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Abstract: Air pollution and its consequences are negatively impacting on the world population
and the environment, which converts the monitoring and forecasting air quality techniques as
essential tools to combat this problem. To predict air quality with maximum accuracy, along with the
implemented models and the quantity of the data, it is crucial also to consider the dataset types. This
study selected a set of research works in the field of air quality prediction and is concentrated on the
exploration of the datasets utilised in them. The most significant findings of this research work are:
(1) meteorological datasets were used in 94.6% of the papers leaving behind the rest of the datasets
with a big difference, which is complemented with others, such as temporal data, spatial data, and
so on; (2) the usage of various datasets combinations has been commenced since 2009; and (3) the
utilisation of open data have been started since 2012, 32.3% of the studies used open data, and 63.4%
of the studies did not provide the data.

Keywords: air quality prediction; machine learning; datasets

1. Introduction

According to the United Nations (UN) in 2018, more than 55% of the world’s popula-
tion lives in urban areas. The trend shows that by 2050 urban population will increase until
68%; particularly compared to other regions, the urban population will grow faster in Asia
and Africa, considering that these regions have more rural population [1]. Among the posi-
tive effects, such as better employment and education opportunities, enhanced healthcare
system, greater access to social services, urbanisation also has negative consequences being
a cause of air pollution or the increased demands on resources, among others. According
to the World Health Organisation (WHO), every year, more than seven million persons die
because of this problem or related to that [2].

It is very important to understand which pollutants are considered when determining
air quality, and how to calculate and represent air quality indicators. Regarding the
pollutants, they form from natural and anthropogenic sources. The WHO identifies the
following pollutants as having serious impacts: particulate matter with diameter less than
2.5 micrometers (PM2.5), particulate matter with diameter less than 10 micrometers (PM10),
nitrogen oxide (NOx), ground-level ozone (O3) and sulfur dioxide (SO2) [3]. Depending
on the region and the presence of predominant pollutants, it is proposed to use different
indices for calculating air quality, for example, the United States Environmental Protection
Agency (EPA) Air Quality Index (AQI), the Canada Air Quality Health Index (AQHI),
Common Air Quality Index (CAQI) or Daily Air Quality Index (DAQI), among others.

Information about air quality prediction can prompt authorities and decision-makers
to apply protective measures in order to reduce air pollution, and this knowledge helps
citizens to organise their daily activities by escaping high polluted areas [4,5]. In order to
predict air quality more accurately, it is important to consider external factors that influence
air quality and include them as input to run models. As an example of those external factors
are precipitation, wind direction, traffic intensity or population density, among others [6–9].
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It should also be emphasised the effect to publish this kind of data as open data, which
existence is beneficial both for government and for citizens. The availability of open
data have an impact in many areas, such as an increase of transparency, improvement of
efficiency and effectiveness of government services, empowerment of citizens, engagement
and participation of citizens in governance [10,11]. At the same time, these data can be
used by researchers as real inputs to run their models in research works.

Taking the aspects mentioned above into account, the main goal of this manuscript is
to analyse and synthesise studies related to air quality prediction using Machine Learning
(ML) technologies, and find out: (1) What types of datasets are used to improve air quality
predictions? (2) What characteristics of the dataset are important for efficient and effective
air quality forecasting? and (3) Which features are the most used to define ML models? We
believe that this work can be useful for other new works in the field of air quality prediction.
Furthermore, considering the scale of the scope in which the topic may be addressed, it
should be noted that the perspective of this work is based on data science, and how the
obtained results can be used to start a new study to predict air quality in a certain area.

The rest of the paper is organised as follows. Section 2 explains the methodology.
Section 3 presents the obtained results and introduces the discussion predicated on the
acquired outcomes. Eventually, in Section 4 the conclusions are included.

2. Methods

To achieve the central goals for which this study is targeted, we used the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) [12] in order to select
relevant papers. Those papers were queried in Association for Computing Machinery
(ACM), IEEE Xplore, Scopus and Web of Science (WoS) databases using the following
query: (“machine learning”) AND (“prediction” OR “forecast”) AND (“air quality” OR
“air pollution”), which was being applied to title, abstract and keywords. At the first stage,
it was selected all papers published until 28 September 2020 (search date) and the result
was 1214 papers in total. Then duplicated and non-empirical manuscripts were removed.
Afterwards, based on the inclusion/exclusion criteria listed in Table 1, screening of title,
abstract and keywords, and full-text assessment were implemented. Later, the manuscripts
set was filtered by focusing on several aspects. Mainly the main emphasis was to select
papers concentrated on forecasting models of outdoor air pollution, which analyses were
performed applying ML technologies. Another essential point was to consider the type of
datasets, which assumed that in addition to air quality data, the studies should also include
different datasets, such as meteorological, spatial or traffic, among others. It also should
be mentioned that only journal papers were included in the final set, which has 93 items.
After reviewing those papers, the key features were extracted, which are presented in detail
in the next section. The described workflow of the selection procedure of the relevant
studies is illustrated in Figure 1.

