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We make use of the numerical simulation random walk (RWNS) method to compute the ‘‘jump’’

diffusion coefficient of electrons in nanostructured materials via mean-square displacement. First,

a summary of analytical results is given that relates the diffusion coefficient obtained from RWNS

to those in the multiple-trapping (MT) and hopping models. Simulations are performed in a

three-dimensional lattice of trap sites with energies distributed according to an exponential

distribution and with a step-function distribution centered at the Fermi level. It is observed that

once the stationary state is reached, the ensemble of particles follow Fermi–Dirac statistics with a

well-defined Fermi level. In this stationary situation the diffusion coefficient obeys the theoretical

predictions so that RWNS effectively reproduces the MT model. Mobilities can be also computed

when an electrical bias is applied and they are observed to comply with the Einstein relation when

compared with steady-state diffusion coefficients. The evolution of the system towards the

stationary situation is also studied. When the diffusion coefficients are monitored along simulation

time a transition from anomalous to trap-limited transport is observed. The nature of this

transition is discussed in terms of the evolution of electron distribution and the Fermi level. All

these results will facilitate the use of RW simulation and related methods to interpret steady-state

as well as transient experimental techniques.

1. Introduction

Electron transport is a key factor in the functioning of the new

generation of photovoltaic and optoelectronic devices for low-

cost applications. These devices are normally based in meso-

porous materials and nanocomposites. Anomalous or disper-

sive transport1,2 features are usually observed in these

materials, like extremely slow transport combined with den-

sity-dependent diffusion coefficients3,4 and power-law instead

of exponential decays.5 Diffusion of electrons injected into

mesoporous TiO2 used in dye-sensitized solar cells (DSC) is

one of the most studied examples.6,7

Anomalous transport properties in this kind of systems have

been usually explained by the effect of traps that are normally

present in mesoporous and nanocrystalline materials.8–10 These

traps contribute to place the effective diffusion coefficient

several orders of magnitude below its bulk value. The descrip-

tion of electron transport in these situations is made most often

on the basis of two models that incorporate different physical

assumptions. First, the multiple-trapping formalism (MT)11,12

assumes that charge transport occurs by displacement in

extended states slowed down by a succession of trapping and

detrapping events in a network of sites with a distribution of

trap energies.13 The second model is the hopping approach.

Here the displacement takes place via transitions between

localized states. A recent overview of the application of these

models in disordered semiconductors has been presented.14

An alternative route to study the electron transport in

mesoporous photovoltaic systems is to use Monte Carlo

simulation.5,15,16 The random walk numerical simulation

(RWNS) is a stochastic computational procedure that allows

for a flexible description of electron transport in a network of

traps without huge computational demands. This is especially

useful in the context of nanostructured materials since the

existence of spatial disorder coupled with a broad distribution

of trap energies is characteristic of these systems. RWNS

simulations have been efficiently used to obtain transient

currents and electron lifetimes,5,17,18 steady-state electron

mobilities17 and surface photovoltage transients.15,16 It has

also been applied to study the effect of grain morphology in

electron transport in DSCs.19 It is known17 that RW simula-

tion leads to a Fermi–Dirac distribution when the calculation

reaches the stationary state and that photoconductivities

follow a power-law when plotted versus the overall electron

density. RW simulation has been also utilized by van de

Lagemaat and coworkers18,20 to interpret diffusion coefficients

extracted from experiments.

