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ABSTRACT 20 

The number of open access databases containing experimental and predicted collision cross section 21 

(CCS) values is rising and leads to their increased use for compound identification. However, the 22 

reproducibility of reference values with different instrumental designs and the comparison between 23 

predicted and experimental CCS values is still under evaluation.  24 

This study compared experimental CCS values of 56 small molecules (Contaminants of Emerging 25 

Concern) acquired by both drift tube (DT) and travelling wave (TW) ion mobility mass spectrometry 26 

(IM-MS). The TWIM-MS included two instrumental designs (Synapt G2 and VION). The experimental 27 

TWCCSN2 values obtained by the TWIM-MS systems showed absolute percent errors (APEs) < 2% in 28 

comparison to experimental DTIMS data, indicating a good correlation between the datasets. 29 

Furthermore, TWCCSN2 values of [M-H]- ions presented the lowest APEs. An influence of the compound 30 

class on APEs was observed.  31 

The applicability of prediction models based on artificial neural networks (ANN) and multivariate 32 

adaptive regression splines (MARS), both built using TWIM-MS data, was investigated for the first time 33 

for the prediction of DTCCSN2 values. For [M+H]+ and [M-H]- ions, the 95th percentile confidence intervals 34 

of observed APEs were comparable to values reported for both models indicating a good applicability 35 

for DTIMS predictions.  36 

For the prediction of DTCCSN2 values of [M+Na]+ ions, the MARS based model provided the best results 37 

with 73.9% of the ions showing APEs below the threshold reported for [M+Na]+. Finally, 38 

recommendations for database transfer and applications of prediction models for future DTIMS 39 

studies are made.  40 
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1. INTRODUCTION 46 

Ion mobility spectrometry (IMS) has demonstrated to be a powerful additional technique for 47 

compound identification within target, suspect and non-target screening studies in various research 48 

fields [1-4]. IMS allows a conformational separation of ions based on their gaseous mobility through a 49 

drift gas (e.g., N2 or He) under the influence of an electric field. Hence, the hyphenation of IMS with 50 

gas or liquid chromatography (GC or LC) and high resolution mass spectrometry (HRMS) provides an 51 

additional separation dimension [5, 6]. Moreover, the measured drift times can be converted into 52 

collision cross section (CCS) values which describe the rotationally averaged surface of ions for which 53 

collision with the buffer gas occur [7].  54 

Drift tube IMS (DTIMS) and travelling wave IMS (TWIMS) are both designed as dispersive techniques, 55 

allowing all ions to pass through for subsequent analysis and are the most commonly applied designs 56 

[8]. DTIMS separates ions in a low uniform electric field (typically 5–100 V/cm). This permits a direct 57 

calculation of CCS values from the measured arrival times (tA; i.e., the time it takes the ion to travel 58 

from the entrance of the drift tube to the detector) without the use of external calibrants provided 59 

that various measurements are conducted applying different electric fields[9, 10]. This is commonly 60 

referred to as the stepped field calibration method. On the contrary, the single field calibration 61 

method allows the calculation of CCS values directly from the tA measured at a single electric field 62 

based on a set of calibrant compounds with previously known CCS values [11].  63 

TWIMS instruments operate applying both a radio frequency (RF) and a pulsed differential current 64 

(DC) voltage to the ion mobility cell. While the DC voltage ensures the axial movement of ions, the RF 65 

voltage allows radial ion confinement through periodically alternating between positive and negative 66 

polarities [12]. This creates an electric field in the form of a wave whose height and velocity influence 67 

the separation of ions [8]. For TWIMS measurements, a direct calculation of CCS values from the 68 

measured drift times is not possible since the applied electric field is not uniform. However, CCS values 69 

can be calculated based on a set of predefined calibrants whose reference DTIMS derived CCS values 70 

are available. This approach has been described in detail in previous studies [13, 14]. Additionally, it 71 

has been shown that a structural similarity between calibrants and analytes is essential to ensure 72 

reliable CCS calculations [15, 16]. 73 

Since IMS allows the separation of ions of interest from coeluting matrix components, CCS values are 74 

independent of potential matrix effects or the applied chromatographic conditions[9, 17]. Hence, they 75 

can serve as an additional identification parameter in feature annotation and compound identification 76 

leading to a reduction of false positive identifications [18, 19]. Furthermore, IMS has the potential to 77 

separate isomeric and isobaric compounds. As shown in previous studies, this is especially relevant if 78 

the isomeric compounds have similar retention times (RT) or fragmentation patterns which do not 79 
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allow their unequivocal identification [19-21]. Additionally, when implemented within data-80 

independent acquisition (DIA) workflows, IMS facilitates the removal of spectral interferences as these 81 

show different drift times than the compound of interest and its corresponding fragments. This leads 82 

to cleaner mass spectra further improving compound annotation [19, 22]. 83 

The implementation of IMS in suspect and non-target screening studies on small molecules has been 84 

discussed in detail in previous studies [21, 23-25]. Thereby, CCS values of signals of interest are 85 

matched against CCS values of reference standards, scientific literature or open-source libraries [26-86 

28], including several online platforms which contain curated CCS datasets from various sources [29-87 

31]. Moreover, the inclusion of ion mobility data in widely adopted confidence levels for identification 88 

of small molecules in environmental studies, including a cut-off value of 2% for the deviation between 89 

experimental and reference CCS values, has been proposed recently [21].  90 

However, the high number of compounds monitored in suspect and non-target screening studies and 91 

the unavailability of reference standards lead to a lack of reference CCS values for many suspects, 92 

currently limiting the use of CCS for compound identification. This data gap can in theory be filled 93 

through the in-silico prediction of CCS values. Various prediction tools for different compound classes 94 

are available in the literature [31-36]. These tools are based on experimental CCS values and apply 95 

different predictions models including machine-learning algorithms [31], such as artificial neural 96 

networks (ANN) [36]. Prediction tools have demonstrated good prediction accuracies making them a 97 

valuable addition for suspect and non-target screening studies [37, 38].  98 

Despite the high efforts put into CCS database building and the development of prediction models, 99 

