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A modified perturbation method for
mathematical models with randomness: An
analysis through the steady-state solution to
Burgers’ PDE

J. Calatayuda, J.-C. Cortésa,∗, M. Jorneta

The variability of the data and the incomplete knowledge of the true physics require the incorporation of randomness into the

formulation of mathematical models. In this setting, the deterministic numerical methods cannot capture the propagation

of the uncertainty from the inputs to the model output. For some problems, such as the Burgers’ equation (simplification to

understand properties of the Navier-Stokes equations), a small variation in the parameters causes nonnegligible changes in

the output. Thus, suitable techniques for uncertainty quantification must be used. The generalized polynomial chaos (gPC)

method has been successfully applied to compute the location of the transition layer of the steady-state solution, when

a small uncertainty is incorporated into the boundary. On the contrary, the classical perturbation method does not give

reliable results, due to the uncertainty magnitude of the output. We propose a modification of the perturbation method

that converges and is comparable to the gPC approach in terms of efficiency and rate of convergence. The method is even

applicable when the input random parameters are dependent random variables. Copyright c© 2018 John Wiley & Sons,

Ltd.
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1. Introduction

The numerical simulation of a complex system leads to errors that are usually grouped into three distinct families: model errors,

data errors and numerical errors [1]. The first two types of error reflect the inherent uncertainty in the model predictions. Hence,

randomness must be incorporated from the beginning into the model formulation to predict the true physics correctly.

This is specially true in mathematical models that show high sensitivity to the input parameters. The Burgers’ partial differential

equation (PDE) is a simplification of the incompressible Navier-Stokes equations for the flow of a Newtonian fluid,{
∇ · uuu = 0, in D × (0, T ),

ρuuut + ρ(uuu · ∇)uuu +∇p − µ∇2uuu = 0, in D × (0, T ).
(1)

Here D ⊆ Rd , T > 0, ρ is the constant fluid density, p is the fluid pressure, µ is the fluid viscosity, and uuu is the fluid velocity

represented as a vector field [2]. If we consider the first component of the second equation in (1), call u the first component of

uuu in the spatial domain, let d = 1 and D = (a, b), and the pressure is neglected, we arrive at the viscous Burgers’ PDE:

ut + uux = νuxx , x ∈ (a, b), t ∈ (0, T ),
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Universitat Politècnica de València,
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where ν = µ/ρ is a new constant, the kinematic viscosity. It is the simplest equation that combines nonlinear propagation effects

uux and diffusive effects uxx . The presence of the viscosity ν > 0 smooths out the shock discontinuity that would develop in the

inviscid case. There is thus a transition layer z , defined as the zero of the solution u(t, z) = 0 and which is a region of rapid

variation, whose location at the steady state is supersensitive to small variations in ν and the boundary conditions [3].

Consider the specific Burgers’ PDE {
ut + uux = νuxx , x ∈ (−1, 1), t ∈ (0, T ),

u(−1, t) = 1 + δ, u(1, t) = −1,

where D = (a, b) = (−1, 1). There is a small perturbation δ > 0 in the left boundary. In Physics, this may be due to error

measurements. The steady-state solution (ut = 0) satisfies the ordinary differential equation (ODE) problem{
uu′ = νu′′, x ∈ (−1, 1),

u(−1) = 1 + δ, u(1) = −1.
(2)

The location of the transition layer is the zero u(z) = 0. When δ > 0 is random and the solution u(x) becomes a stochastic

process, appropriate stochastic numerical methods must be carried out to capture this location. In [4], several techniques were

compared: brute-force Monte Carlo simulation, generalized polynomial chaos (gPC) expansions together with the stochastic

Galerkin projection technique, and the perturbation method [5]. The Monte Carlo simulation is a popular statistical method

based on obtaining realizations of the solution u(x), by generating random realizations of the input random parameter [6]. The

statistics of the solution are estimated from the sample statistics. Although it is a robust and easy to implement method, it may

become inefficient due to its non-monotonic and slow convergence. On the other hand, the perturbation method expands u(x) as a

power series in the centered inputs; satisfactory approximations using finite-term series are subject to small variations in the inputs

and the model output [7, 8, 9]. In fact, for the Burgers’ equation (2), no convergence was perceived due to its supersensitivity

nature. The gPC approach showed the main advantage for (2). The solution is expanded in terms of orthogonal polynomials in

the input parameters, and combined with a stochastic Galerkin projection technique [10, 11, 12], rapid approximations of the

solution statistics are obtained.