Each of the mentioned approaches has its own advantages

as well as limitations. MT (and hopping) is based on well

tested physical assumptions about the basic electronic transi-

tions in the system. However, in order to extract experimental

conclusions the models require assumptions about spatial

homogeneity of the distributions of electronic states that are
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not well suited to all practical situations. On another hand, the

RWNS is rather versatile with respect to specific geometries or

initial conditions in a given experiment, but implementing the

extended states of the conduction band in RWNS is not

feasible and is usually not attempted. The three approaches

(MT, hopping, RWNS) require a certain distribution of

localized states as an input. Other relevant parameters are

the total number of localized states or traps, the total electron

density and the attempt-to-jump frequency. All these para-

meters should be obtained from other sources or can be taken

as adjustable in practical implementations.21

Therefore, while the different models and approaches share

common features, there are also significant differences that

complicate the interpretation of the results obtained by the

different methods. This paper presents a comprehensive study

of the ability of the RWNS method to compute electron

diffusivities in nanostructured materials and its relationship

to the MT and hopping formalisms. In the theory section

(section 2), we provide a detailed discussion of the different

frameworks of interpretation, both the physical–analytical

and numerical models. By explicit calculation we give formu-

las for the diffusion coefficient as a function of Fermi level in

each of the models and this clarifies the connection between

the models in steady state conditions. In section 3 we show the

calculations of diffusion coefficients in RWNS as a function of

Fermi level, which confirms the previous analytical results.

Another interesting point is the use of RWNS in transient

experiments. This is specially pointed in view of the applica-

tion of the numerical simulation method to describe short time

and space dynamics of electrons in nanostructured TiO2

measured by surface photovoltage transients.16 In section 4,

we present calculations of the transient behaviour and we

show that the results are well described by steady-state diffu-

sion coefficient provided that certain equilibration conditions

are satisfied. We finish with the main conclusions.

2. Theory

2.1 Definition of diffusion coefficient

The random walks of an electronic carrier determine the jump

diffusion coefficient, that has the form22,23

DJ ¼
1

6t

1

N

XN
i¼1

Dri

 !2* +
ð1Þ

where Dri is the displacement of the ith particle at time t, and hi
denotes a statistical average. More precisely, the jump (or

kinetic) diffusion coefficient defined by eqn (1) reflects diffu-

sion of the center of mass of N particles, while the tracer

diffusion coefficient, D*, reflects random walks of a particle

D� ¼ lim
t!1

1

6Nt

XN
i¼1
ðDriÞ2

* +
ð2Þ

If on average, there are no cross correlations between dis-

placements Dri(t) of different particles at different times, DJ

andD* become equivalent.22,23 Monte Carlo simulations show

that jump and tracer diffusion coefficients are practically

identical in a broad interval of carrier densities and tempera-

tures.24 Hence, we assume hereafter D* = DJ. The jump

diffusion coefficient can often be expressed as24–26

DJ = 1/6hnihr2i (3)

in terms of a mean effective jump frequency hni, and the square

of effective jump length hr2i.
On another hand, experimental information on the funda-

mental jump rates is often derived from the chemical diffusion

coefficient, Dn, that relates the flux Jn to the gradient of the

electron density, n, by Fick’s law

Jn ¼ �Dn
@n

@x
ð4Þ

The diffusion coefficients Dn and DJ differ by the quantity

wn
22,25,26

Dn = wnDJ (5)

that is called the thermodynamic factor and is defined as

follows

wn ¼
n

kBT

@m
@n

ð6Þ

where m is the chemical potential of electrons.

The definition of the mobility, un, is given in terms of the

average carrier velocity hv(F)i acquired under electrical field F,

at low field values

un ¼
dhvðFÞi
dF

����
F¼0

ð7Þ

In the presence of an electrical field F, at equilibrium, a local

electrical field F is compensated by an opposite variation of the

gradient of the chemical potential (thermodynamic driving

force): qF = qm/qx = (qm/qn)(qn/qx). Taking into account

eqn (4), (6) and (7), the generalized Einstein relation is

obtained6,14

Dn

un
¼ wn

kBT

q
ð8Þ

The Einstein relation can also be expressed in the form of the

classical Einstein relationship

un ¼
qDJ

kBT
ð9Þ

However, DJ is not in general the diffusion coefficient appear-

ing in Fick’s law.