CCS values remain an estimated empirical value which is influenced by the instrumental design and 100 

the applied calibration approach. The uncertainty of IMS-MS measurements has been assessed in 101 

detail previously [10, 39]. Several studies have investigated the inter-laboratory and inter-102 

instrumental reproducibility of CCS measurements [10, 14, 40]. Stow et al. reported a relative standard 103 

deviation (RSD) of 0.29% for stepped-field measurements of DTCCSN2 values in three different 104 

laboratories of which all applied DTIMS [10]. Hinnenkamp et al. compared CCS values acquired using 105 

TWIMS and DTIMS instruments for a set of 124 compounds and reported absolute errors of < 1% for 106 

66%; between 1-2% for 27% and >2% for 7% of the proton adducts of the investigated compounds 107 

[14].  108 

Based on a set of 56 contaminants of emerging concern (CECs) and their metabolites, the present 109 

study aimed to further investigate the reproducibility of CCS values acquired on DTIMS and two 110 

TWIMS instruments applying different calibration approaches and evaluating factors potentially 111 

causing deviations. This work also included the investigation of CCS values for deprotonated ion which 112 

were not present in the above mentioned DTCCSN2 and TWCCSN2 comparison [14]. Furthermore, DTIMS 113 
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derived CCS values were compared with predicted values employing two prediction models built with 114 

TWIMS derived data, namely an ANN based prediction tool and a Multiple Adaptive Regression Splines 115 

(MARS) prediction model previously developed by Bijlsma et al. [36] and by Celma et al. [41], 116 

respectively. Finally, we also aimed to estimate the cut-off values for database transfer from one 117 

instrumental design to another and the applicability of TWIMS-based prediction models for DTIMS 118 

measurements. This study adds to the detailed recommendations for the reporting of experimental 119 

IMS measurements published by Gabelica et al. [9] and it proposes the minimum and most relevant 120 

parameters to be reported for open-access databases of predicted CCS values. These 121 

recommendations will further contribute to a more uniform reporting of IMS data and will allow 122 

potential users to critically review and assess comparability with their own data. The presented results 123 

are expected to serve as a valuable additional guideline for the implementation of IMS in future 124 

studies on small molecule identifications.  125 

 126 

2. Materials and Methods 127 

2.1 Selection of standards 128 

A set of 56 compounds, including five compound classes: triazoles, organophosphate flame retardants 129 

(OPs), plasticizers and metabolites of the latter two, were selected for this comparison study. The 130 

selection of compounds was based on the following considerations: i) inclusion of various compound 131 

classes, incl. metabolites, ii) availability of ions in both ionization polarities, and iii) availability of 132 

reference standards, shared between laboratories. The selected compounds including their name, 133 

abbreviation, molecular formula, structure, SMILES, monoisotopic mass, InChi and InChiKey are 134 

summarized in Table S1. The sources from which the reference standards were acquired can be found 135 

in the study from Belova et al. [20]. 136 

 137 

2.2 IMS measurements 138 

2.2.1 DTIMS measurements 139 

The DTCCSN2 values of the compounds included in this study were previously reported[20] and are 140 

summarized in Table S1. In the corresponding publication, a detailed description of the method used 141 

for the acquisition of DTCCSN2 values can be found. In brief, all DTCCSN2 values were acquired on an 142 

Agilent 6560 DTIM-QTOF applying the single-field calibration method. For CCS calibration, the ESI low-143 

concentration tune mix (Agilent Technologies, Santa Clara, USA) was used. The reference DTCCSN2 144 

values of the tune mix ions were acquired by Stow et al. on a reference DTIMS system [10] and are 145 

summarized in Table S2 and Table S3. Each standard was introduced in the DTIMS-QTOF by direct 146 
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injection at 1 ng/µL. For each standard, five measurements were conducted. The average DTCCSN2 value 147 

and (relative) standard deviations are reported (Table S1).  148 

 149 

2.2.2 TWIMS measurements (VION) 150 

The first set of TWCCSN2 values was acquired on a VION IMS-QTOF mass spectrometer (Waters, Milford, 151 

MA, USA), equipped with an electrospray ionization (ESI) interface operating in positive and negative 152 

ionization modes. The ionization source was operated applying the following voltages: capillary 153 

voltage of 0.8 kV; cone voltage 40 V with desolvation temperature set to 550 °C, and the source 154 

temperature to 120 °C. Nitrogen (N2) was used as the drying gas and nebulizing gas. The cone gas flow 155 

was 250 L/h and desolvation gas flow of 1000 L/h. MS data were acquired in HDMSE mode, over the 156 

range m/z 50-1000, with N2 as the drift gas, an IMS wave velocity of 250 m s-1 and wave height ramp 157 

of 20-50 V. Leucine enkephalin (m/z 556.2766 and m/z 554.2620) was used for mass correction in 158 

positive and negative ionization modes, respectively. Two independent scans with different collision 159 

energies were acquired during the run: a collision energy of 6 eV for low energy (LE) and a ramp of 28-160 

56 eV for high energy (HE). A scan time of 0.3 s was set in both LE and HE functions. Nitrogen (≥ 161 

99.999%) was used as collision-induced dissociation (CID) gas. All data were examined using an in-162 

house built accurate mass screening workflow within the UNIFI platform (version 1.9.4) from Waters 163 

Corporation. More details about the methodology followed can be found elsewhere [21]. 164 

 165 

2.2.3 TWIMS measurements (Synapt G2) 166 

The second set of TWIMS derived TWCCSN2 values was acquired on a Synapt G2 HD mass spectrometer 167 

(Waters, Milford, MA, USA) equipped with a nano-electrospray ionization source. The ionization 168 

source was operated applying the following voltages: capillary voltage 2.5 kV, extraction cone 5 V; 169 

sample cone 35 V; trap collision energy 4.0 V; transfer collision energy 4.0 V; trap DC bias 35 V. The 170 

wave velocity was set to 1000 m/s at a constant wave height of 40 V. The gas pressures within the 171 

instrument were set as follows: desolvation gas flow 35 L/h (at a temperature of 150 ˚C); trap gas flow 172 

