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Abstract

Most state-of-the-art deep learning-based methods for extraction of building footprints are aimed at

designing proper convolutional neural network (CNN) architectures or loss functions able to effectively

predict building masks from remote sensing (RS) images. To properly train such CNN models, large-scale

and pixel-level building annotations are required. One common approach to obtain scalable benchmark

datasets for segmentation of buildings is to register RS images with auxiliary geospatial information

data, such as those available from OpenStreetMaps (OSM). However, due to land-cover changes, urban

construction, and delayed geospatial information updating, some building annotations may be missing in

the corresponding ground-truth building mask layers. This will likely introduce confusion in the training

of CNN models for discriminating between background and building pixels. To solve this important

issue, we first formulate the problem as a long-tailed classification one. Then, we introduce a new joint

loss function based on three terms: 1) logit adjusted cross entropy (LACE) loss, aimed at discriminating
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between building and background pixels from a long-tailed label distribution; 2) weighted dice loss,

aimed at increasing the F1 scores of the predicted building masks; and 3) boundary alignment loss, which

is optimized for preserving the fine-grained structure of building boundaries. Our experiments, conducted

on two benchmark building segmentation datasets, validate the effectiveness of our newly proposed loss

with respect to other state-of-the-art losses commonly used for extracting building footprints. The codes

of this paper will be publicly available from https://github.com/jiankang1991/GRSL BFE MA.

Index Terms

Building extraction, semantic segmentation, deep learning, missing labels, remote sensing.

I. INTRODUCTION

Extracting building footprints from high-resolution remote sensing (RS) images has been a

fundamental task within the field of intelligent image interpretation. Footprint maps of buildings

play an important role in several different tasks, such as urban planning, disaster monitoring,

change detection, and autonomous driving. Thus, accurately generating footprints of buildings is

always an on-going and hot topic in the RS community. Nowadays, with the rapid development

of satellite sensors, massive volumes of high-resolution RS images are available for developing

effective building footprint extraction techniques. Moreover, such big data also foster the devel-

opment of deep learning-based methods for extracting footprints of buildings in an end-to-end

manner [1]–[5].

One of the first convolutional neural network (CNN) architectures adopted for the extraction of

building footprints was the fully convolutional network (FCN) [6], which replaces fully connected

layers with convolutional layers to create building masks of the same size with respect to the

input RS images. Liu et al. proposed an encoder-decoder CNN framework [with a spatial residual

inception (SRI) module] for capturing and fusing the multi-scale features during the phase of

building extraction [7]. Based on the feature pyramid network, Wei et al. developed a multi-

scale aggregation FCN with polygon regularization for refining the boundaries of buildings

[8]. In order to accelerate the computational performance of an encoder-decoder framework

intended to process very large input images, Li et al. introduced a multiple-feature reuse network

(MFRN) that enabled the direct use of hierarchical features and achieved prominent building

segmentation performance [9]. The feature pairwise conditional random field (FPCRF) integrated

in CNN model was also used for preserving sharp boundaries and fine-grained building segments
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Fig. 1. An illustration of a satellite image containing buildings with missing annotations, where the cyan color denotes the

available ground-truth footprints and the red color indicates the missing footprints.

[10]. By combining a multi-scale feature extraction strategy and attention mechanisms, Zhu

et al. proposed a multiple attending path neural network (MAP-Net) which could precisely

generate multi-scale footprints of buildings and accurate polygons [11]. Rather than learning

the building masks, PolygonCNN was also proposed for directly generating vector building

polygons based on an encoder-decoder CNN framework, in an end-to-end manner [12]. Another

perspective for designing deep learning-based approaches for the extraction of building footprints

was based on the considered loss function. Although most of the above-mentioned methods

exploit the cross entropy (CE) loss, there are some works aimed at optimizing the loss design

for accurately predicting building regions and boundaries. For example, Yuan proposed to use the

signed distance function, which calculates the distance from the pixels to their nearest points on

the boundaries, to accurately capture the building shapes [13]. Wu et al. exploited the boundary

loss as a regularizer of the region-based CE loss for extracting building segments and outlines

[14]. Bokhovkin et al. introduced a differentiable (surrogate) loss for penalizing the misalignment

of building boundaries [15].