2.2 Exponential distribution of localized states

There is wide agreement27 that random nanoparticulate TiO2

networks used in DSC exhibit an exponential distribution of

localized states (DOS) in the bandgap that is expressed as

gðEÞ ¼ NL

kBT0
exp½ðE � E0Þ=kBT0� ð10Þ

where NL is the total trap density, kBT0 the width of the

distribution, and E is the energy distance with respect to E0,

the lower (higher) edge of the conduction (valence) band, for

electrons and holes, respectively. E0 indicates the level of

extended states in MT model. In nanostructured TiO2 layers,

values of T0 range usually between 500 28 and 900 K29
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depending on preparation and measurement conditions. Char-

acteristic values of the total trap density are in the range Nt =

1020–1021 cm�3 for mesoporous TiO2.
30

The exponential distribution has the following property31

wn = T0/T (11)

For the typical values of T0, wn E 2–5 at room temperature.

Note that eqn (11) is valid only for a deep distribution such

that T/T0 o 1. The diffusion-mobility ratio, eqn (8), is here

independent of temperature32

Dn

un
¼ kBT0

q
ð12Þ

2.3 Multiple trapping

The MT model has been widely used in the DSC area

to explain the non-linear dependency of the electron

diffusion coefficients and photoconductivities on light

intensity and electrical bias (see ref. 6 and 14 for

recent reviews). It also permits prediction of the activation

energies usually observed in DSC,12 and the observed

correlation between electron lifetime and diffusion

coefficient.11 The MT model has been also used to

provide a quantitative account of the measured chemical

capacitances and chemical diffusion coefficients in high-

efficiency DSCs.33 In the following, we provide a brief sum-

mary of this model to facilitate comparison with the results

from RWNS.

Let n0 be the carrier density in the transport states at the

energy E0 (with total number density N0), and nL the density in

localized states defined by eqn (10). These densities can be

given with respect to the Fermi level, EF, as

n0 = N0 exp[(EF � E0)/kBT] (13)

nL = NL exp[(EF � E0)/kBT0] (14)

The total carrier density is n = n0 + nL. The transport in

extended states is characterized by an effective jump frequency

n0n and constant jump diffusion coefficient D0
J = D0

n = D0.

The central kinetic relationship in the multiple trapping

models is the following31

nhnni = n0n0n (15)

where hnni is the average jump frequency for all the

carriers. Eqn (15) simply expresses the average number of

transitions in the transport levels either in terms of carriers in

the transport levels or in terms of all the carriers in the system.

It follows from eqn (3) that the jump diffusion coefficient

relates to D0 as

DMT
J ¼ n0

n
D0

¼ N0

NL
exp ðEFn � E0Þ

1

kBT
� 1

kBT0

� �� �
D0 ð16Þ

The chemical diffusion coefficient is obtained with eqn (5)

and (11):31

DMT
n ¼ T0

T
DMT

J ð17Þ

At low Fermi level n E nL, and in terms of the total carrier

density, the jump diffusion coefficient is

DMT
J ¼ N0

N
T0=T
L

nT0=T�1D0 ð18Þ

2.4 Random walk numerical simulation

The RWNS simulation method is a stochastic calculation in

which electrons are moved at random in a 3 dimensional

network of Nx � Ny � Nz traps with variable release times.

These traps are separated by aL, the lattice parameter or trap

separation length. The trap energies are distributed exponen-

tially after eqn (10). Each trap i with energy Ei is given a

release time, ti, according to10,34

ti = �ln(r)�n0�1�e(Ei+q�Vi�E1)/kBT (19)

where r is a random number uniformly distributed between 0

and 1, n0 (=1/t0) is the attempt-to-jump frequency, and q and

Vi are the elementary charge and a constant applied bias at site

‘‘i’’. Eqn (19) implies that electron detrapping is thermally

activated with the trap energy being the activation barrier. It

can be shown that the rates for transfer between two neigh-

boured sites i and j (inverse of the release times) fulfils the

condition of microscopic reversibility or detailed balance.35 In

eqn (19) E1 is the reference level that represents the transport

level in multiple trapping or hopping model. This may be

different, in general, from the energy E0 that defines the zero of

energies in the distribution (10) as shown below for the

hopping model.