In this paper we propose a modification of the classical perturbation method to obtain faithful representations of the model

solution. The transition layer of the stochastic solution to (2) will be accurately determined in the random scenario. The

efficiency and accuracy will be comparable to the gPC approach. We will work, firstly, with a random left boundary value 1 + δ,

and secondly, with a random viscosity ν being non-independent to δ. This is of high mathematical interest, as most of the

methods in uncertainty quantification rely on parameterizations based on independent inputs [5].

2. A modified perturbation method

The classical perturbation method is mainly applied to random differential equations. If there is one random input parameter ξ,

the solution u(x) = u(x, ξ) is formally expanded as a Taylor-based series around the mean value E[ξ] [5, 7]:

u(x) =

∞∑
i=0

ui(x) (ξ − E[ξ])i , (3)

where ui(x) are unknown deterministic functions, given by ∂ iξu(x, ξ)|ξ=E[ξ]/i!. The leading coefficient u0(x) represents the

unperturbed part. The expansion is formally substituted into the governing equation, and by matching the terms according to

the powers of ξ − E[ξ], deterministic differential equations for u0(x), u1(x), etc. are obtained recursively. Due to the complexity

of the derivation, in practice the expansion (3) is typically stopped at i ≈ 2. Once the expansion is truncated, the statistics of

u(x) are approximated using the corresponding statistics of the finite-term series. Good approximations are provided only when

the variability of ξ and u(x) is of small magnitude. Indeed, consider the random Lebesgue space

L2 = {η random, ‖η‖2 = (E[|η|2])1/2 <∞}.

The random space L2 is the correct framework for uncertainty quantification, as it corresponds to the set of random variables

with finite variance and its topology preserves the convergence of the expectation and the variance. Suppose that the analytic

expression (3) holds in L2 as

∞∑
i=0

|ui(x)|
∥∥∥(ξ − E[ξ])i

∥∥∥
2

=

∞∑
i=0

∣∣∂ iξu(x, ξ)|ξ=E[ξ]

∣∣
i!

(m2i)
1/2 <∞,

where m2i = E[(ξ − E[ξ])2i ] is the 2i-centered absolute moment. Two conditions are necessary to derive satisfactory

approximations from a truncated perturbed expansion (3):
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1. m2i is not large. Vaguely, this holds if the dispersion and the tails of the distribution of ξ are moderate.

2. u(x, ·) is not too sensitive to small perturbations in ξ, so that its derivatives with respect to ξ are moderate. In the case

of the Burgers’ equation, the solution presents high variations and is extremely sensitive to small changes in the boundary

conditions, thus the reason of the perturbation method performing poor.

Clearly, the expansion (3) is equivalent to the representation

u(x) =

∞∑
i=0

ûi(x)ξi , (4)

where ûi(x) are deterministic coefficients that differ from ui(x) unless E[ξ] is zero. Although with (4) we loose the concept of

expansion in terms of the random perturbation ξ − E[ξ] and we do not have a Taylor series proper, it might be notationally

simpler to use in formal manipulations in x .

In order to avoid poor approximations of u(x) when the amount of variability of ξ and u(x) is high, we propose a different

approach. Truncate (4). We seek an approximation of the form

u(x) ≈
N∑
i=0

ui ,N(x)ξi .

Notice the we are making the deterministic coefficients ui ,N(x) depend on the truncation level N. Now we use the ideas of gPC

expansions, despite no orthogonality relations holding here. We multiply by ξk , k = 1, . . . , N, and apply expectation E:

E[u(x)ξk ] =

N∑
i=0

ui ,N(x)E[ξi+k ].

Let GGG = (E[ξi+k ])0≤i ,k≤N be the Gram matrix corresponding to the canonical polynomial basis {1, ξ, ξ2, . . . , ξN}. The coefficients

uuuN(x) = (ui ,N(x))0≤i≤N are obtained by solving a linear system for each x , GGGuuuN(x) = fff , where fff = (fk)0≤k≤N , fk = E[u(x)ξk ].