All the above-mentioned methods for building footprint extraction require accurate build-

ing area annotations. There are of course unsupervised solutions like [16] that can achieve

remarkable building footprint extraction from aerial remote sensing data in a efficient unsuper-

vised way, but most building segmentation benchmark datasets are just constructed based on
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the geo-registration between RS images and some auxiliary geospatial information data, e.g.,

OpenStreetMaps (OSM), in order to avoid the expensive and time-consuming human labeling

procedure. Nonetheless, under this scenario, missing annotations (Figure 1) may often appear

in the corresponding ground-truth building mask layer due to several reasons, including land-

cover changes, urban construction, delayed updating, or even low-quality volunteered geographic

information (VGI). Logically, all these factors may result in the potential confusion of trained

CNN models when discriminating between the background and building pixels. To relieve these

issues, we first formulate the problem as a long-tailed classification one. Then, we introduce

a new joint loss function that considers the possible existence of missing building annotations

in the dataset. Our newly developed loss function includes three terms: 1) logit adjusted cross

entropy (LACE) loss, aimed at discriminating between the building and background pixels from

a long-tailed label distribution; 2) weighted dice loss, aimed at increasing the F1 scores of

the predicted building masks; and 3) boundary alignment loss, optimized for preserving the

fine-grained structures of building boundaries. Our newly proposed loss is evaluated on two

benchmark datasets, outperforming other state-of-the-art competitors. The contributions of this

letter can be summarized as follows:

1) To our best knowledge, this is the first paper in the literature that investigates the problem

of deep learning-based building segmentation with missing annotations, approaching it

from the perspective of designing an effective loss function to specifically deal with this

issue.

2) We formulate the task as a long-tailed classification problem and then introduce a new

joint loss function.

3) Compared with other state-of-the-art methods, the proposed loss function achieves the best

performance on two widely used benchmarks.

The reminder of this letter is structured as follows. Section II describes the proposed joint loss

for guiding the optimization of CNN models when the input dataset contain missing annotations.

Section III describes the conducted experiments and analyzes the results. Finally, Section IV

concludes the letter with some remarks and hints at plausible future research lines.
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Fig. 2. (a) The background and building pixel percentages of the Massachusetts Buildings dataset with the full, 70%, 50% and

10% building annotations. (b) LACE tries to set a pairwise label margin between the predicted scores between majority and

minority classes.

II. PROPOSED APPROACH

A. Notations

Let X = {X1, · · · ,XN} denote a building extraction dataset consisting of N images with

binary masks, and Y = {Y1, · · · ,YN} be the associated set of binary masks, where each element

is either 0 or 1, i.e., yij ∈ {0, 1}. In this letter, we denote 1 as the building area and 0 as the

background. f(·) represents the CNN model which maps the input image Xi to the predicted

building mask Y′
i.

B. The Proposed Joint Loss Function

1) logit adjusted cross entropy (LACE): When building annotations are missing, an imbal-

anced or long-tailed label distribution exhibits. As an illustrative example, we can randomly select

30%, 50% and 90% buildings from the well-known Massachusetts Buildings Dataset [17] and

flip the associated building labels to background labels. Then, we calculate the pixel percentages

of the two classes. As shown in Figure 2(a), as the number of missing building annotations

increases, the long-tailed label distribution becomes more obvious. Therefore, the CE loss, a

conventional loss used for training CNN models, will simply guide CNN models to classify

every pixel with the majority label, i.e., background. However, such models cannot generalize

well in the testing phase. To cope with this issue, we adopt the LACE [18]:

LLACE = −
∑
ij

log
( exp

(
fyij (xij) + τ log(πy)

)∑
y′ij∈{0,1} exp

(
fy′ij (xij) + τ log(πy′)

))
=
∑
ij

log
(
1 +

∑
y′ij 6=yij

(πy′
πy

)τ
exp

(
fy′ij (xij)− fyij (xij)

)) (1)
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where τ denotes a temperature parameter and πy is an estimate of the class prior P (y), e.g.,

an empirical class frequency on the training set. Basically, LACE tries to set a pairwise label

margin log
(πy′
πy

)τ between the predicting scores for y and y′ as shown in Figure 2(b). Intuitively,

by setting a margin between the predicted scores of rare and dominant classes, the trained CNN

models are optimized in a way that the scores of the rare class are not overwhelmed by those

from the dominant class. Thus, in the presence of a long-tailed label distribution, the learned

classifier based on LACE can avoid scenarios in which most samples are categorized into the

dominant class, achieving better precision scores. Note that, in this work, such dominant class

corresponds to the image background (to relieve the requirement of a complete set of building

footprint annotations.

2) Weighted Dice: In addition to the commonly utilized CE loss for binary segmentation

problems, another region-based loss called Dice loss is also adopted. As opposed to the CE loss,

which aims at optimizing the precision scores, minimizing the Dice loss is designed to increase

the F1 score:

LDice = 1−
∑
i

2TP

2TP + FN + FP
(2)

where TP, FN and FP respectively denote true positives, false negatives and false positives

on the predicted mask given the ground-truth. Considering the fact that we are dealing with

a long-tailed label distribution, we utilize the weighted Dice loss, wherein the class-wise Dice

losses are averaged in a weighted manner as follows:

LWDice =
∑
y

πyL
y
Dice. (3)

3) Boundary Alignment: Accurate building boundary generation is very important for footprint

extraction. However, the two losses above are region-based and cannot penalize the boundary

misalignment. In order to align the predicted building boundaries with the ground-truth, the

boundary loss proposed in [15] is also adopted:

LBD =
∑
y

(1− 2PyRy

Py +Ry
) (4)

where Py and Ry denote the precision and recall scores of the boundary pixels with class y.