0.4 mL/min; IMS gas flow 90 mL/min; helium cell gas flow 180 mL/min. For sample infusion, in-house 173 

pulled and gold-coated borosilicate capillaries were used.  174 

For the positive ionization mode, calibration compounds proposed by Campuzano et al. were used to 175 

calculate TWCCSN2 values[42]. For the negative ionization mode, poly-DL-alanine was chosen for CCS 176 

calibration based on the data published by Bush et al. [43]. The molecular formulae, SMILES, CAS 177 

numbers, sources of purchase of the reference standard and reference CCS values of the calibrants 178 

and QA compounds are summarized in Table S4. 179 
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Solutions of the calibration compounds were prepared in water/methanol (50/50; v/v) containing 180 

0.1% formic acid at concentrations between 0.12 ng/µL and 0.61 ng/µL (10-6 M). Solutions of analytes 181 

and quality assurance (QA) compounds were prepared at 1ng/µL in water/acetonitrile (50/50; v/v) 182 

containing 0.1% formic acid. To all infused solutions (both calibrants and analytes) leucine-enkephalin 183 

was spiked prior to infusion at a concentration of 5 ng/µL to be used as a lock-mass for mass calibration 184 

within data analysis. For the measurement of TWCCSN2 values, all analytes were infused in triplicate. 185 

The instrument was operated using the MassLynx software (version 4.1 SCN 781). After recalibration 186 

based on the added lock-mass of leucine-enkephalin, extracted ion mobilograms for each calibrant 187 

were obtained to allow establishing individual drift time values. The latter were then used to obtain 188 

the calibration curves for positive and negative ionization modes (Figure S1) that enable the 189 

calculation of TWCCSN2 values. The detailed workflow for TWCCSN2 calculations has been described in 190 

detail in previous studies [13, 14].  191 

 192 

2.3 Quality assurance (QA) measures 193 

Within each instrumental design used in this study, QA measures were implemented. For DTIMS, the 194 

acquisition of DTCCSN2 values of nine QA compounds was conducted within each analytical batch. For 195 

these QA compounds reference DTCCSN2 values acquired on a reference DTIMS system were available  196 

[10]. The QA measures and results of the DTIMS measurements have been described in detail 197 

previously [20].  198 

For TWCCSN2 on the VION system, a set of nine QA compounds included in the System Suitability Test 199 

(SST) mix provided by the manufacturer was used to evaluate the accuracy and performance of the 200 

instrument as well as to ensure the reproducibility of the measurements. The molecular formulae, 201 

SMILES and reference CCS values of the Vion QA compounds are summarized in Table S5. 202 

Terfenadine, sulfaguanidine, sulfadimethoxine and caffeine were used as QA compounds for 203 

measurements on the Synapt G2 system in positive and sulfaguanidine and sulfadimethoxine in 204 

negative ionization mode, respectively. The selection of QA compounds was based on the compounds 205 

included in the SST mix used for the TWIMS measurements on the Waters VION instrument and aimed 206 

to serve as a QA measure for measurement reproducibility between the two TWIMS set-ups used in 207 

this study. Reference CCS values of the QA compounds were provided by the manufacturer (Table S4).  208 

 209 

2.4 CCS predictions 210 

2.4.1 Artificial Neural Network (ANN) based prediction model 211 

ANN predictions of CCS values were made using Alyuda NeuroIntelligence 2.2 (Cupertino, CA) by 212 

applying a predictor previously developed and optimized [36]. Briefly, eight relevant molecular 213 
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descriptors of the selected compounds were obtained from an Online Chemical Database 214 

(www.ochem.eu) [44]. The ANN predictor, trained by means of a database of empirical TWCCSN2 values 215 

for 205 protonated small molecules, consisted of a neural network structured in three layers with 8-216 

2-8-1 distribution. The relative error of CCS prediction was within 6% for the 95th percentile of all 217 

values for protonated ions and 8.7% for sodium adducts. Further details on the methodology can be 218 

found elsewhere [36].  219 

 220 

2.4.2 Multivariate Adaptive Regression Splines (MARS) based prediction model 221 

CCS predictions using Multivariate Adaptive Regression Splines were performed as follows: the 222 

statistical model was trained with empirical TWCCSN2 values of a total number of 470 protonated ions 223 

and a set of 7 molecular descriptors obtained from the Online Chemical Database (www.ochem.eu) 224 

[44]. The optimized model yielded an accuracy of 4.0% and 5.9% for the 95th percentile of predicted 225 

CCS values of protonated and deprotonated ions, respectively. Moreover, an additional and unique 226 

model was developed for predicting CCS values of sodium adducts obtaining an accuracy of 5.3% (95th 227 

percentile). More details of these prediction models can be found elsewhere [41]. 228 

 229 

3. RESULTS AND DISCUSSION 230 

3.1 Quality control and quality assurance results. 231 

Figure S2 summarizes the QA approaches implemented in the DTIMS and TWIMS measurements. This 232 

approach used within DTIMS measurements allowed the comparison with reference values obtained 233 

using the same instrumental design leading to low percent errors (PE) (all < 0.2%) [20]. This confirmed 234 

the reproducibility and accuracy of the DTIMS system used in this study.  235 

Within the acquisition of TWCCSN2 values on the TWIMS VION system, the analysis of an SST mixture 236 

containing nine compounds was included (Table S5). For these compounds, reference CCS values were 237 

provided by the manufacturer. As it is the case for other reference CCS values used for TWIMS 238 

measurements [42, 43], the provided CCS values were derived from DTIMS based measurements 239 

conducted on a modified Synapt G2 instrument. The VION instrument performance was satisfactory 240 

based on a 2% threshold for the deviation between expected and empirical CCS values.  241 

The selection of suitable QA compounds for TWCCSN2 measurements on the Synapt instrument aimed 242 

to show an overlap with the SST compounds used on the VION system to investigate the 243 

reproducibility between the two TWIMS set-ups. Nevertheless, the QA approaches of both TWIMS 244 

systems must be viewed critically as in both cases experimental TWCCSN2 values are compared with 245 