During the simulation the electrons adopt the release times

of the sites that they visit. We call waiting time the difference

between the release time of an electron and the time already

spent by that electron in its trap. For each simulation move the

electron with the shortest waiting time (tmin) is moved to an

empty neighboured site chosen at random. This time is then

used to advance the total simulation time and to reduce

accordingly the waiting times of the rest of the electrons.

The simulation is therefore advanced by time increments that

depend on the traps occupied at a current simulation time, i.e.,

the RWNS method is an adaptive time-step simulation

procedure.

The calculation is performed by running a number of

simulations for different realizations or samples of the trap

energy distribution for the network of traps. The final result is

averaged over the total number of samples utilized. The more

samples are run, the better the statistics. An illustration of the

RWNS method employed is shown in Fig. 1. The simulation

starts at time t0 = n0
�1 by distributing randomly N electrons

in the traps. The electrons are then moved between neighbor-

ing traps that are placed in an ideal cubic lattice. A move is

forbidden if the neighboring trap is already occupied. By this

way, electrons diffuse through the lattice of trap sites. In

addition, we apply periodic boundary conditions along the

three directions of space. Hence, an electron crossing a

simulation box boundary is automatically reinjected through

the opposite side of the box. Proceeding this way, a stationary

state (signaled by a constant electron flux or a constant
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diffusion coefficient) is rapidly achieved. We will discuss below

how this stationary state is approached.

During the simulation, the visits of electrons to traps of

energy between E and E + dE are recorded and stored in an

histogram N(E). This is the occupancy of the energy levels and

N(E)/g(E) is the probability of a trap of energy E to be

occupied. In the next section we will show how this probability

tends towards the Fermi–Dirac function f(E) as the system

approaches the stationary regime. On the other hand the

diffusion coefficient is computed from the mean-squared dis-

placement

hrðtÞ2i ¼ 1

N

XN
i¼1
f½xiðtÞ � xið0Þ�2 þ ½yiðtÞ � yið0Þ�2

þ ½ziðtÞ � zið0Þ�2g

ð20Þ

where x, y, and z represent the absolute coordinates of

electrons (without periodic boundary conditions). As it will

be shown below the mean squared displacement varies linearly

with time at longer times (except in conditions close to full

occupancy or at very short times). Therefore, it is possible to

extract the jump diffusion coefficient via

hr(t)2i = 6DJt (21)

In RW simulations electron mobilities can be extracted from

computations executed in the presence of a constant electric

field F = (Vi+1 � Vi)/aL. The mobility is then obtained via

un ¼
j

qnF
ð22Þ

where j is the current density. This is computed from a

histogram in which the net flux of electrons per unit area

and unit time along the field direction is recorded.

2.5 Calculation of the jump diffusion coefficient in RWNS

Here we calculate analytically the diffusion coefficient in terms

of the parameters of the model. Since the hopping distance is

fixed by the lattice parameter, we expect the jump diffusion

coefficient obtained from RWNS to have the form

DNS
J = 1/6a2Lhni (23)