To this end, when the benchmark datasets contain missing annotations, the proposed joint loss

function for building footprint extraction is formulated as:
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LBD LACE WDice = LBD + LWDice + LLACE (5)

C. CNN model

In this letter, the standard U-Net[19] architecture is exploited for the building footprint extrac-

tion. U-Net fuses multi-level feature maps to simultaneously capture hierarchical semantics and

preserve fine-grained shapes of objects in the predicted masks. We choose U-Net as the CNN

backbone since it has been widely adopted as a benchmark CNN model for binary segmentation

problems. However, it is worth noting that other CNN models with different architectures can

be also combined with the proposed loss function for building footprint extraction.

III. EXPERIMENTS

A. Experimental Setup

We evaluate the proposed loss function on two building segmentation datasets including: 1)

Massachusetts Buildings dataset [17], and 2) ISPRS Potsdam dataset1. The training and test set

of the Massachusetts Buildings dataset are the same as in the original paper. For the ISPRS

Potsdam dataset, we select 2 13, 6 15 and 7 13 sets for testing and the others for training. To

create the training datasets with missing annotations, we randomly select 30%, 50% and 90%

of buildings in each image and flip the associated labels from building (y = 1) to background

(y = 0). In order to feed the images into a graphical processing unit (GPU) with limited memory,

we create image-mask pairs with the sizes of 300× 300 pixels for the Massachusetts Buildings

dataset and and 600 × 600 pixels for the ISPRS Potsdam dataset. In this way, the complete

building footprint extraction can be conducted by sequentially processing each sub-image. The

stochastic gradient descent (SGD) optimizer with initial learning rate set to 0.002 is adopted for

minimizing the loss. The learning rate is decayed by 0.5 every 30 epochs. The parameters τ ,

πy=1 and πy=0 are set to 1, 0.9 and 0.1, respectively. For validation, we compare the proposed

loss with other commonly exploited losses for binary segmentation, including: 1) CE [6], [11]; 2)

Dice; 3) NR-Dice [20]; 4) CE Dice[21]; 5) ELL [22]; 6) Weighted Dice (WDice); 7) BD Dice

[15]; and 8) BD WDice. All the experiments are performed on an NVIDIA Tesla P100 GPU.

1https://bit.ly/38rD6vG
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TABLE I

DICE AND IOU METRICS (%) EVALUATED ON THE TWO BENCHMARK DATASETS WITH 30%, 50% AND 90% MISSING

BUILDING ANNOTATIONS IN THE TRAINING SETS.

Massachusetts Potsdam

30% 50% 90% 30% 50% 90%

Dice IoU Dice IoU Dice IoU Dice IoU Dice IoU Dice IoU

CE 66.44 49.93 6.37 3.33 − − 82.05 70.19 60.61 43.61 − −

Dice 79.72 66.40 76.25 61.81 40.48 25.93 88.26 78.99 78.99 65.92 − −

NR-Dice 77.24 63.04 71.35 55.56 − − 71.00 55.69 71.30 55.43 − −

CE Dice 77.09 62.87 71.35 55.56 − − 80.41 67.64 66.26 49.95 1.61 0.81

ELL 79.31 65.84 73.46 58.27 − − 85.00 74.09 77.65 63.47 − −

WDice 80.38 67.32 78.50 64.80 48.63 32.62 88.52 79.41 85.68 75.09 72.09 56.94

BD Dice 80.82 67.95 79.78 66.51 44.36 29.48 84.71 74.06 85.29 74.64 41.65 26.84

BD WDice 80.68 67.73 78.88 65.24 52.24 35.96 83.53 72.05 85.43 74.64 − −

LACE 74.91 60.01 75.37 60.60 9.22 4.86 88.33 79.14 86.73 76.59 37.80 23.95

LACE WDice 80.17 67.00 78.89 65.24 57.23 40.35 88.30 79.11 85.75 75.14 57.03 40.97

BD LACE WDice 81.19 68.45 80.06 66.85 57.55 40.92 88.72 79.93 88.21 79.07 73.95 59.05

(a) (b)

Fig. 3. One test image from the ISPRS Potsdam dataset with its ground-truth building mask exploited for comparison among

all the considered losses (a) ISPRS Potsdam image, (b) Ground-truth building mask.

