Si(π).

As a consequence, in the convergence domain of the series (31) we get explicitly
an analytic polar decomposition of the fundamental matrix U(t) in the form
(30).

Example 1. At this point an example is in point to illustrate both how the
recurrence (22)-(23) works in practice to compute the polar factorization (30)
and the domain (and rate) of convergence of the series. We take for simplicity
the following coefficient matrix

A(t) =

(
4α cos t 1

e−βt α sin t

)
(32)

depending on two parameters α > 0, β > 0. In this case

P (t) =

(
4α cos t 1

2(1 + e−βt)
1
2(1 + e−βt) α sin t

)
, K =

1

2
(1− e−βt)

(
0 1
−1 0

)
. (33)

We have computed with the recurrence (22)-(23) the terms Xn(t) and Yn(t)
up to n = 6 with Mathematica and then we have determined the approximate
solution Uap(t) = exp(Xa(t)) exp(Y a(t)) with the truncated series

Xa(t) =

n∑
i=1

Xi(t), Y a(t) =

n∑
i=1

Yi(t). (34)

With this time dependence, it is possible to evaluate all the integrals appearing
in the expansion analytically up to the order considered. Finally we have ob-
tained the error with respect to the exact solution by calculating the Frobenius
norm of the difference between the exact solution and the approximation, i.e.,
‖Uex(t)−Uap(t)‖F , as a function of time for different values of the parameters.
In Figure 1 we represent this error in logarithmic scale when: α = 1, β = 2
(solid line); α = 2, β = 2 (dot-dashed line); α = 3, β = 2 (dashed line), and
α = 1, β = 4 (dotted line). The exact solution is computed numerically by
Mathematica for each value of the parameters. Notice that the accuracy of the
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Figure 1: Error with respect to the exact result in logarithmic scale for Example 1
obtained with the exponential polar factorization for different values of the parameters:
α = 1, β = 2 (solid line); α = 2, β = 2 (dot-dashed line); α = 3, β = 2 (dashed line),
and α = 1, β = 4 (dotted line).

results increasingly deteriorates with higher values of α. This is consistent with
the estimates provided by Theorem 2 for the convergence domain of the expan-
sion: T = 0.22196, T = 0.11438, T = 0.07674 and T = 0.22324, respectively,
for the values of the parameters considered. Even for larger values of t we get
reasonable approximations to the exact result in all cases.

3 Generalizations

3.1 Exponential polar factorization for an arbitrary initial con-
dition

So far we have only considered the case when the initial condition U(0) = I.
Suppose one is interested in obtaining a similar representation of the solution
of the general initial value problem

dU

dt
= A(t)U, U(0) = U0. (35)

Although we can write the solution as U(t) = eX(t) eY (t) U0 with X(t), Y (t)
constructed as the series (5) for the fundamental matrix, it is clear that this is
does not correspond to a polar decomposition of U(t).

Two different possibilities may be considered if the polar decomposition of
the initial value, U0 = H0Q0, is available. The first consists in constructing a
solution of the form

U(t) = eX(t)H0 eY (t)Q0.

11



In this case, by following a similar approach as in section 2, one gets the dif-
ferential equations to be satisfied by each factor X(t) and Y (t), which turn out
to be different from (12) and (16), respectively. Then, new recurrences have to
be designed to construct the corresponding series (5).

The second procedure is more restrictive, in the sense that it requires com-
puting previously a symmetric matrix X0 and a skew-symmetric matrix Y0 such
that H0 = expX0, Q0 = expY0 or alternatively U0 = eX0 eY0 . Then, equations
(12) and (16) still apply, with initial conditions X(0) = X0, Y (0) = Y0, respec-
tively. Therefore, the same recurrences obtained for the fundamental matrix
directly apply, so that the series (5) are determined as

X1(t) = X0 +

∫ t

0
P (τ)dτ

Xn(t) = −
∫ t

0
S(1)
n (τ,X,K) dτ +

n−1∑
j=2

cj

∫ t

0
S(j)
n (τ,X, P ) dτ

Y1(t) = Y0 +

∫ t

0
K(τ)dτ

Yn(t) =

n−1∑
j=1

Bj
j!