Therefore, we can obtain an analytical description of the jump

diffusion coefficient by calculating the average jump fre-

quency.36 From eqn (19), the jump frequency from the energy

E to the transport level is

nðEÞ ¼ n0exp �
E1 � E

kBT

� �
ð24Þ

To obtain a mean jump frequency, eqn (24) should be aver-

aged over the distribution of trap energies as follows37

hni ¼ 1

nL

Z E1

�1
nðEÞgLðEÞf ðE � EFÞ 1� f ðE � EFÞ½ �dE ð25Þ

In this last equation, the factor (1 � f) accounts for the

unoccupied target sites. However, this factor is significant

only when EF E E1, and in the following we consider the

situation in which the Fermi level is well below E1. The main

contributions arise from carriers between EF and E1, therefore

we can write

hni ¼ 1

nL

Z E1

EF

nðEÞgLðEÞ exp½�ðE � EFÞ=kBT � dE ð26Þ

The Fermi–Dirac distribution can be approximated by a step

function below the Fermi level and a Boltzmann factor above

the Fermi level. Hence, we obtain for the carrier density

nL ¼
Z EF

�1
gðEÞdE þ

Z E1

EF

gðEÞexp½ � ðE � EFÞ=kBT � dE

¼ NL

1� T=T0
exp �E1 � EF

kBT0

� �
ð27Þ

Calculating the integral in eqn (26), we obtain

hni ¼ n0 1� T

T0

� �
exp �ðE1 � EFÞ

1

kBT
� 1

kBT0

� �� �
ð28Þ

Therefore, the jump diffusion coefficient is

DNS
J ¼

1

6
1� T

T0

� �
exp �ðE1 � EFÞ

1

kBT
� 1

kBT0

� �� �
a2Ln0

ð29Þ

Let us emphasize that there are two ways to calculate the

diffusion coefficient given by eqn (23). First, eqn (25) contains

no approximations, therefore numerical integration of

eqn (25) should give very accurate results compared to the

RWNS, provided that the statistics is sufficiently large. On

another hand, eqn (29) gives a closed analytical formula

though by using some approximations, therefore some devia-

tions from RWNS calculations may be expected. These results

are analyzed below.

2.6 Hopping transport

In the hopping model the carriers move by direct transitions

between the localized states of the distribution in eqn (10).38,39

The transition probabilities are given by the upward and

Fig. 1 Illustration of a RWNS calculation. Electrons are distributed

at random among all available traps at time t0, they are then moved

according to the waiting and released times extracted from eqn (19).

Whenever an electron crosses a boundary, it is reinjected through the

opposite side so that the total number of electrons remains constant.
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downward jump rates

n" ¼ n0 exp �2
r

a
� Ej � Ei

kBT

� �
ðEj4EiÞ; ð30Þ

n# ¼ n0 exp �2
r

a

h i
ðEj � EiÞ

where r is the distance between sites, a is the localization

radius, and Ej, Ei, are the energies of the target and starting

sites, respectively. The jump diffusion coefficientDJ is obtained

by averaging the hopping rates of eqn (30) over disordered

spatial and energy configurations, in order to obtain the mean

jump frequency hni. Since the hopping rates depend exponen-

tially both on energy difference and distance, such averaging is

usually very difficult, but it is partially simplified in a system

with a steep distribution of localized states, where the hopping

process is well described with the concept of transport en-

ergy.38,40 The rationale for such approach is that in equili-

brium the transport is governed by the fastest hop of a charge

carrier. The most probable upward jump corresponds to an

optimized combination of the distance and energy difference.

For an exponential distribution of localized levels, the re-

sult41,42 is that the fastest hops occur in the vicinity of the

transport energy, given by

Etr = E0 � DEtr (31)

where36

DEtr ¼ 3kBT0 ln
3aT0

2aLT

4p
3

� �1=3
" #

ð32Þ

independently of the energy of the starting site. Apart from

this shift of the transport level with respect to extended states

level, the hopping model behaves in a very similar way to the

multiple trapping model, provided that the Fermi level re-

mains well below Etr. Averaging the mean square displacement

and the jump frequency for the hopping model gives the

following result:36

D
hopping
J ¼ 9

4
1� T

T0

� �
exp �3T0

T
� ðEtr � EFÞ

1

kBT
� 1

kBT0

� �� �
a2n0

ð33Þ

3. Steady-state results

The previous calculations indicate that the RWNS method in

steady state gives the same Fermi-level dependence of the jump

(and chemical) diffusion coefficient as the multiple trapping

model. The hopping model is also equivalent to multiple

trapping, provided that the transport energy approximation

is valid. Therefore RWNS also serves to describe the diffusion

coefficient of the hopping model. In each case, appropriate

correspondence of parameter is needed in order to match one

model to another one. For example in simulations of the

hopping model we must set E1 = Etr, being E0 (the reference

of the DOS) fixed.