B. Experimental Results

1) Comparison with State-of-the-art Methods: In our evaluation, we compute the averaged

Dice and IoU scores (%) on the test sets based on the predicted masks, where the Dice score

is defined as 2TP/(2TP + FN + FP) and the IoU score as TP/(2TP + FN + FP). Table I
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(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 4. ISPRS Potsdam dataset: the top row displays the predicted building masks and the bottom row displays the generated

building boundaries of one area, where red, green and blue colors denote the FP, TP and FN, respectively: (a) CE; (b) Dice; (c)

NR-Dice; (d) CE Dice; (e) ELL; (f) WDice; (g) BD Dice; (h) BD LACE WDice. (Better to view zoom-in.)

displays the scores of these two metrics obtained by the U-Net trained on all the considered

losses when there are 30%, 50% and 90% missing annotations for the buildings in the training

sets. Compared with the other losses, the proposed one achieves the best performance on both

datasets. For example, when there are 50% missing annotations in the ISPRS Potsdam buildings,

an improvement of around 3% and 4% can be obtained by our BD LACE WDice loss (in terms

of Dice and IoU scores) with regards to other losses, e.g., BD Dice or WDice. Although both

NR-Dice and WDice are designed for the tackling segmentation problem with unbalanced label

distribution, one plausible reason that explains why our joint loss outperforms those is the fact

that it considers the penalization of boundary misalignments. In addition, the boundary loss is

integrated in BD Dice, while the long-tail label distribution affects its classification performance.

When most of the buildings are not annotated (i.e., 90% case), it can be observed that several

losses cannot successfully guide the trained UNets to predict the building regions on the test sets

(noted with − in the table). Since almost 96% pixels are annotated as background [shown in

Figure 2(a)], the correct classification contributes most to the training loss, so that the network

just learns to produce the associated label. With the introduction of LACE, more emphasis can

be made on the predictions of the building label. For a qualitative comparison, we select one

test image from the ISPRS Potsdam dataset and utilize the trained U-Net through the compared

losses and the proposed one to predict its building mask. Figure 3 displays the ground-truth

building mask from the ISPRS Potsdam dataset. The top row of Figure 4 shows the predicted

building masks based on the considered losses. The bottom row displays the associated building

October 4, 2021 DRAFT



10

boundary comparison between the predicted masks and the ground-truth mask, where red, green

and blue colors denote the FPs, TPs and FNs, respectively. It is important to note that the

corresponding building boundaries have been generated by means of the Canny edge detector.

From the results, it can be observed that some building areas cannot be correctly predicted

based on the standard losses, such as CE and Dice, since the missing labels can confuse the

discrimination of the U-Net on building and background pixels. Based on the proposed loss,

the involvement of LACE can enforce the U-Net to emphasize more the labeled buildings, so

that the building areas cannot be misclassified as background. Therefore, our BD LACE WDice

achieves prominent segmentation performance, despite the fact that large amounts of buildings

are unlabeled in the training datasets.

2) Ablation Study: For the ablation study, we conduct the same experiments as in the previous

subsection, where LACE and LACE WDice are both exploited as the losses to train the U-Net.

The results are presented in Table I. For the Massachusetts Buildings dataset, without WDice

and boundary terms, LACE only cannot achieve comparable performance as LACE WDice and

BD LACE WDice, while the segmentation results of the three losses are slightly different on

the ISPRS Potsdam dataset. Since the spatial resolution of the Massachusetts Buildings dataset is

about 1m2 per pixel, many buildings just occupy only a few pixels, so that distinguishing between

building instances is important for the metric evaluation. With the integration of the boundary

loss, the building boundaries are penalized more than the other regions. Thus, BD LACE WDice

can better recognize small building instances, achieving the best performance. For the ISPRS

Potsdam dataset, the spatial resolution is about 5cm2 per pixel. The fine-grained structure of the

building regions is important for the metric evaluation. When large amounts of buildings are not

annotated, the conventional losses (such as CE) cannot easily discriminate between background

and building pixels. Therefore, the three losses (LACE, LACE WDice and BD LACE WDice)

outperform the conventional losses in the ISPRS Potsdam dataset, being their results comparable.

IV. CONCLUSIONS

This letter presents a new joint loss function for extracting footprints of buildings using deep

learning technology, under the assumption that there are many buildings that are not annotated.

In order to solve this problem, we first investigate the label distribution when there are missing

annotations at different levels. Then, we formulate the problem as a long-tailed classification

one, and propose a joint loss function including: 1) LACE; 2) weighted Dice; and 3) boundary
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alignment loss to optimize the CNN model and better predict region and boundary pixels.

Based on two building segmentation benchmark datasets, we validate the proposed loss function

compared with other state-of-the-art approaches, and achieve the best performance when 30%,

50% and 90% buildings are missing in the training sets. The proposed joint loss function can

be applied with any CNN architecture for binary segmentation problems when there are missing

annotations. Robust deep learning techniques [23] considering missing annotations as noisy labels

will be adopted in the future.
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