Table 1. Inclusion and exclusion criteria.

Inclusion Criteria Exclusion Criteria

Papers written in English Non-English written papers
Publications in scientific journals Non-reviewed papers, editorials, presentations
Publications until 28 September 2020 Publications after 28 September 2020
Publications focused on outdoor air pollution Publications focused on indoor air pollution
Extra dataset together with air quality data Using only air quality data
Analysis with implementation of ML techniques Analysis without implementation of ML techniques
Models applied for forecasting purpose Works without forecasting models
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Figure 1. PRISMA flow diagram for the systematic review (n is the number of papers).

3. Results and Discussion

After analysing the manuscripts set the main objective results, the exploration and
observation based on those obtained results are introduced at this stage. The following
essential components of the selected studies were extracted, and the result is summarised
in Table A1 in Appendix A: Year, Case Study, Prediction Target, Dataset Type, Data Rate, Period
(Days), Open Data, Algorithm, Time Granularity and Evaluation Metric.

Dataset Type: after examining the selected papers, the following dataset types were
extracted (Figure 2): ‘MET’: meteorological data, ‘Spatial’: topographical characteristics,
the locations of the stations, ‘Temporal’: includes the day of the month, day of the week,
the hour of the day, ‘AOD’: aerosol optical depth, ‘Social Media’: microblog data, ‘Traf-
fic’, ‘PBL Height’: planetary boundary layer height, ‘Land Use’, ‘BEV’: built environment
variables, ‘UV Index’: ultraviolet index, ‘SP’: sound pressure, ‘PD’: population density,
‘Human Movements’: floating population and estimated traffic volume, ‘Altitude’, ‘OMI-SO2’:
satellite-retrieved SO2 from Ozone Monitoring Instrument-SO2, ‘PPS’: pollution point
source, ‘TS’: transportation source, ‘WFD’: weather forecast data, ‘POI Distribution’: point
of interest distribution, ‘FAPE’: factory air pollution emission, ‘RND’: road network distri-
bution, ‘Elevation’, ‘AEI’: anthropogenic emission inventory, ‘NDVI’: normalized difference
vegetation index, ‘Chemical’: chemical component forecast data (organic carbon, black
carbon, sea salt, etc.), ‘Emission’.

From Figure 2 it can be seen that among the 26 dataset types meteorological data is
the most used dataset, appearing in eighty-eight publications. The next relatively more
frequent dataset types are ‘Temporal’, ‘Spatial’, ‘Traffic’, ‘AOD’ and ‘Land Use’ datasets.
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Figure 2. The number of publications per each dataset type.

Figure 2 shows the number of publications for each dataset type; however, it is also
very important to see the number of publications for dataset combinations. From the dataset
types mentioned above, thirty combinations were formed and used in the publications.
Table 2 shows the number of publications for each dataset combinations. The most detected
combination is meteorological data jointly only with air quality data, appearing in forty-five
papers. It should be noted that there are twenty-three datasets combinations, each of them
appears only in one publication, so they are combined as Others for the convenience of
further analysis.

Table 2. The number of publications of dataset combinations.

Dataset Combinations Publications Numbers

MET 45
MET, Temporal 11
MET, Spatial, Temporal 5
Spatial 3
MET, AOD 2
MET, Traffic 2
MET, Social Media 2
Others 23

To find out dataset features used in each research work, each component of Table A1
in Appendix A was observed in terms of dataset types, and the results of the observation
are displayed below.

Year: includes years of publications. Figure 3 demonstrates the distribution of the
used dataset combinations over the years, mentioning the number of publications of each
published year, and it could help to identify the progress throughout the period.

It can be observed that intensive dataset combinations have been applied since 2016,
particularly during 2019 and 2020. Only meteorological data were dominant throughout
the whole period. The increase in the number of manuscripts can be attributed to the open
data movement promoted by the governments [13]. This aspect will be analysed later.
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Figure 3. The distribution of the dataset combinations throughout the years.