In the following, we describe the results of simulations of the

diffusion coefficient using the RWNS method. This will help to

illustrate the characteristic outcomes of the method and to

check the analytical expression derived above.

The simulations were carried out using cubic systems de-

fined by a label N/X3 where N is the total number of particles

(N = 10–400) and X the number of sites along each direction

(X= 10–28). The number of simulations (samples) required to

get good statistics ranged between 500 and 5000 samples.

The results are presented in reduced units of aL (length) and

t0 = n0
�1 (time).

3.1 Diffusion vs. overall electron density

By keeping records of the absolute positions of the electrons

along the simulation it is possible to compute the mean square

displacement using eqn (3). Results for different electron

densities are shown in Fig. 2. First of all, it can be observed

that individual electrons diffuse more rapidly for systems with

larger overall density. This is nothing else but the well-known

trap-filling effect17,43 and a simple numerical demonstration of

the fact that diffusion coefficients are Fermi level dependent in

thes kind of systems. In Fig. 2 the diffusivities are plotted

versus overall electron density in a log–log graph. It is ob-

served that the RWNS simulation results fit very well to

eqn (18). Thus, slopes of 1.88 and 3.47 are obtained for T0

= 900 (see Fig. 2) and 1400 K (not shown), respectively.

According to (18) these should be 2 and 3.67. Note that in real

units, D0 B a2L/t0 and, for aL = 2 nm (Nt = 1.25 � 1020 cm�3)

and t0 = 5 � 10�13 s, D0 = 8 � 10�2 cm2/s.

3.2 Diffusion coefficients vs. Fermi level

In order to extract jump diffusion coefficients as a function of

Fermi level RWNS calculations are carried out for different

carrier densities. The carrier densities were varied by running

calculations corresponding to labels 10/283, 10/243, 10/183, 10/

153, 10/123, 10/103, 100/283, 200/283 and 300/283. The Fermi

level is then extracted from the N(E)/g(E) histograms once the

steady-state has been reached. Alternatively we have run

simulations at a fixed Fermi level by replacing the original

Fig. 2 Upper panel: mean square displacement as computed via

eqn (20) in a RWNS simulation with exponential distribution of trap

energies. Calculations were performed for T0 = 900 K, T=300 K and

comprised 5000 samples. Lower panel: jump diffusion coefficients as

obtained from the slopes of the mean square displacement versus

overall electron density.
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exponential distribution by a new distribution with no traps

below the Fermi level. This idea is illustrated in Fig. 3. The

simulations in this latter case are performed with just one

electron. Results for the diffusion coefficient versus Fermi level

obtained from both types of calculations are shown in Fig. 4.

We can observe that both alternatives give essentially the same

results, which shows that collective diffusion is equivalent to

single carrier random walk. A difference occurs when we

approach full occupancy. In this regime, the diffusion coeffi-

cient departs from the linear trend due to the lack of empty

jumping sites in conditions of high occupancy (above a

20–30%). This problem does not occur in the one-electron

calculations and the diffusion coefficient increases linearly in

the log-linear plot up to the ‘‘transport’’ level (E1 = 0 eV).

In Fig. 5, RWNS results are compared with the theoretical

predictions of section 2.5. The diffusion coefficients fit nicely to

the theoretical formulas (25) and (29). This confirms the

validity of the analytical approximations used above. It also

shows that the diffusion coefficient can be calculated easily, in

the steady state, for arbitrary trap distributions, by the

integration procedure indicated in eqn (25).