DTIMS data. Thus, this approach represents rather a comparison of measurements between the 246 

different TWIMS set-ups than a fully independent QA approach.  247 

http://www.ochem.eu/
http://www.ochem.eu/
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The results of the Synapt G2 QA measurements are summarized in Table S6. Average absolute percent 248 

errors (APEs) of 1.42% and 0.60% were observed for measurements in positive and negative ionization 249 

polarities, respectively. Both values fall within the 2% cut-off for the evaluation of SST measurements 250 

on the VION system and indicate a good reproducibility between the two TWIMS set-ups. 251 

Nevertheless, two QA compounds (sulfaguanidine and caffeine) showed deviations slightly above 2% 252 

in positive mode. These deviations must be interpreted critically as they do not indicate a poor 253 

instrumental performance, but rather a deviation between experimental TWIMS derived CCS values 254 

and the DTIMS based reference values. This will further be investigated in this study. The observed 255 

APEs can also be caused by the low CCS values observed for these compounds (CCS < 150 Å2) whereby 256 

even small deviations in measured tA lead to high percent errors. 257 

3.2 Selection of reference CCS values for further comparisons  258 

The comparison of experimental DTIMS and TWIMS derived CCS values was based on a set of 56 259 

standards including five compound classes: triazoles, organophosphate flame retardants (OPs), 260 

plasticizers and metabolites of the latter two. Data on proton and sodium adducts, as well as 261 

deprotonated ions were included. In general, the comparison between sets of CCS values is commonly 262 

conducted through reporting the observed (absolute) percent errors [14, 40, 45]. When applying this 263 

approach for the present study, the question about which set of CCS values to use as the reference 264 

set arose. Since none of the datasets was acquired with DTIMS stepped-field calibration, none of the 265 

datasets can be viewed as a calibrant-independent reference. To validate the two prediction models 266 

applied in this study, predicted CCS values have already been compared with the corresponding 267 

experimental TWIMS datasets [36]. Therefore, the use of the TWCCSN2 dataset as reference would 268 

reproduce this approach and exclude the available DTCCSN2 values from the comparison. Additionally, 269 

the choice of the reference dataset should allow the comparison of observed deviations between the 270 

different datasets. Therefore, DTCCSN2 values were used as reference for all calculations included in this 271 

study. Even though these values were acquired using the single-field calibration approach and thus 272 

required calibrants, the influence of the selected calibrants on the reproducibility of measurements 273 

was expected to be lower than for TWIMS calculations [10, 43]. Ultimately, the following equation 274 

was applied for the calculation of percent errors between DTIMS and TWIMS derived or predicted CCS 275 

values: 276 

 
Error [%]= (

CCSTWIMS/pred - CCSDTIMS

CCSDTIMS
)  ⋅ 100 (1) 

 277 

3.3 Comparison of experimental TWCCSN2 and DTCCSN2 values 278 
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For the 56 compounds, 108 DTCCSN2 values were included in the DTIMS reference database as several 279 

of the compounds were detected both as proton and sodium adducts and/or in both ionization 280 

polarities. A total of 29 [M+H]+ ions, 46 [M+Na]+ ions and 33 [M-H]- ions were observed (Table S1). The 281 

acquisition of TWCCSN2 values on the TWIMS VION instrument allowed the detection of a total of 94 282 

ions which corresponded to 50 compounds available for the comparison (Table S7). Thus, six 283 

compounds were not detectable on the TWIMS VION set-up which was assumed to be caused by 284 

differences in ionization source parameters and geometries leading to differences in ionization 285 

efficiencies. The 94 detected ions included 22 [M+H]+ ions and 40 [M+Na]+ ions, as well as 32 [M-H]- 286 

ions. Measurements on the Synapt G2 system yielded a total of 97 TWCCSN2 values which corresponded 287 

to 54 compounds detected (Table S7). Two compounds, tris(2-ethylhexyl)trimellitate and bisphenol A 288 

bis(diphenyl phosphate), were not detected on the Synapt G2 and VION instruments. Hence, for a 289 

total of 50 compounds, at least one CCS value was available from each of the instrumental set-ups. 290 

Within the 97 ions detected on the Synapt G2 system, 23 [M+H]+, 41 [M+Na]+ and 33 [M-H]- ions were 291 

included.  292 

As displayed in Figure S3, 83% and 82% of all included ions showed APEss < 2% for the comparison of 293 

DTIMS data with the VION and Synapt systems, respectively. For protonated adducts, 64% (VION) and 294 

57% (Synapt) of the observed ions had APEs < 2%. For the sodium adducts, the observed percentages 295 

of ions with APEs < 2% were 83% and 93% for the VION and Synapt systems, respectively. 296 

Deprotonated ions showed the lowest APEs within the comparison between TWIMS and DTIMS 297 

systems. For both VION and Synapt G2 systems, only one [M-H]- ion showed an APE > 2% resulting in 298 

97% of [M-H]- ions with APEs < 2%.  299 

For a more detailed comparison, linear correlations between experimental DTIMS and TWIMS 300 

datasets were investigated. Figure S4 shows the correlations observed between DTCCSN2 and TWCCSN2 301 

values acquired on the VION (Figure S4A) and Synapt (Figure S4B) systems.  302 

For both TWIMS systems, high correlation coefficients (R2) were observed indicating a good linear 303 

correlation between DTCCSN2 and TWCCSN2 datasets. However, the R2 of 0.9889 observed for VION data 304 

was slightly lower than for Synapt data (R2 = 0.9929). Based on a visual inspection of the linear plots, 305 

the higher correlation coefficient observed for Synapt data is assumed to be mainly caused by the 306 

lower deviations from the trendline observed for CCS values of plasticizer metabolites in comparison 307 

with VION derived data. Additionally, interpolated regression lines indicate that TWCCSN2 datasets can 308 

be correlated to DTCCSN2 datasets with a slope close to 1 (0.9999 for Vion and 1.0180 for Synapt). This 309 

indicates that deviations between DTCCSN2 and TWCCSN2 are negligible, and data can be well compared. 310 