The problem in this derivation is that fff depends precisely on the unknown solution u(x). We approximate each fk using a

Gaussian quadrature rule for integration:

fk =

∫
Sξ
u(x, ξ)ξk fξ(ξ) dξ ≈ f̃ Qk =

Q∑
j=1

u(x, y (j))(y (j))kα(j).

Here Sξ is the support of ξ, fξ is the probability density function of ξ, Q is the quadrature degree, y (j) are the nodes defined as

the zeros of the Q-th degree orthogonal polynomial with respect to the weight function fξ, and α(j) > 0 are the weights. For

each y (j), one solves the deterministic governing equation to determine u(x, y (j)). Gauss quadratures are exact for polynomials

of degree 2Q− 1; they yield the highest degree of accuracy. Let f̃ff
Q

= (f̃ Qk )0≤k≤N . We solve the linear system GGGũuuN,Q(x) = f̃ff
Q

,

ũuuN,Q = (ũQ0,N , . . . , ũ
Q
N,N). The final approximation becomes

u(x) ≈
N∑
i=0

ũQi,N(x)ξi .

The statistics of u(x) can be approximated from the statistical moments of ξ. For instance, the expectation and the variance

of u(x) are estimated as

E[u(x)] ≈
N∑
i=0

ũQi,N(x)Ei ,

V[u(x)] = E[u(x)2]− (E[u(x)])2 ≈
N∑

i ,j=0

ũQi,N(x)ũQj,N(x) (Gi j − EiEj) ,

(5)

where Ei = E[ξi ].

In the terminology of uncertainty quantification, this method may be encompassed under the class of pseudospectral

methods [5]. It is a spectral method, in the sense that it reconstructs the functional dependence of the solution on the input

random parameter. Therefore it is expected to inherit the spectral convergence with N of this type of methods. But it is also a

collocation method, as it is based on nodes locations y (j) and an ensemble of deterministic solutions {u(x, y (j))}Qj=1 to achieve

the final approximation. The good thing about collocation methods is the easy implementation. Unlike the stochastic Galerkin

projection method, which requires new deterministic solvers and adaptation of existing codes for the Galerkin system of coupled

differential equations (intrusive approach), the modified perturbation method only requires Q applications of the deterministic

solver for the original governing equation (non-intrusive approach), which may even be carried out in parallel. The construction

of the Galerkin system may not even be clear in some cases, for example when dealing with a simple linear wave equation subject

to random transport velocity [13].

Math. Meth. Appl. Sci. 2018, 00 1–8 Copyright c© 2018 John Wiley & Sons, Ltd. 3
Prepared using mmaauth.cls



Mathematical
Methods in the
Applied Sciences J. Calatayud, J.-C. Cortés, M. Jornet

Obvious changes allow adapting the modified perturbation method to stochastic systems with several input random parameters

ξξξ = (ξ1, . . . , ξs). This is useful for complex models, where there may be different sources of uncertainty. The solution

u(x) = u(x,ξξξ) is approximated as

u(x) ≈
N∑
|iii |=0

uiii ,N(x)ξξξi
ii , (6)

where iii = (i1, . . . , is) represents a multi-index of modulus |iii | = i1 + . . .+ is , and ξξξiii = ξi11 · · · ξ
is
s . All of the previous formulas for

the 1D case are easily adapted to this multivariate setting:

fkkk = E[u(x)ξξξk
kk ], fff = (fkkk)0≤|kkk|≤N ,

GGG = (E[ξξξi
ii+kkk ])0≤|iii |,|kkk|≤N , uuu

N(x) = (uiii ,N(x))0≤|iii |≤N , GGGuuu
N(x) = fff .

In this case, when s is low or moderate, a cubature rule for the integration fkkk based on a tensor product construction from

Q-th degree univariate Gaussian quadratures can be applied: fkkk ≈ f̃ Qkkk . When ξξξ has bounded support, a simple tensor Gauss-

Legendre quadrature may solve the integration problem (in this case fξξξ is not considered as the weight function, but as part of

the integrand). When s is large, the integration becomes more challenging and schemes based on sparse grids shall be chosen.

Notice that no independence assumption for the input parameters has been required. The final approximation becomes

u(x) ≈
N∑
|iii |=0

ũQiii ,N(x)ξξξi
ii ,

where GGGũuuN,Q(x) = f̃ff
Q

, ũuuN,Q = (ũQiii ,N)0≤|iii |≤N , f̃ff
Q

= (f̃ Qkkk )0≤|kkk|≤N .