3.3 Electron mobilities and Einstein relation

It is interesting to investigate whether the RWNS reproduces

the Einstein relation. In order to do this we run simulations

with a bias (F = 3 � 105 V m�1 with aL = 2 nm) and extract

the mobilities using eqn (22). We compare them with those

calculated with eqn (9) using the jump diffusion coefficients

extracted from the mean square displacements at the same

conditions but with no applied bias. The electron densities

were varied by running four different calculations correspond-

ing to labels 10/283, 10/243, 10/183 and 100/283. Results are

shown in Fig. 6. We observe that the simulated data are in nice

agreement with the classical Einstein relationship for the

densities considered in this work. Diffusion coefficients ex-

tracted from simulations with applied bias do not comply with

the Einstein relation, since in this case DJ includes a contribu-

tion due to the drift.

4. Time-dependent results

Having shown the equivalence of RWNS and MT in the

steady-state it is very important to discuss the relationship

between both methods in transient situations, since the RWNS

is a powerful tool to describe transient experiments with rather

inhomogeneous carrier distribution.5,16 One can readily think

of experimental situations involving the injection and ultrafast

detection of electrons into the metal-oxide conduction band,

Fig. 3 Scheme of the trap energy distributions used in the multi-

electron and single-electron RWNS calculations. The equivalence

between both is shown explicitly.

Fig. 4 Jump diffusion coefficient as a function of Fermi level for both

multi-electron and single-electron RWNS simulations. The Fermi level

in multi-electron calculations is extracted from fitting the occupancy

curves to a Fermi–Dirac function.

Fig. 5 Jump diffusion coefficient as a function of Fermi level from

multi-electron RWNS simulations and theoretical results from

eqn (25) (numerical) and (29) (analytical).

Fig. 6 Mobilities obtained from RWNS simulations with exponential

density of states with T0 = 900 K, T= 300 K and F= 3 � 105 V m�1.

In the graph, the results obtained via eqn (22) are compared with those

computed via Einstein relation (eqn (9)) from the jump diffusion

coefficients presented in Fig. 5. The results shown correspond to labels

10/283, 10/243, 10/183 and 100/283.
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where no equivalent RWNS description can be obtained, since

the latter method lacks the extended states. Therefore, for

comparing both methods an initial equilibration of electrons

in conduction band with electrons in traps is required in the

given experiment.

To illustrate the requirements for application of RWNS, we

consider here a classical experiment44 involving the injection of

electrons in the conduction band and monitoring the subse-

quent dynamics of the free electrons. This experiment is typi-

cally described using MT arguments that consider the evolution

of electrons in traps over time.44 After the initial pulse, electrons

are rapidly captured in traps. The capture process is indepen-

dent of the trap depth, and the electron density in the bandgap

is therefore proportional to g(E). The shallow electrons estab-

lish equilibrium with the conduction band, therefore a demar-

cation level can be defined that sinks with time, due to the fact

that increasingly deep levels are able to thermalize their carriers.

Consequently, the free electron density is observed to decrease

as a power law in time, nc p tT/T0�1, and this is the mark of the

exponential distribution in the bandgap.44 This decay law in

the MT model is well described in many papers.44–46

We consider now the transient behaviour as determined

from RWNS. First, electrons are randomly distributed initi-

ally in the lattice, therefore, in the energy axis the initial

distribution follows the exponential shape of the DOS. In

order to determine how the electron distribution evolves with

time we compute the occupancy histogram n(E) and the

occupancy probabilities f(E) at different times. This informa-

tion is presented in Fig. 7. It can be observed that the electron

distribution relaxes as predicted by the standard reasoning (see

Fig. 2 in ref. 46) with a well-defined demarcation level at each

stage of the evolution, that decreases with time since the

electrons above it have been already thermalized. Along this

process the slope of the distribution for deep traps remains

constant until it matches the density of states. In this situation

the system has reached the stationary state and the occupation

probability reproduces the Fermi–Dirac distribution.

As mentioned above, in the real experiment the evolution

pattern indicated in Fig. 7 will be attained only after a certain

time (after the injection of the electrons) for electron capture

by traps and initial equilibration of shallow levels with the

conduction band. Such initial time, however, is also required

for the MT description to be valid, as discussed in ref. 46.

Therefore, the transient dynamics is equally well described by

MT and RWNS.