In order to investigate CCS deviations more in detail and distinguish between ionization polarities and 311 
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ion species, combined violin and box plots of the observed percent errors were created for each 312 

dataset (Figure 1).  313 

 314 

 315 

Figure 1: Combined box and violin plots of the error distributions observed when comparing DTCCSN2 values with 316 
experimental TWCCSN2 values i.e., Synapt and Vion acquired in either positive or negative ionization mode. A distinction is 317 
made between proton and sodium adducts. The outliers observed for each dataset are numbered as follows: 1: BTR, 2: 5Cl-318 
BTR, 3: DIDP, 4: DINCH, 5: DIDP, 6: pOH-TPHP, 7: EHDPHP, 8: MiBP, 9: TDCIPP. The full names of the mentioned compounds 319 
can be found in Table S3. A deviation of +/- 2% is indicated with a red dashed line.  320 

Figure 1 shows the combined violin and boxplots of error distributions observed for experimental 321 

TWIMS data acquired in either negative or positive ionization mode. Additionally, bar charts in Figures 322 

S5 and S6 summarize the percent errors observed for each ion of each individual compound. 323 

A threshold of 2% for the use of reference CCS values for compound identification was proposed, 324 

within a recent study [21]. To evaluate the applicability of this threshold for databases acquired with 325 

different instrumental designs, all APEs observed in this study were compared to this cut-off value.  326 

For [M+H]+, both the Synapt G2 and VION systems show comparable error distributions with mean 327 

values of -1.9% and -1.4% and interquartile ranges (IQR) of 2.1% and 2.5%, respectively. The negative 328 

mean values indicate a clear off-set between DTIMS and TWIMS derived data as most TWCCSN2 values 329 

of proton adducts where lower than the corresponding DTCCSN2 values. Except for the VION derived 330 

TWCCSN2 value of tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) with a deviation of -2.84%, all other 331 

deviating TWCCSN2 values of [M+H]+ ions belonged either to the group of triazoles or organophosphate 332 

flame retardants (and metabolites) carrying at least two phenyl moieties. Triazoles represent the class 333 
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with the lowest m/z values (m/z 118 – 154) investigated in the study. Low m/z values result in lower 334 

CCS values for which even small absolute deviations can lead to high percentual errors. As it was 335 

previously observed for diphenyl phthalate (DPP) [20], aromatic substitutes are assumed to lead to 336 

more compact ions resulting in lower DTCCSN2 values. The observed deviations of TWIMS data lead to 337 

the assumption that this effect has a higher influence within DTIMS measurements, indicating differing 338 

molecular conformations of the described compounds between TWIMS and DTIMS systems.  339 

Interestingly, the error distributions observed for [M+Na]+ show a smaller spread in comparison to the 340 

protonated ions. The deviations calculated for [M+Na]+ showed mean values of -0.7% and -1.0% and 341 

IQRs of 1.0% and 1.0% for the Synapt and VION systems, respectively. A study by Hinnenkamp et al. 342 

reported slightly higher percent errors for sodium adducts in comparison to protonated ions: 87% of 343 

the included [M+Na]+ ions showed APEs < 2% while this percentage was 93% for [M+H]+ [14]. This was 344 

assumed to be caused by the fact that sodium adducts were not included in the ions used as calibrants 345 

for TWIMS measurements. However, these observations were not reproduced in this study which 346 

might be caused by different compound classes or sample sizes included in the two studies. Again, a 347 

negative off-set between TWCCSN2 and DTCCSN2 values was observed, as most TWCCSN2 values of [M+Na]+ 348 

ions were lower than the corresponding DTIMS values (Figures S4 and S5). From the VION derived 349 

TWCCSN2 values of [M+Na]+ ions, for seven values an APE > 2% was observed. Again, four of the seven 350 

values belonged to organophosphate flame retardants (OPs) and their metabolites carrying phenyl 351 

moieties. From the Synapt derived TWCCSN2 values of [M+Na]+ ions, three values showed a APE > 2%. 352 

All of these deviating values overlapped with the deviating VION derived values and included two OPs 353 

carrying phenyl moieties (triphenyl phosphate and diphenylcresyl phosphate). Except for mono-(3-354 

carboxypropyl) phthalate (PE of -2.2%), all remaining deviating TWCCSN2 values of [M+Na]+ ions belong 355 

to the group of halogenated OPs and metabolites. Here, an influence of the applied calibrants is 356 

assumed. While the calibrants used for DTIMS measurements included several halogenated 357 

compounds (Tables S2 and S3), this was not the case for neither the Synapt nor the VION calibrations 358 

possibly leading to the observed high deviations for halogenated compounds. The latter was 359 

confirmed by the fact that the TWCCSN2 values of the [M+H]+ ion of 5-chlorobenzotriazole (5Cl-BTR) 360 

showed the highest deviation of all [M+H]+ ions for both the VION and Synapt systems (outlier nr. 2 in 361 

Figure 1). However, further investigations are needed to confirm these effects for larger sample sizes 362 

and wider m/z ranges.  363 

Within the Synapt dataset of [M+Na]+ ions, three outliers (nr. 3-5 in Figure 1) with higher TWCCSN2 364 

values in comparison to the corresponding DTCCSN2 values were identified. These values derived from 365 

diisodecyl phthalate (DIDP), diisononyl phthalate (DINP) and diisononyl cyclohexane 1,2-dicarboxylic 366 

acid (DINCH). For two of these compounds (DIDP and DINCH), the DTCCSN2 values of sodium adducts 367 



12 
 

were lower than the corresponding values of protonated adducts which was in contrast to the trend 368 

observed for most other compounds included in the DTCCSN2 database[20]. This observation was not 369 

reproduced for the Synapt derived TWCCSN2 values leading to the assumption of different ion 370 

conformations being observed between the TWIMS and DTIMS systems due to slight differences in 371 

ionization processes. Alternatively, the fact that the used DIDP and DINCH standards represented 372 

mixtures of isomers could also lead to the described observations.   373 

During the comparison of datasets acquired in positive ionization polarity, an unexpectedly high error 374 