Case Study: are the countries which were served as a case study in the papers. In the
majority of the papers (forty) China was a case study. Here is a list of the rest of the
countries with the number of publications: USA-six; Taiwan-six; India-four; Iran-four;
South Korea-four; UK-three; Canada-two; Ecuador-two; Egypt-two; Europe-two; France-
two; Italy-two; Kuwait-two; Saudi Arabia-two; Turkey-two; Germany-one; Jordan-one;
Mongolia-one; Poland-one; Qatar-one; Slovenia-one; Spain-one; Thailand-one; and Tunisia-
one. Apart from this examination, it will be helpful also to know dataset combinations for
each case study. Figure 4 illustrates the distribution of dataset combinations in terms of
the case study. As may be noted, China was a case study in the papers with the majority
dataset combinations (China with ‘MET’ is the dominant combination (twenty-one papers)),
exclusive of ‘MET, Spatial, Temporal’.

Prediction Target: is the dominant pollutant in a certain area for which prediction
different techniques have been performed. In general, seventeen prediction targets were
utilised: PM2.5, O3, NOx, PM10, air quality index (AQI), SO2, carbon monoxide (CO),
ultrafine particle (UFP or PM0.1), particulate matters less than 0.1 micrometers in diameter,
air quality health index (AQHI), individual air quality index (IAQI), Ammonia (NH3),
particle number concentrations (PNCs (particle number concentration is the total number
of particles per unit volume of air [14])), particles less than 10 nanometers (PN10), black
carbon (BC), suspended particulate matter (SPM) and carbon dioxide (CO2).

As we mentioned in the introduction, there are several indices that help to facilitate
the interpretation of air pollution. Figure 5 presents the distribution of dataset combi-
nations in terms of prediction target, and it can be seen, that prediction target can be an
individual pollutant, as well as an air quality index. However, the prevailed targets are
individual pollutants, particularly, PM2.5, O3, NOx, and PM10, which can be explained
with the importance of those pollutants. Moreover, according to the United States En-
vironmental Protection Agency (USEPA), air quality in a certain area is defined by the
above-mentioned pollutants [15]. It can be viewed, that PM2.5 being the most used predic-
tion target (forty-eight papers), was applied in the publications with all the combinations,
specially with ‘MET’ it was the most used combination by researchers (twenty-one papers).
It is noteworthy, that development of technology gives an opportunity to observe finer
particles (PM0.1, PN10 [16,17]), which have higher toxicity and are easily inhaled.



Atmosphere 2021, 12, 312 6 of 21

1

1

1

1

1 1

1

1

1

1

1 1

1 1

11

1

1

1

1

1 1

1 1

1

11

1

1

2

2

2

2

2

2

22 22

2

22

2

3 3

10

21

Chin
a

Ta
iw

an
USA

Ind
ia

Ira
n

Sou
th 

Kor
ea UK

Can
ad

a

Ecu
ad

or

Egy
pt

Eur
op

e

Fra
nc

e
Ita

ly

Kuw
ait

Sau
di 

Ara
bia

Tu
rke

y

Ger
man

y

Jo
rd

an

Mon
go

lia

Pola
nd

Qata
r

Slov
en

ia
Spa

in

Tha
ila

nd

Tu
nis

ia

MET

Others

MET, Temporal

MET, Spatial, Temporal

MET, AOD

MET, Traffic

MET, Social Media

Spatial

Case Study

D
at

as
et

 T
yp

e

Figure 4. The number of publications of dataset combinations in terms of case study.
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Figure 5. The number of publications of dataset combinations in terms of prediction target.

Data Rate: is the timespan during which the sensors provided data. Figure 6 shows the
distribution of dataset combinations in terms of data rate. Overall, biweekly, daily, hourly,



Atmosphere 2021, 12, 312 7 of 21

minutely, secondly, 15 min, 5 min, 5 s data rates were used in the studies, and nine studies
did not provide information about data rate. It can be seen, that hourly data rate being the
most used (fifty-six papers) is utilised in the publications with all combinations, particularly
with ‘MET’ it was the most used combination by researchers (thirty-two papers).
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Figure 6. The number of publications of dataset combinations in terms of data rate.

Period (Days): is the period (the number of days) of the data collection. The summary
statistics of these days reveals a mean of days of 1300.63 days (Std.Dev: 1484.68) and a
median of 731 days (Min: 3 and Max: 8023).

The most used periods are 365 days in nine papers. The result shows that connecting
this feature with the data rate, it can give an idea about the volume of the data used for
the analysis. Obviously, it cannot provide any guarantee about the quality of data, and it
can include noisy data; however, we assume that the final utilised data were not reduced
significantly after the data cleaning process.

Open Data: contains information about data availability. Figure 7 illustrates the distri-
bution of dataset combinations in terms of data availability. There are three categories: Yes,
No, Partially. The first two, basically, show if the authors provide or do not provide data
used in the studies, the papers with Partially refer to the studies where the authors provided
only the part of data. It is interesting to know about data accessibility throughout the period.
From Figure 8 it is detectable that since 2012 the authors had started to use open data in
their research, which, interestingly, corresponds to the period when the idea of open data
portals [18,19] and smart cities [20] has appeared. Figure 9 displays the data availability per
case study. It can be observed that China includes all three categories.