Having obtained in Fig. 7 the description of electron relaxation

in the energy axis in quasi-equilibrium dynamics, it is interesting

to extend the local behaviour to the long range diffusion process.

In Fig. 8, the DJ value extracted from the slopes of the mean-

square displacements at different times is plotted versus the

simulation time. A transition from anomalous diffusion to the

steady-state, trap-limited transport is observed. At short-times the

mean square displacement of electrons is not linear with time

(anomalous transport). The diffusion coefficient decreases with

time with a power-law before it reaches its stationary value, as

discussed in recent work by others.47

We have used the maxima of the electron distributions of Fig. 7

to compute the diffusion coefficient at that value of the (quasi)-

Fermi level via eqn (16). We find that, before arriving to the

stationary regime, the time-dependent diffusion coefficient

matches the ‘‘equilibrated’’ value predicted by the MT formalism.

This shows that the condition of local quasi-equilibrium allows

one to predict the fast transient dynamics from steady-state values

that can be obtained analytically, as discussed in section 3.

5. Conclusions

The RWNS method is a computationally simple and versatile

simulation procedure that can be used to study transport in

systems which a broad distribution of trap energies. It has been

proved that it reproduces the main predictions of the multiple-

trapping and hopping transport models in steady state. We have

also seen that a quasi-stationary situation is adopted by the

electron ensemble when the system is approaching this steady

state. The RWNS method can be used to simulate MT and

hopping transport in a variety of situations: transient photovol-

tages and photocurrents, and to analyse the effect of different trap

distributions and geometries.

Acknowledgements

The work was supported by Ministerio de Educación y Ciencia

of Spain under projects MAT2004-05168, ENE2004-01657/

Fig. 7 Electron occupancy distributions as extracted from RWNS

simulations at different times. The distribution of trap energies (DOS)

and the probability function in the steady-state (f(E)) are also included

in the graph.

Fig. 8 Time evolution of the jump diffusion coefficient as extracted

from RWNS calculations (solid line) and prediction of the multiple-

trapping theoretical formula of eqn (29).

4484 | Phys. Chem. Chem. Phys., 2008, 10, 4478–4485 This journal is �c the Owner Societies 2008



ALT and HOPE CSD2007-00007 (Consolider-Ingenio 2010).

JAA also thanks Junta de Andalucı́a for funding under project

P06-FQM-01869.

References

1. H. Scher and E. W. Montroll, Phys. Rev. B, 1975, 12, 2455.
2. F. W. Schmidlin, Phys. Rev. B, 1977, 16, 2362.
3. A. C. Fisher, L. M. Peter, E. A. Ponomarev, A. B. Walker and K.

G. U. Wijayantha, J. Phys. Chem. B, 2000, 104, 949.
4. J. A. Anta, F. Casanueva and G. Oskam, J. Phys. Chem. B, 2006,

110, 5372.
5. J. Nelson, Phys. Rev. B, 1999, 59, 15374.
6. J. Bisquert, Phys. Chem. Chem. Phys., 2008, 10, 49.
7. L. M. Peter, J. Phys. Chem. C, 2007, 111, 6601.
8. A. Solbrand, A. Henningsson, S. Sodergren, H. Lindstrom,

A. Hagfeldt and S. E. Lindquist, J. Phys. Chem. B, 1999, 103,
1078.

9. R. Konenkamp, Phys. Rev. B, 2000, 61, 11057.
10. J. Nelson and R. E. Chandler, Coord. Chem. Rev., 2004, 248, 1181.
11. J. Bisquert and V. S. Vikhrenko, J. Phys. Chem. B, 2004, 108,

2313.
12. L. M. Peter, A. B. Walker, G. Boschloo and A. Hagfeldt, J. Phys.

Chem. B, 2006, 110, 13694.
13. T. Tiedje and A. Rose, Solid State Commun., 1981, 37, 49.
14. J. Bisquert, Phys. Chem. Chem. Phys., 2008, 10, 3175.
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