The modified perturbation method suffers from the so-called curse of dimensionality. When the number of input random

parameters s is large or the quadrature degree Q must be increased, the efficiency is penalized, as lots of deterministic realizations

of the governing equation must be solved (Qs ; exponential growth with s). The convergence of the integration schemes depends

on the smoothness of the corresponding integrand: from exponential convergence if it is analytic, to maybe sub-algebraic

convergence if it is merely continuous. If the integrand is smooth with large derivatives (sharp peaks), then the convergence

rapidity deteriorates. When the integrand is discontinuous, convergence can still be achieved as long as the quadrature nodes do

not coincide with the discontinuity points.

Another issue that we have not commented yet is the possible ill-conditioning of the matrix G. For example, if s = 1 and

ξ ∼ Uniform(0, 1), then G is the well-known Hilbert matrix, which is the typical example of ill-conditioned matrix. In practice,

due to the fast convergence of (6) with N, we expect a small or moderate truncation order N, so G may not pose serious

numerical challenges. Finally, (5) may entail difficulties due to catastrophic cancellation (loss of precision when subtracting two

nearly equal numbers, which might be the case for Gi j and EiEj).

To conclude this section, we state and prove a theoretical result to validate the modified perturbation method. The core idea

of the method is that it constructs the best polynomial approximation in L2.

Proposition 2.1 Consider a stochastic model with input random parameters ξξξ = (ξ1, . . . , ξs). Let u(x) = u(x,ξξξ) be the solution.

If ξξξ has bounded support, and u(x, ·) is continuous on the support of ξξξ, for each x , then

u(x) = lim
N→∞

lim
Q→∞

N∑
|iii |=0

ũQiii ,N(x)ξξξi
ii ,

where the limit on N is regarded in the random Lebesgue space L2, and the limit on Q is pointwise. Moreover, the convergence

is faster depending on the smoothness of u(x, ·) (this kind of convergence is referred to as spectral).

Proof. The continuity of u(x, ·) gives the convergence of the quadrature rule for integration: fkkk = limQ→∞ f̃
Q
kkk . Then uuuN(x) =

limQ→∞ ũuu
N,Q(x), that is,

SNu(x) =

N∑
|iii |=0

uiii ,N(x)ξξξi
ii = lim

Q→∞

N∑
|iii |=0

ũQiii ,N(x)ξξξi
ii .

By definition of the coefficients uiii ,N(x), we have E[{u(x)− SNu(x)}ξξξjjj ] = 0, for 0 ≤ |jjj | ≤ N. Then, considering the Hilbert space

L2 with the inner product E[·], and the closed vector subspace PN(ξξξ) of s-variate polynomials of degree less than or equal to N,

we deduce that SNu(x) is the best approximation to u(x) in PN(ξξξ) ⊆ L2. On the other hand, as u(x, ·) is continuous, for each

x the Weierstrass approximation theorem gives a sequence of polynomials {qN(ξξξ)}∞N=1, of degrees N, that converges uniformly

in ξξξ to u(x,ξξξ). As a consequence,∥∥∥u(x)− SNu(x)
∥∥∥

2
≤
∥∥∥u(x)− qN(ξξξ)

∥∥∥
2
≤ sup

ξξξ

∣∣∣u(x,ξξξ)− qN(ξξξ)
∣∣∣ N→∞−→ 0.
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Remark 2.2 It is a standard result of deterministic ordinary differential equations that, if the map of the governing equation is

of class Cq (0 ≤ q ≤ ∞) with respect to x , u and the parameters ξξξ, then the solution u(x,ξξξ) is Cq in x and ξξξ [14]. Thus, the

condition on the continuity of u(x, ·) in the proposition is actually mild.

3. Application to the steady-state solution to the Burgers’ equation

3.1. Random boundary condition

Consider the steady-state problem (2). In [4], a comparative study between several stochastic methods was performed when the

left boundary perturbation δ follows a Uniform(0, 0.1) distribution and the viscosity ν is 0.05. Although the variability of this

input is small, the propagation to the model output may yield a variability as high as 40 percent. We are interested in the location

of the transition layer z of the mean steady-state solution. Given the stochastic solution u(x), its mean is x 7→ u(x) = E[u(x)].