It would be also interesting to observe the relation between the authors’ affiliation and
the case study of certain research. The results show that in the majority of the papers (55),
the affiliations of all the co-authors are located in the corresponding case studies. In eleven
papers the author’s affiliations are located in the countries different from case studies.
For example, in the following paper [21], the author’s affiliations are located in China
and the case study is USA. In twenty-seven papers, the co-authors’ affiliation partially
correspond to the case study. For instance, in this paper [22] the case study is Canada and
the author’s affiliations belong to China and Canada.

Algorithm: are the ML algorithms on which the applied methods are based. Figure 10
shows the distribution of dataset combinations in terms of ML algorithms. The ML algo-
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rithms used in the studies are Neural Network (NN), Regression, Ensemble, Hybrid Model and
Other Algorithms. Here are the main methods used in each category: NN—Long Short Term
Memory (LSTM), Multilayer Perceptron (MLP), Gated recurrent unit (GRU); Regression—
Support Vector Machine (SVM); Ensemble—Random Forest (RF), Extreme Gradient Boosting
(XGBoost), Light Gradient Boosted Machine (LightGBM); Hybrid Model—the majority of
the methods of this category are based on SVM, for example Partial Least Square-SVM,
Multi-output SVM and Multi-Task Learning (MM-SVM); Other Algorithms—includes the
works applied Decision Tree Algorithm (C4.8), Reinforcement Learning, Bayesian Model,
Regularization and Optimization. It should be pointed out, that in contrast other dataset
combinations, ‘MET’ and ‘Others’ include all categories of the algorithms.
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Figure 7. The number of publications of dataset combinations in terms of data availability.
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Figure 8. Data availability over the years.
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Figure 9. Data availability per case study.

Having different prediction targets and methods, it would be valuable to see if there
is any relation between targets and applied methods in order to figure out which methods
are used to predict a particular target. According to the results of the study, the following
connection was detected (main prediction targets and corresponding methods): PM- LSTM,
SVM, RF; O3- MLP, RNN; NOx-SVM, RF, RNN; SO2-SVM; CO-LSTM; AQI-SVM.

Time Granularity: is the time interval, for which period the prediction was applied.
Figure 11 shows the distribution of dataset combinations in terms of time resolution.
The used time resolutions are 1 h, 2 h, 3 h, 4 h, 6 h, 8 h, 10 h, 12 h, 24 h, 48 h, 72 h, five days,
one week, 15 days and one month. It must be mentioned that these extracted intervals are
the maximum intervals applied in each article. It is detectable that 24 h is the most used
time resolution regarding the number of publications and different dataset combinations.
Furthermore, it can be seen, that the most extended prediction time resolution, one month, is
applied in publication with ‘Others’ combination, and considering that the longer resolution
decreases the accuracy, it can be seen that there is only one paper implemented prediction
for one month.

Evaluation Metric: are the measures which were used to evaluate the applied method.
Overall, sixty-nine metrics were used to evaluate the methods, from which the most used
metrics are Root Mean Square Error (RMSE) in seventy-seven papers, Mean Absolute Error
(MAE) in forty-two papers. Figure 12 demonstrates the distribution of dataset combinations
in terms of evaluation metric (each database combination is marked with a different color).
It can be shown, that compared to other dataset types ‘MET’, ‘MET, Temporal’ and ‘Others’
were combined with more metrics, particularly, RMSE with ‘MET’ (forty-one papers) and
MAE with ‘MET’ (twenty-four papers) are the most used combinations. Additionally,
taking into consideration the most used prediction target (PM2.5) and the most used time
resolution (24 h), the results show that PM2.5 was a prediction target in eighteen papers
with the combination of RMSE and ‘MET’, and in ten papers with the combination of
MAE with ‘MET’, and 24 h was a predicted time resolution in ten papers with RMSE and
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‘MET’ combination and in six papers with MAE and ‘MET’ combination. Furthermore,
the metrics that have been used in more than six publications with corresponding equations
and descriptions are extracted and displayed in Table 3. The metrics are RMSE, MAE,
Coefficient of Determination (R2), Correlation Coefficient (R), Mean Absolute Percentage
Error (MAPE), Index of Agreement (IA), Mean Square Error (MSE), Normalised Root Mean
Square Error (NRMSE) [23–30].
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Figure 10. The number of publications of dataset combinations in terms of ML algorithms.
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Figure 11. The number of publications of dataset combinations in terms of time granularity.
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Another point to which attention should be paid is understanding in the world of
evaluation metrics how to choose the best and the most acceptable model. To select the
best model, the majority of the authors selected different benchmark models and, applying
the same validation metrics to all models, chose the outperformed model. Only a few
authors, such as Goulier et al. [31] and Zhang et al. [32] have focused on the importance to
test whether the model performs well enough, acceptable or not. It is important to follow
up on evaluation studies to ensure that the evaluation procedure is correct. For example,
the articles by Kadiyala and Kumar [33], Alexander et al. [34], Janssen et al. [35] can serve
as a guide for researchers.
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Figure 12. The number of publications of dataset combinations in terms of evaluation metrics.