∫ t

0
S(j)
n (τ, Y,K) dτ − 2

n−1∑
j=1

∫ t

0
dj+1S

(j)
n (τ,X, P ) dτ

−2
n−1∑
j=2

j−1∑
s=1

n−j∑
p=1

Bs
s!
dp+1

∫ t

0
S

(s)
j (τ, Y, S

(p)
n−j+1(τ,X, P ))dτ, n ≥ 2

(36)

with Xn(0) = Yn(0) = O for n ≥ 2.
This second procedure can also be applied for computing the exponential

polar factorization of a given analytic nonsingular matrix U(t) with t ∈ [0, T ].
as long as U̇(t)U−1(t) ≡ A(t).

Example 2. We carry out this procedure with the symplectic matrix

U(t) =
1√
8

(
3 cosωt+ 1 3 sinωt
−3 sinωt 3 cosωt− 1

)
. (37)

A simple calculation shows that

A(t) = U̇(t)U−1(t) =
3ω

8

(
sinωt 3 + cosωt

−3 + cosωt − sinωt

)
∈ sp(2)

so that it is appropriate to consider a basis in the Lie algebra sp(2). A possible
option is given by the matrices

B1 = J =

(
0 1
−1 0

)
, B2 =

(
0 1
1 0

)
, B3 =

(
1 0
0 −1

)
.

They satisfy the commutation rules

[B1, B2] = 2B3, [B2, B3] = −2B1, [B3, B1] = 2B2.

12



In terms of this basis, one has A(t) = P (t) +K, with

P (t) =
3ω

8
(cosωtB2 + sinωtB3), K =

9ω

8
B1,

and since

U0 = U(0) =

( √
2 0

0 1√
2

)
, then X0 = log

√
2B3, Y0 = O.

Applying recurrence (36) one arrives at

X(t) = b2(t)B2 + b3(t)B3, Y (t) = b1(t)B1

where b1(t), b2(t) and b3(t) are complicated expressions depending on sin(nω t),
cos(nω t) (n = 1, . . .), powers of ω t and products of these functions. A straight-
forward calculation shows that

eX = cosh η I +
sinh η

η
(b2B2 + b3B3), eY = cos b1 I + sin b1B1,

where η =
√
b22 + b23. Therefore, by construction, exp(X(t)) and exp(Y (t)) are

both symplectic, as well as the approximation Uap(t) = eX(t)eY (t).
In Figure 2 we represent the difference (in logarithmic scale) between the

polar factors computed with the recurrence (36) up to n = 8 with Mathematica
and the exact values H(t) and Q(t) as a function of time, i.e., ‖ exp(X(t)) −
H(t)‖ (solid line) and ‖ exp(Y (t))−Q(t)‖ (dashed line) for two different values
of the parameter of the problem, ω = 2 (bottom) and ω = 3 (top). Since in
this case we know the exact solution (37), H(t) and Q(t) can be computed
from its corresponding singular value as follows [3]: if Uex(t) = X̂(t)S(t)Ŷ (t)T

is the corresponding singular value decomposition, then Q(t) = X̂(t)Ŷ (t)T ,
H(t) = X̂(t)S(t)X̂(t)T . Notice that error in the determination of the expY
factor is almost one order of magnitude smaller than the corresponding to expX
for the values analyzed. The approximation is more accurate for ω = 2. This is
consistent with the convergence domain guaranteed by Theorem 2: T ≈ 0.30865
for ω = 2 and T ≈ 0.20577 for ω = 3.

Since A(t) is periodic with period τ = 2π/ω, Floquet’s theorem allows one to
express the fundamental matrix as U(t) = Q(t) exp(tF ), where Q(t+ τ) = Q(t)
and F is a constant matrix. Notice that the polar factorization considered here
differs from Floquet: X(t) is not periodic and the function b1(t) is not linear in
t.