We seek z such that u(z) = 0. We also want to determine the standard deviation of the solution at z , σ(z) =
√
V[u(z)].

In Tables 1 and 2, we show our computations of z and σ(z) for the Monte Carlo simulation, the gPC-based Galerkin

method with Legendre-chaos (we have chosen Legendre polynomials to perform the gPC expansion because δ has a Uniform

distribution [5]), and the classical and modified perturbation methods. The deterministic problem (2) has been solved using the

trapezoidal rule for the associated first-order ODE (1-step Adams-Moulton method). Due to its A-stability, it works well for

this stiff problem, compared to explicit methods (such as the classical Runge-Kutta scheme) [15, Ch. 4]. The transition layer

is computed using the Newton’s method for roots. The Monte Carlo simulation is time-consuming, specially for this problem

characterized by supersensitivity and the challenge of computing accurately its numerical solution a lot of times (once per

realization). The Legendre-chaos gives converged results up to several significant digits for small orders of basis. The classical

perturbation method does not provide converged results due to the large variability of the model output with δ (see item 2 at the

beginning of the previous section); we tabulate the results up to a fourth-order expansion. Finally, the estimates of the modified

perturbation method are also reported, for truncation level N and quadrature degree Q. A univariate Gauss-Legendre quadrature

rule for integration for the expansion coefficients has been utilized. We observe fast convergence with N, as the gPC approach:

for N = 8 and Q = 8 convergence up to five significant digits is obtained. In terms of efficiency, the gPC-based Galerkin method

of degree N requires the numerical solution of N + 1 coupled differential equations, which needs additional efforts in adapting

code, while the modified perturbation method requires solving Q uncoupled governing differential equations.

M = 100 M = 1000 M = 2000 gPC N = 1 N = 2 N = 3 N = 4

z 0.81116 0.81486 0.81389 0.81391 0.82316 0.82382 0.82382 0.82380

σ(z) 0.43267 0.41634 0.40623 0.41403 0.34932 0.34896 0.32801 0.32801

Table 1. Location of the transition layer z of the mean steady-state solution, u(z) = 0, and standard deviation at z , σ(z). Case

δ ∼ Uniform(0, 0.1) and ν = 0.05. Monte Carlo simulation with M realizations, gPC converged results with basis order 10, and

classical perturbation method up to N-th order expansion.

(N,Q) = (8, 5) (N,Q) = (8, 6) (N,Q) = (8, 8) (N,Q) = (8, 10)

z 0.81391 0.81391 0.81391 0.81391

σ(z) 0.42629 0.41408 0.41403 0.41403

Table 2. Location of the transition layer z of the mean steady-state solution, u(z) = 0, and standard deviation at z , σ(z). Case

δ ∼ Uniform(0, 0.1) and ν = 0.05. Modified perturbation method with truncation order N and quadrature degree Q.

Figure 1 depicts the average steady-state solution u(x) and the standard deviation σ(x) of the steady-state solution, computed

using the modified perturbation method for (N,Q) = (8, 8), together with the extreme deterministic solutions for δ = 0 and

δ = 0.1. This figure is analogous to that presented in [4] employing the gPC-Galerkin method. We observe that the highest

dispersion of the solution is produced near the transition layer, as it is the region of fastest variation.

3.2. Dependent random boundary condition and viscosity

In (2), let (δ, ν) = (0.1Z1, 0.01Z2 + 0.04), where (Z1, Z2) ∼ Dirichlet(9, 6, 6):

f(δ,ν)(δ, ν) =

{
4190266080δ8ν5(1− δ − ν)5, δ > 0, ν > 0, 1− δ − ν > 0,

0, otherwise.
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Figure 1. Average steady-state solution u(x) (solid line) and standard deviation σ(x) of the steady-state solution (dashed line), computed using the modified

perturbation method for (N,Q) = (8, 8), together with the extreme deterministic solutions for δ = 0 (dotted line) and δ = 0.1 (dotted dashed line). Case

δ ∼ Uniform(0, 0.1) and ν = 0.05.

This is a complex case where the input random parameters are nonindependent. The boundary perturbation δ varies between 0

and 0.1, while the viscosity ν lies in (0.04, 0.05). These small perturbations produce significant changes in the model output u.