It is worth mentioning the limitations noted by the authors in their works. The ac-
curacy of model performance depends on many factors, such as ML algorithms, spatial
characteristics, prediction targets, temporal resolution, etc. Several authors have mentioned
the structural limitations of algorithms, such as the tendency to overfit, complexity, diffi-
culty with interpretation, and time-consuming [36–38]. Regarding the prediction target,
depending on which pollutant is the prediction target the accuracy may vary since the
chemical structure of the pollutants is different. For example, Li et al. in their study [39]
found out that the proposed model predicts better PM2.5 than NOx, as NOx is highly
reactive and has larger temporal variability. Therefore, many studies mentioned the imple-
mentation of the proposed model for predicting other pollutants as future work [21,40].
Another limitation is the lack of data in spatiotemporal resolution [41,42]. Missing values
can also be included in this scope, depending on their quantity, the performance can be
significantly reduced [43,44]. An important factor is the presence of sudden changes. One
solution might be to collect more data, as the training dataset will include more sudden
changes, which in turn will lead to better performance in case of sudden changes [42].
Including other datasets such as aerosol optical depth data and meteorological data can
help to overcome this issue [45]. It might also be useful to apply techniques for handling
imbalanced datasets [40]. Another limitation that we have already mentioned is a predic-
tion with the long temporal resolution since due to the accumulated error, the accuracy
decreases as the temporal resolution increases [46,47].
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Table 3. The most used metrics (more than six publications) with corresponding equations and
definitions (where N is the number of predict days, Oi and Pi are the observed and predict values,
respectively, and Oi is the average of observed data).

Metrics Equations Description

RMSE
√

1
N ∑N

i=1(Oi − Pi)2
It measures the geometric difference
between observed and predict data.

MAE 1
N ∑N

i=1|Oi − Pi|
It measures the average magnitude of
the errors in a set of predictions,
without considering their direction.

R2
(

∑N
i=1(Pi−Pi)(Oi−Oi)

)2

∑N
i=1(Pi−Pi)

2 ∑N
i=1(Oi−Oi)

2

It shows how differences in one
variable can be explained by a
difference in a second variable.

R ∑N
i=1(Pi−Pi)(Oi−Oi)√

∑N
i=1(Pi−Pi)

2 ∑N
i=1(Oi−Oi)

2

It measures the strength and the
direction of a linear relationship
between two variables.

MAPE ∑N
i=1|Oi−Pi|

N × 100%
It measures the size of the error in
percentage terms.

IA 1− ∑N
i=1(Oi−Pi)

2

∑N
i=1(|Oi−Oi|+|Pi−Oi|)2

It is the ratio of the mean square error
and the potential error.

MSE 1
N ∑N

i=1(Oi − Pi)
2

It measures the average squared
difference between the observed and
the predict values

NRMSE 1
Omin−Omax

√
1
N ∑N

i=1(Oi − Pi)2
It is the normalised version of RMSE,
which makes easier to compare
different models with different scales.

4. Conclusions

Predicting air quality with higher accuracy is gaining in importance and necessity
day by day. Therefore, it is very essential to explore the state-of-the-art of the field. Of the
numerous aspects that exist in the field of research, this article, through reviewing studies,
focuses on datasets in order to examine which datasets are used by researchers and to
identify additional variables that they have taken into account in their analysis to predict air
quality. A set of the most relevant papers in this field have been selected using ACM, IEEE
Xplore, Scopus and WoS databases. Overall, ninety-three papers were selected, reviewed
and, afterwards, the essential dataset features were extracted and synthesised (Year, Case
Study, Prediction Target, Dataset Type, Data Rate, Period (Days), Open Data, Algorithm and
Time Granularity). The results show that twenty-six datasets are used to supplement data
collected by air quality sensors, including ‘MET’, ‘Temporal’, ‘Spatial’ and ‘Social Media’,
among others. The results show a significant difference on the use of ‘MET’, which is the
dominant dataset used in 94.6% of the studies, and 48.4% of the studies combined with
only air quality data.