3.2 Polar decomposition of the matrix exponential

Theorem 2 guarantees that the fundamental matrix of U̇ = A(t)U admits a
polar decomposition of the form U(t) = eX(t) eY (t) for sufficiently small values
of t. Obviously, if A is constant, then we can write etA = eX(t) eY (t) and the
computation with the recursion (22)-(23) simplifies considerably. It is possible
to implement this recurrence in a symbolic algebra package and obtain analytic
expressions for both X(t) and Y (t) up to very high order. We have done so in
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Figure 2: Error with respect to the exact polar factors H(t) (solid line) and Q(t)
(dashed line) in logarithmic scale for Example 2 obtained with the exponential po-
lar factorization based on the recurrence (36) with n = 8 terms. Two values of the
parameter ω are considered.

Mathematica up to n = 15 and rewritten the terms in the Hall basis of the free
Lie algebra generated by the symbols P and K with the algorithm and code
developed in [6]. The computation requires modest memory requirements and
takes a few minutes in a personal computer. The symmetry properties of both
P and K lead to some simplifications in the expression of the terms Xj and Yj .
Thus, all terms Y2n(t) = 0, as noticed in [18], whereas half the coefficients in the
Hall basis of both X2n+1 and Y2n+1 vanish. Moreover, the number of vanishing
coefficients for X2n for the first values of n, n ≥ 2, is 1, 4, 14, 49, 165, 576 out of
3, 9, 30, 99, 335, 1161 elements. For the sake of illustration, the last coefficient
of X15 in the Hall basis is t15 65981/52306974720, i.e., the last term in the
expression of X15(t) reads

t15 65981

52306974720
[[[K, [P,K]], [K, [K, [P,K]]]], [[K, [P, [P,K]]], [K, [K, [P,K]]]]],

whereas the last coefficient of Y15 is zero. Thus, the procedure developed here
allows one to express etA directly as the product of the exponential of two series
X(t) and Y (t) and get some insight into the structure of these series without
using the Baker–Campbell–Hausdorff theorem. Moreover, by considering the
2-norm, Theorem 2 guarantees convergence of this factorization for 0 ≤ t ≤ T
such that

T =
1

2(‖P‖+ ‖K‖)
Si(π).

14



4 Concluding remarks

We have presented a procedure to construct a factorization of the fundamental
matrix U(t) of the linear system (1) as the product of the exponentials of a
symmetric matrix X(t) and a skew-symmetric matrix Y (t). Both matrices
X(t) and Y (t) are constructed as series of the form X(t) =

∑
i≥1Xi(t), Y (t) =∑

i≥1 Yi(t), and a recursion has been obtained for determining the expressions
of the terms Xi, Yi. This is done by solving iteratively the differential equations
that X(t) and Y (t) obey. In addition, sufficient conditions have been provided
for the absolute convergence of the series. This fact guarantees that if U(t)
evolves in a Lie group, then the proposed approximation also belongs to the
Lie group. In the particular case of the symplectic group, the procedure allows
one in a natural way to write the matrix as the product of two exponentials of
elements in the corresponding Lie algebra [8].

The approach can be easily adapted when an arbitrary initial condition
U(0) = U0 is considered, and also for an arbitrary nonsingular matrix U(t) such
that U̇U−1 = A. If A(t) depends on some parameters, the procedure allows one
to construct approximations involving directly these parameters, and thus the
analysis of the parameter space can be carried out with only one calculation.

In this work we have only considered the ‘left’ polar decomposition U(t) =
eX(t) eY (t). It is clear that a similar approach could also be applied to get a
factorization in the reverse order, i.e., the ‘right’ polar decomposition U(t) =

eỸ (t) eX̃(t), with Ỹ (t) skew-symmetric and X̃(t) symmetric. It turns out, how-
ever, that in contrast with the case considered here, the differential equations
satisfied by X̃(t) and Ỹ (t) involve both series X̃(t) and Ỹ (t), and thus the
analysis is more complicated.
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