As before, we are interested in the location of the transition layer z of the average steady-state solution, u(z) = 0. We use the

modified perturbation method with respect to ξξξ = (Z1, Z2). The deterministic coefficients of the expansion are computed using

tensor Gauss-Legendre quadratures, each one of degreeQ, on [0, 1]2. In this example, the curse of dimensionality becomes evident,

as the number of quadrature nodes is Q2 (Q nodes per dimension) and the number of summands in the modified perturbation

expansion is (N + 2)(N + 1)/2 (number of multi-indices iii = (i1, i2) such that i1, i2 ≥ 0 and |iii | = i1 + i2 ≤ N). Although the

efficiency is penalized, accurate results are still obtained.

The numerical results are reported in Table 3. We show the approximations of z and σ(z) of the modified perturbation method,

as well as the Monte Carlo estimates for validation. The numerical details on the resolution are the same as the previous section:

trapezoidal rule for each realization in the governing ODE and Newton’s method for the transition layer. The estimates of the

modified perturbation method agree up to five significant digits for N = 4 and Q = 25. It was checked that the convergence

with N is very fast, as it usually occurs with the spectral methods, but Q has to be taken sufficiently large, otherwise we make

significant errors in the final approximations, specially for the standard deviation.

M = 100 M = 1000 M = 2000 (N,Q) = (3, 10) (N,Q) = (3, 15) (N,Q) = (3, 23) (N,Q) = (4, 25) (N,Q) = (5, 27)

z 0.83957 0.84064 0.84013 0.84019 0.84015 0.84015 0.84015 0.84015

σ(z) 0.19031 0.18203 0.17635 0.17768 0.17658 0.17659 0.17660 0.17660

Table 3. Location of the transition layer z of the mean steady-state solution, u(z) = 0, and standard deviation at z , σ(z). Case

(δ, ν) = (0.1Z1, 0.01Z2 + 0.04), where (Z1, Z2) ∼ Dirichlet(9, 6, 6). Monte Carlo simulation using M realizations, and modified

perturbation method with truncation order N and quadrature degree Q.

Figure 2 aims at showing the mean and the standard deviation of the steady-state solution, u(x) and σ(x), determined via

the modified perturbation method with (N,Q) = (5, 27), together with the bounds for the random solutions, (δ, ν) = (0, 0.04)

and (δ, ν) = (0.1, 0.05). Again, the variability of u(x) increases around the transition layer.

4. Conclusion

In this paper, we have proposed a modification of the classical perturbation method for uncertainty quantification. Given a

stochastic system, the solution is approximated in the mean square sense via a finite-term power series on the input random

parameters. The coefficients of the power series, instead of being obtained by matching terms according to the powers, are

determined by applying inner products in random space and then solving a linear system. The inner products involving the

unknown model solution require the use of numerical integration schemes.

These new approximations present spectral convergence to the model solution in the mean square sense. However, the method

suffers from the curse of dimensionality and the ill-conditioning of the linear system matrix.

Burgers’ equation is a benchmark for the analysis of new stochastic techniques, due to its simplicity in formulation but its

stiffness and supersensitivity with respect to the parameters. Our modified perturbation method has been applied to determine

6 Copyright c© 2018 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2018, 00 1–8
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Figure 2. Mean steady-state solution u(x) (solid line) and standard deviation σ(x) of the steady-state solution (dashed line), determined via the modified

perturbation method for (N,Q) = (5, 27), together with the bounds for the random solutions, (δ, ν) = (0, 0.04) (dotted line) and (δ, ν) = (0.1, 0.05) (dotted

dashed line). Case (δ, ν) = (0.1Z1, 0.01Z2 + 0.04), where (Z1, Z2) ∼ Dirichlet(9, 6, 6).

the steady-state solution to Burgers’ equation and the position of the transition layer, when the left boundary value and the

viscosity are random variables, not necessarily independent.

Albeit our method has been efficient for this problem, its success and advantage is problem-dependent. Further analysis shall

be carried out in the future. We remark that, if the dimension of the random space were larger, the computational cost would

be prohibitively large, and other methods shall be sought.

Alternative perturbation methods, of different nature, were applied to some deterministic equations to derive solutions in

the form of series expansions [16, 17, 18, 19]. These methods have not yet been randomized and could become new efficient

approaches for uncertainty quantification.
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