Regarding data availability, it was shown that since 2012 a new stage has begun, associ-
ated with the use of open data portals [48], which is crucial for science and contributes to the
improvement and development of various research fields and encourages the emergence of
new exciting results, which, in turn, has also led to an increase in the number of publications.

A very important finding is to explore and understand which methods are most
commonly used and dominant in the field to predict a specific target, for example, to predict
particulate matter, LSTM, SVM and RF were found to be the most commonly used methods.

In general, it may be inferred that extra datasets can have significant importance, and in-
volving them in the analysis could improve air quality prediction and obtain more accurate
results. However, it is difficult to indicate which datasets are more valuable and it should also
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be noted that it is not always advisable to include many datasets, as having a huge dataset
can be a problem as it requires more training time and may contain redundant data.

Therefore, future work can be addressed to the establishment of a framework based
on the same conditions (model, prediction target, evaluation metric, time resolution) with
the objective to validate and compare the improvement of each dataset type.
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Appendix A

Table A1. Features of the selected papers. N/S: Not Specified. Published in Zenodo with this following doi: https://doi.org/10.5281/zenodo.4302469 [49]. (accessed on 27 February 2021).

Work Year Case Study Prediction Target Dataset Type Data Rate Period (Days) Open Data Algorithm Time Granularity Evaluation Metric

[36] 2020 USA PM2.5 Spatial, Temporal, AOD, PBL Height Daily 5779 No Hybrid 24 h RMSE, SD, R2

[50] 2020 Canada UFP MET, Traffic, Land Use, BEV N/S 120 No Ensemble RMSE, R2

[51] 2020 Taiwan PM2.5, PM10 MET N/S 2192 No Hybrid 8 h RMSE, MAE

[39] 2020 China PM2.5, NOx MET, Traffic Hourly 731 No Regression,
Ensemble 1 h RMSE, ME, NRMSE, NME, POD,

POF, R2

[21] 2020 USA PM2.5 MET, Temporal Hourly 730 No NN RMSE, MAE, MAPE
[42] 2020 India PM2.5 MET Hourly 1230 No NN RMSE, R2

[52] 2020 USA AQI MET Hourly 851 Yes Regression 1 h RMSE, MAE, NRMSE, R

[53] 2020 Turkey PM10 Spatial, Land Use N/S 3652 No Regression,
Ensemble, NN RMSE, MAE, R2

[54] 2020 China PM2.5 MET Hourly 31 Yes NN 1 h RMSE, R
[55] 2020 China AQHI, IAQL MET, Temporal Hourly 730/1826 Yes Ensemble 12 h Acc, MSE, WP, WR, WF
[56] 2020 China PM10 MET Daily 1096 No NN 24 h RMSE, ME, R, EOp

[37] 2020 Tunisia, Italy MET, Temporal Hourly 1461/366 No Ensemble 1 week aRRMSE, aRMSE, R2, aCC, MSE,
aRE, RP

[38] 2020 China PM2.5 MET N/S 46 Yes Ensemble 24 h RMSE, MAE, SMAPE
[41] 2020 China PM2.5 MET Hourly 1825 No NN 1 week RMSE
[57] 2020 China PM2.5 MET N/S 1096 Yes NN 24 h RMSE, MAE, MAPE
[46] 2020 China O3 MET, UV Index Daily 1491 Yes Hybrid 1 week RMSE, MAE, MAPE, IA
[58] 2020 South Korea PM2.5, PM10 MET Hourly 1461 Yes Hybrid 15days RMSE, MAE
[40] 2020 China PM2.5, PM10, NO2, NO, CO MET Daily 4656 No NN 24 h MSE
[59] 2020 Taiwan PM2.5 MET, Spatial, Temporal Hourly 365 Yes Ensemble 24 h RMSE, NRMSE, R2

[60] 2020 UK PM2.5
MET, Spatial, Temporal, AOD,
Land Use Daily 3287 Partially Ensemble 24 h RMSE, MSE, R2

[61] 2020 Ecuador PM2.5 MET, Spatial, Temporal, Traffic 5 s 4 No Other Algorithms Acc
[62] 2020 China PM2.5 MET Hourly 365 No Ensemble 48 h MSE, IA, NMGE, R2

[63] 2020 China PM2.5 MET Hourly 1461 No Ensemble 24 h RMSE, MB, ME, R
[64] 2020 China AQI MET Hourly 2192 No NN 48 h RMSE, Acc
[32] 2020 China AQI MET Hourly 730 Yes NN 24 h RMSE, MAE, R2, FB
[65] 2020 South Korea PM2.5, PM10 MET, Temporal, Spatial Minutely 7 No Hybrid RMSE