(15.31%) was observed for the proton adduct of bis(1,3-dichloro-2-propyl) phosphate (BDCIPP). A 375 

close reinvestigation of the DTIMS raw data indicated that the high DTCCSN2 value was caused by an 376 

impurity of tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) in the BDCIPP standard from which latter 377 

was formed through post drift tube fragmentation. This led to a signal for BDCIPP which showed the 378 

same drift time as tris(1,3-dichloro-2-propyl) phosphate leading to the high CCS value. Within the plots 379 

of m/z versus CCS values which were created from the DTIMS dataset[20], the incorrectly assigned 380 

CCS values had not shown a clear deviation from the observed trendlines. Thus, the incorrect 381 

assignment could not be identified prior to the comparison conducted in this study. The BDCIPP 382 

standard was reanalyzed using the same workflow[20]. These measurements lead to a DTCCSN2 value 383 

157.35 Å2 and a lower observed deviation (-1.5 %). This value was used for all comparisons described 384 

above and was added to the previously published DTIMS database to correct the incorrect assignment.   385 

For the dataset acquired in negative ionization polarity, the observed deviations show a lower spread 386 

compared to the positive ionization mode. This reflects in the low IQRs of 0.7% and 0.9% for Synapt 387 

and VION datasets, respectively. Within the Synapt G2 dataset, all APEs of negatively charged ions 388 

were < 2%, except for the outlier indicated in Figure 1 (outlier nr. 1, [M-H]- ion of benzotriazole).  For 389 

the VION dataset, one out of 32 CCS values of [M-H]- ions showed an APE of > 2% ([M-H]- ion of 2,4-390 

di-(2-ethylhexyl) trimellitate). These observations indicate a high reproducibility of CCS values of [M-391 

H]- ions between different instrumental set-ups. The observed high reproducibility might be due to 392 

the fact that OPs and their metabolites (for which high deviations were observed in positive ionization 393 

polarity) were not included, since these compounds were not detected in negative ionization polarity. 394 

Additionally, an opposite trend in comparison to data obtained in positive ionization polarity was 395 

observed: both datasets showed a positive median error indicating a positive off-set between TWIMS 396 

and DTIMS data. The included compound classes which differed between the datasets might have an 397 

influence on these effects.  398 

Good correlations were observed between DTIMS and TWIMS derived CCS values. Nevertheless, a few 399 

compounds showed high deviations of up to -4.3% and -6.6%. Several potential factors which might 400 
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cause the high deviations could be identified and must be considered when interpreting the quality 401 

and reliability of the presented dataset. Firstly, an influence of the compound class can be assumed 402 

as most of the highly deviating values derived from a particular class (OPs and their metabolites 403 

carrying at least two phenyl substituents). These effects might be traced back to differences in ion 404 

conformations between DTIMS and TWIMS systems for certain classes. Secondly, an effect of the 405 

applied calibration approach on CCS deviations is considered possible. Several previous studies have 406 

characterized the influence of the calibrants applied for TWIMS measurements and addressed the 407 

advantage of a match in compound class and charge state between calibrants and analytes. However, 408 

most of these studies focused on proteomic and lipidomic applications, which means that only a 409 

limited amount of studies including small molecules applications can be found [15, 16, 46]. Recently, 410 

a study assessed the influence of different calibration approaches on TWIMS measurements of 411 

steroids evaluating and comparing the observed bias. Additionally, a new set of reference DTIMS 412 

derived CCS values for TWIMS calibration was proposed whose implementation improved the 413 

reproducibility of CCS measurements on different instrumental set-ups [47]. These observations 414 

highlight the need of similar evaluations of different calibration approaches for the analysis of CECs 415 

and a potential implementation of the newly proposed sets of reference CCS values. A critical manual 416 

evaluation of the calibration approaches applied for the compilation of TWIMS derived databases thus 417 

remains crucial before database implementation for different instrumental designs and/or calibration 418 

approaches. Lastly, the described limitations confirm that CCS values represent empirical 419 

measurements which are influenced by several factors and do not allow the establishment of a “true 420 

CCS value”. It is recommended to assess potential deviations based on a subset of reference standards 421 

of the class of interest prior to applying a database acquired with a different instrumental design. 422 

Subsequently, the cut-off value of 2% which has been proposed previously[21] might need to be 423 

adjusted for databases deriving from different instrumental designs or different calibration 424 

approaches.  425 

3.4 Comparison of predicted CCS and experimental DTCCSN2 values 426 

The experimental DTCCSN2 values were compared with predicted datasets which derived from two 427 

different prediction models, namely an ANN and a MARS based model [36, 41]. Both models were 428 

built using experimental TWIMS derived CCS values. To the best of our knowledge, this is the first 429 

study investigating the capabilities of these models in predicting CCS values for DTIMS measurements.  430 

During the development of the ANN based prediction model, an APE < 6% was observed for 95% of 431 

the protonated ions when comparing predicted with experimental TWCCSN2 values. To be able to 432 

compare these observations, the same threshold (6%) was applied to access the deviations of ANN 433 

based predicted CCS values (further referred to as CCSANN) of [M+H]+ ions presented here. A 6% 434 
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threshold was also used to access deviations of [M-H]- ions, even though it must be noted that the 435 

ANN based model was built using [M+H]+ data, but not evaluated for [M-H]- ions within its 436 

development. For [M+Na]+ ions, an APE of 8.7% was reported for the 95th percentile confidence 437 

interval [36]. This higher values is caused by the fact that the ANN based prediction model has been 438 

developed without the inclusion of [M+Na]+ ions in the training, validation and blind datasets [36]. On 439 

the contrary to the [M-H]- ions, [M+Na]+ data has been evaluated within its development. Hence, a 440 

threshold of 8.7% was applied for [M+Na]+ ions as higher APEs can be assumed for this ion species.  441 