[66] 2020 China PM2.5, PM10, O3, NO2, SO2,
CO MET, Social Media Daily 731 Yes NN 24 h RMSE, MAE

[67] 2020 Thailand PM10 MET Secondly 59 No NN 1 h RMSE, MAE, MAPE, R
[68] 2020 China AQI Spatial Daily 1086 Yes Hybrid 5 days RMSE, MAE, MAPE, R

[31] 2020 Germany CO2, NH3, NO, NO2, NOx,
O3, PM1, PM2.5, PM10, PN10

MET, Temporal, Traffic, SP Hourly 62 No NN 1 h RMSE, R, NMB, NMSD, RS, SD, SD′

[43] 2020 Mongolia PM2.5 MET, Temporal, Land Use, PD Hourly 2922 No Regression,
Ensemble 24 h RMSE, R2

[44] 2020 Taiwan PM2.5 MET, Temporal, Spatial Hourly 2192 No NN 8 h RMSE, MAE, MAPE
[69] 2020 Turkey PM10 MET Daily 766 No Regression, NN RMSE, MAE, R2

[70] 2020 Jordan O3 MET, Temporal Daily 1496 No NN, Regression,
Ensemble 24 h RMSE, MAE, R2

[71] 2019 South Korea PM10, PM2.5 MET, Spatial, Human Movements Hourly 115 No NN, Regression 1 h RMSE, R2

[72] 2019 China/Taiwan PM2.5 MET Hourly 3693 No NN, Other
Algorithms 5 days RMSE

[73] 2019 South Korea O3 MET Hourly 1096 No Ensemble 24 h IA
[74] 2019 USA NO2, NOx MET, Spatial, Traffic biweekly 8023 No Ensemble RMSE, R2, RMSEIQR

https://doi.org/10.5281/zenodo.4302469
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Table A1. Cont.

Work Year Case Study Prediction Target Dataset Type Data Rate Period (Days) Open Data Algorithm Time Granularity Evaluation Metric

[6] 2019 Europe NO2, PM2.5 AOD, Traffic, Land Use, Altitude N/S 365 Yes Regression,
Ensemble, NN RMSE, R2, MSE-R2

[75] 2019 China PM2.5 MET, AOD Hourly 1096 Yes Hybrid 24 h RMSE, R2

[76] 2019 China SO2
MET, Temporal, Land Use, OMI-SO2,
PPS, TS Daily 365 Partially Hybrid 24 h RMSE, R2, RPE

[77] 2019 China PM2.5 MET Hourly 731 No NN 3 h RMSE
[78] 2019 China PM2.5 MET, WFD, Spatial N/S 61 No Ensemble 24 h MAE, SMAPE, MSE
[79] 2019 China PM2.5 MET Hourly 1826 Yes NN 2 h RMSE, MAE, SMAPE
[80] 2019 China PM2.5 MET N/S 2191 Yes Ensemble 1 week RMSE, MAE
[81] 2019 Italy CO(GT), NO2(GT) MET Hourly 183 Yes NN 1 h RMSE, MAE, MAPE
[82] 2019 China PM2.5 Spatial Hourly 365 No NN 1 week RMSE, MAE, MAPE

[7] 2019 China AQI MET, WFD, Traffic, POI Distribution,
FAPE, RND Hourly 366 Yes NN 48 h MAE, MAP

[83] 2019 Taiwan PM2.5 MET Hourly 2557 No Hybrid 4 h RMSE, Gbench

[84] 2019 Iran PM2.5 MET Hourly 1826 No Ensemble, NN,
Hybrid 48 h RMSE, MAE, R2

[85] 2019 Poland NO2 MET, Temporal, Traffic Hourly 731 No Ensemble MAPE, MADE, BIC, R2

[86] 2019 India O3, PM2.5, NOx, CO MET, Traffic Hourly 730 No NN RMSE, NSE, PBIAS, R
[87] 2019 China PM2.5 MET Hourly 1826 No NN 72 h RMSE, IA, MAE, R
[47] 2019 China PM2.5 MET Hourly 366 No NN 10 h RMSE, NRMSE, MAE, SMAPE, R
[88] 2019 China PM2.5 MET, AOD N/S 730 Yes NN RMSE, MAE, MSE, R2

[89] 2019 Iran PM2.5
MET, Temporal, Spatial, AOD,
Altitude Daily 1460 Yes Ensemble, NN RMSE, MAE, R2

[90] 2019 India O3 MET Hourly 92 No Ensemble IoAd, R2, PEP
[91] 2019 China O3 MET Hourly 365 No Ensemble, NN RMSE, R, NMB, NME, MFB, MFE
[92] 2019 UK SO2 MET Hourly 120 Yes Ensemble RMSE, MAE, R2, RAE
[93] 2019 Taiwan AQI MET, Temporal Hourly 851 No Regression, NN 6 h RMSE, MAE, R2