Figure 2 shows the combined violin and boxplots of the error distributions observed for predicted CCS 442 

values differentiating between prediction models and ion species. For the linear correlation between 443 

DTCCSN2 and CCSANN values, a correlation coefficient of R2 = 0.9305 and a slope of 0.9753 were observed 444 

(see Figure S7A). For [M+H]+ ions, the ANN based model showed a median APE of -1.8% and an IQR of 445 

1.6%. Due to the small IQR (in comparison to other ion species) which influences the upper and lower 446 

fence (defined as the Q3/Q1 +/- 1.5 x IQR), several outliers were observed (see Figure 2). Similar to the 447 

comparison of experimental DTCCSN2 and TWCCSN2
 values, all observed outliers belonged to either OPs 448 

(and metabolites) with at least two aromatic moieties or low-mass (halogenated) triazoles. 449 

Nevertheless, most of the observed outliers fall within the threshold of ± 6% resulting in 93.1% of the 450 

CCSANN values showing an APE < 6%. Comparable results were obtained for CCSANN values of [M-H]- ions 451 

of which 93.9% showed APEs < 6% with only two values exceeding this threshold (CCSANN of mono(2-452 

ethylhexyl) terephthalate and mono(2-ethyl-5-hydroxyhexyl) terephthalate). Therefore, for [M-H]- 453 

and [M+H]+, it can be concluded that the ANN based prediction model can successfully be applied for 454 

DTIMS measurements of small molecules structurally similar to the compound classes investigated 455 

here. Again, the deviations observed for some classes point out the necessity of evaluating the 456 

applicability of the model based on a subset of reference standards.  457 

CCSANN values of [M+Na]+ ions show the highest APE with a median value of -3.7% and an IQR of 6.8%. 458 

From the 46 [M+Na]+ ions included in the comparison, 80.4 % showed an APE below the applied 459 

threshold (< 8.7%).  Similar to the conclusions made within the development of the ANN based model, 460 

a higher cut-off value is recommended when applying the model for the prediction of [M+Na]+ ions 461 

within DTIMS measurements (see below).  462 



15 
 

 463 
Figure 2: Combined violin and boxplots of the error distributions observed when comparing DTCCSN2 values with predicted 464 
CCS values deriving from Artificial Neural Network (ANN) and Multivariate Adaptive Regression Splines (MARS) based models. 465 
For data in positive ionization polarity, a distinction between proton and sodium adducts is made. The outliers observed for 466 
each dataset are numbered as follows: 1: Fyroflex BDP, 2: 5OH-EHDPHP, 3: Fyroflex RDP, 4: TOTP, 5: 4OH-PhP, 6: 5Cl-BTR, 7: 467 
2,4-DEHTM, 8: MEHTP, 9: 5OH-MEHTP, 10: Fyroflex BDP, 11: TOTM. The full names of the mentioned compounds can be 468 
found in Table S3. The thresholds applied for the comparisons are indicated with dashed lines. These thresholds are based 469 
considering the 95th confidence interval of each model. For the ANN based model, thresholds of 6% ([M+H]+ and [M-H]- ions; 470 
red dashed line) and 8.7% ([M+Na]+; orange dashed line) were applied. MARS based data was compared based on thresholds 471 
of 4.1% (red dashed line), 5.9% (orange dashed line) and 5.3% (brown dashed line) for [M+H]+, [M+Na]+ and [M-H]- ions, 472 
respectively.  473 

In contrast to the ANN based prediction model, the MARS based model was validated for all ion species 474 

included here (i.e., [M+H]+, [M+Na]+ and [M-H]- ions). This allowed the reporting of APEs observed for 475 

the 95th percentile of the datapoints for each ion species separately [41]. In detail, these APEs 476 

corresponded to 4.1%, 5.9% and 5.3% for [M+H]+, [M-H]- and [M+Na]+ ions, respectively [41], which 477 

will be used as thresholds to access the deviations presented in this study. 478 

From the CCS values predicted for [M+H]+ ions applying the MARS based model (further referred to as 479 

CCSMARS), 71.9% showed an APE < 4.0%. This corresponds to 9 out of 32 CCSMARS values for [M+H]+ ions 480 

showing an APE above the applied threshold. Two of these deviating CCSMARS values were also 481 

observed as deviating CCSANN values, namely BDP (CCSMARS with a deviation of 9.38%) and 5Cl-BTR 482 

(CCSMARS with a deviation of -6.52%). Additionally, the CCSMARS values of DIDP, DINP and DINCH showed 483 

APEs > 4.0%. The same assumptions as described about the causes of these deviations can be applied 484 

here.  485 
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For the [M+Na]+ ions, 73.9% of which showed an APE <5.3%, a median deviation of -2.3% and an IQR 486 

of 5.2% were observed. This indicates higher (i.e., closer to zero) median values and a smaller IQR than 487 

observed for CCSANN values of sodium adducts. Within the development of the MARS based model, a 488 

separate model was developed for the prediction of CCS values of [M+Na]+ ions. Thereby, 489 

experimental values of [M+Na]+ adducts were included in the training dataset to account for the 490 

higher volume and particularities derived from the allocation of the sodium ion within the molecular 491 

structure influencing the shape and size of ions [41]. The lower APEs observed for CCSMARS values of 492 

sodium adducts confirm the added value of the described approach indicating that the MARS based 493 

model is more suitable for a reliable prediction of CCS values for this ion species. Nevertheless, the 494 

APEs reported here still show higher deviations than observed for the comparison with experimental 495 

TWIMS based values [41] indicating that additional factors influence the accuracy of the prediction.  496 

For CCSMARS values of [M-H]- ions, a median deviation of 0.5% and an IQR of 3.0% were observed. 90.0% 497 

of the CCSMARS values of [M-H]- ions showed an APE < 5.9%. This corresponds to 3 out of 30 CCSMARS 498 

values with an APE >5.9% which are indicated as outliers in Figure 2. Two of the corresponding 499 

compounds (MEHTP and 5-HO-MEHTP) had also shown high deviations within their ANN based 500 

predicted values. Based on the low number of terephthalates and metabolites included in the dataset, 501 

it cannot be stated whether particular structural characteristics or other factors cause the observed 502 

high deviations. The same applies to the high deviation observed for the CCSMARS value of the [M-H]- 503 

ion of 2,4-DEHTM (-6.48%).  504 

 505 

Table 1: The 95th percentiles observed for the absolute percent errors (APEs) between experimental DTCCSN2 values and 506 
predicted CCS values. The latter were predicted applying Artificial Neural Network (ANN) and Multivariate Adaptive 507 
Regression Splines (MARS) based models. 508 

Ion species 
95th percentile of observed APEs 

ANN MARS 

[M+H]+ 6.08% 6.38% 

[M+Na]+ 10.29% 11.13% 

[M-H]- 5.70% 6.66% 

 509 

The percentages of ions showing an APE below the applied thresholds are summarized in Table S9. 510 

Additionally, the 95th percentiles of the absolute percent errors observed for each ion species were 511 

calculated (Table 1). This aimed at estimating thresholds recommended for future applications of the 512 

ANN and MARS based models for DTIMS measurements. From the observed 95th percentiles the 513 

conclusion might be drawn that the ANN based model provides better results for DTIMS predictions, 514 

as all reported values are lower in comparison to the MARS based model.  However, in contrast to the 515 

95th percentiles which were reported within the development of the prediction models[36, 41], the 516 

values reported in this study are based on a smaller sample size. Thus, after grouping the observed 517 
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APEs by size, the reported 95th percentile is strongly influenced by the data points determining the 518 

95% cut-off. Due to the small percentage range and sample size investigated, even slight deviations of 519 

these values towards higher APEs can have strong effects on the calculated percentiles. Especially for 520 

[M+Na]+ ions, this approach does not reflect the added advantages of the MARS based model 521 

described above, thus not allowing the direct use of the 95th percentiles as proposed thresholds. 522 

Nevertheless, the 95th percentiles reported reflect deviations between experimental DTCCSN2 values 523 

and predicted data which are comparable to the observations reported within the development of the 524 

prediction models, thus indicating their applicability for DTIMS measurements. It is recommended to 525 

use the reported 95th percentiles in combination with an assessment of possible deviations for the 526 

compound class of interest to estimate applicable thresholds. The MARS based model is 527 

recommended for the prediction of [M+Na]+ ions[41].  528 

The described considerations indicate the necessity of a critical expert evaluation of the applicability 529 

of a prediction model prior to its implementation. The discussion presented here also points out that 530 

the various factors influencing both the experimental acquisition and prediction of CCS values do not 531 

allow, at this moment, an unsupervised implementation of prediction models and databases acquired 532 

on different instrumental set-ups.  533 

 534 

3.5 Recommendation of parameters to be reported for CCS prediction models 535 

The acquisition of CCS values represents a measurement of empirical values rather than an absolute 536 

and constant physical property. Therefore, a detailed reporting of experimental settings, as well as 537 

applied QA measures is crucial to estimate the influence of these parameters on IMS-MS 538 

measurements and their reproducibility using other instrumental designs. Parameters recommended 539 

to be reported for experimental CCS values have been discussed in detail by Gabelica et al. [9] and 540 

include mainly mobility device hardware parameters, used drift gas and calibrants or QC compounds. 541 

The observed deviations between DTCCSN2 and TWCCSN2
 values described for some of the compound 542 

classes investigated in the presented study confirm the necessity of a unified reporting of 543 

experimental parameters to trace back possible causes for such findings. Adding to these 544 

recommendations, this study proposes a set of parameters recommended to be reported for CCS 545 

prediction models in order to highlight their usefulness for other instrumental designs (Table 2).  546 

 547 

Table 2: Recommended parameters for the reporting of CCS prediction models. 548 

Parameter Recommended information to report 

General General aim of the development. For which compound classes is the model 

being developed? Which experimental datasets will be used for the 

development? 
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Prediction model Characteristics of applied prediction model; settings and descriptors used 

for training of the model 

Training set Detailed information on the identity of compounds used for training of the 

model; ion species included in the training set; detailed description of 

experimental parameters used for the acquisition of experimental CCS 

values used for training of the model 

Validation results Description of results obtained after validating the developed model; 

description of validation dataset and detailed reporting of results for each 

ion species. Which thresholds should be applied in future applications of 

the prediction model? 

Inter-lab validation Evaluation of prediction performance of the model for the particular 

instrument in use. Study of accuracy of prediction for a small set of 

molecules to support the decisions on suspect substances. 

 549 

4. CONCLUSIONS 550 

A dataset containing 106 DTIMS derived DTCCSN2 values including [M+H]+, [M+Na]+ and [M-H]- ions was 551 

compared with both experimental (TWIMS derived) TWCCSN2 values and predicted CCS values. TWCCSN2
 552 

values were acquired on a VION and Synapt G2 system showing absolute errors < 2% for 83% and 82% 553 

of the values, respectively, indicating a good reproducibility between different instrumental designs. 554 

Moreover, good linear correlations were observed for both systems resulting in correlation 555 

coefficients of R2 = 0.9889 (VION) and R2 = 0.9929 (Synapt). Nevertheless, deviations of up to -6.55% 556 

were observed for a few compounds belonging to particular chemical classes of compounds, 557 

Additionally, the applied calibration approaches could not be excluded as a potential cause for the 558 

observed deviations. These findings point out that potential biases of experimental databases built on 559 

data acquired by a different instrumental set-up, need to be evaluated prior to its implementation.  560 

With regards to CCS prediction models, the 95th percentiles of deviations reported for [M+H]+ and [M-561 

H]- ions  between experimental DTCCSN2 values and predicted data were comparable to the values 562 

reported within the development of the ANN and MARS based models, indicating their applicability 563 

for DTIMS measurements. These percentiles can be used to establish thresholds to be applied in future 564 

DTIMS based studies.  However, different parameters such as the aim and compound class for which 565 

the model is developed should be considered prior to its applications. 566 

 567 
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