[94] 2019 Iran PM10, PM2.5 MET, Temporal, Spatial Daily 3652 Yes Regression, NN 1 week RMSE, R2

[95] 2018 China PM2.5 MET, Temporal, AOD Hourly 731 Partially NN 72 h RMSE, MAE, MSE, IA, TPR, FPR, SI
[96] 2018 Slovenia PM10, O3 MET, Temporal Hourly 1461 No Other Algorithms 24 h MAE, RPS

[8] 2018 China O3
MET, Land Use, Elevation, AEI, NDVI,
RND, PD Hourly 365 Yes Ensemble RMSE, R2, RPE

[9] 2018 China PM2.5
MET, AOD, Elevation, PD, RND,
NDVI Daily 1095 Yes Ensemble 1 month RMSE, R2, RPE

[97] 2018 China PM2.5 MET, Spatial Hourly 61 No Regression 24 h total accuracy index (pt), a total absolute
error index (et)

[98] 2018 UK AQI MET Hourly 605 Yes NN RMSE, MAPE, band Acc
[99] 2018 Kuwait O3 MET Hourly 669 No NN 72 h RMSE, MAE

[100] 2018 Spain O3 MET Hourly 730 Yes Ensemble 24 h RMSE, MAE, R2

[101] 2018 Egypt PM10 MET, Temporal Hourly 276 No Regression 1 h RMSE, R, t-Value
[102] 2018 China PM2.5 MET Hourly 1826 No NN 1 h RMSE, MAE, IA, R
[103] 2018 USA O3, PM2.5, SO2 MET Hourly 3652 Yes Other Algorithms 24 h RMSE
[104] 2017 USA BC MET, Spatial, Temporal Daily 4383 Yes Regression 24 h R2

[22] 2017 Canada O3, PM2.5, NO2 MET, Temporal Hourly 1826 No NN 48 h MAE, R, ME, SS
[105] 2017 China PM2.5 MET, Social Media Hourly 365 No NN 24 h RMSE

[106] 2017 Ecuador PM2.5 MET Daily 1827 No Ensemble,
Regression, NN MSE, MAPE

[107] 2017 China PM2.5 MET, Temporal, Spatial, AOD Daily 365 Yes Ensemble RMSE, R2

[108] 2017 Kuwait PNCs MET 5min 30 No NN RMSE, NRMSE, IA, R2

[109] 2017 Egypt PM10 MET, Temporal Hourly 368 No Regression 1 h RMSE, R, z’, t-value
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Table A1. Cont.

Work Year Case Study Prediction Target Dataset Type Data Rate Period (Days) Open Data Algorithm Time Granularity Evaluation Metric

[110] 2017 China NO2, NOx, O3, PM2.5, SO2 MET, Temporal Daily 2191 No NN 24 h RMSE, MAE, IA, R2

[111] 2017 China AQI MET Daily 851 No Regression RMSE, MAE, MAPE, MSE
[112] 2016 Qatar O3, NO2, SO2 MET, Temporal 15min 92 No Regression 24 h RMSE, NRMSE, PTA
[113] 2016 France O3, NO2, PM10 MET Hourly 1733 No Hybrid 24 h RMSE, MAE, NRMSE, MBE, IA, R
[114] 2014 Saudi Arabia PM10 MET Hourly 366 No Regression 1 h RMSE, MAE, MBE, FACT2, R, IA
[115] 2014 France O3, NO2, PM10 MET Hourly 731 Yes Ensemble 72 h RMSE

[16] 2013 China PM1.0, UFP MET, Traffic, Temporal Minutely 3 No Regression,
Ensemble, NN

AUC, R, R2, Precision, Recall, f measure,
weighted f-measure

[116] 2013 Greece O3 MET Hourly 7305 No NN 6 h RMSE, R2, R
[117] 2013 India AQI MET Daily 1825 Partially Ensemble RMSE, MAE, R
[118] 2012 China SPM, SO2, NO2, O3 MET Daily 1095 Yes Regression 24 h RMSE, MAE, CWIA, RE
[119] 2012 Iran CO MET Hourly 1492 No Hybrid 24 h RMSE, RME, MARE, R2

[120] 2012 Saudi Arabia O3 MET, Temporal Minutely 183 No NN, Ensemble 1 h MAE, MAPE, SD, MD, R
[121] 2009 Europe O3 MET, Land Data, Chemical, Emission Hourly 120 No Ensemble 24 h RMSE
[122] 2008 China RSP(PM10), NOx, SO2 MET Hourly 61 No Regression 1 week RMSE, MAE, WIA
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