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Abstract 

Mathematical models for tolerance representation are used to assess how the geometrical variation of a specific component 
feature propagates along the assembly, so that tolerance analysis in assemblies can be carried out using a specific tolerance 
propagation method. Several methods for tolerance analysis have been proposed in the literature, being some of them 
implemented in CAD systems. All these methods require modelling the geometrical variations of the component surfaces: 
parametric models, variational models, DoF models, etc. One of the most commonly used models is the DoF model, which is 
employed in a number of tolerance analysis methods: Small Displacement Torsor (SDT), Technologically and Topologically 
Related Surfaces (TTRS), Matrix Transformation, Unified Jacobian–Torsor model. However, none of the DoF-based tolerance 
analysis methods incorporates the effect of form deviations. Among the non DoF-based methods, there are two that include form 
tolerances: the Vector Loop or Kinematic method and the Tolerance Map (T-Map) model, although the latter is still under 
development. In this work, a proposal to incorporate form deviations into the matrix transformation method for tolerance analysis 
in assemblies is developed using a geometrical variation model based on the DoF model. The proposal is evaluated applying it to 
a 2D case study with components that only have flat surfaces, but the proposal can be extrapolated to 3D cases. 
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1. Introduction 

In 1D tolerance analysis, procedures used for the specification of the variability of a characteristic can be 
performed by dimension (size) or by tolerance zone. Usually the first one is used, while the specification by 
tolerance zone is used when specifications other than dimensional are also included in the analysis. In this case, to 
incorporate the dimensional, orientation and form variabilities, the tolerance zone is established as a linear interval in 
the analysis direction in which the element (surface, line, axis, etc.) is supposed to be projected. The addition of the 
variabilities in the same chain of tolerances (tolerance chain) is done linearly using some of the tolerance stack-up 
models (worst case, statistical model, method of moments, simulation, convolution, etc.). 

However, 2D and 3D tolerance analysis are much more complex since, in addition to the dimensional variations, 
the geometric variations cause small kinematic adjustments of the components (or parts) in the assembly. In these 
cases, it is necessary to use a tolerance representation model in order to model the geometrical variations of each 
element with respect to its nominal geometry. Additionally, a tolerance propagation model (or method) to evaluate 
the way in which the variability of each component is propagated to the rest of the components in the assembly is 
required. Each tolerance propagation method is based on a single tolerance representation model. 

There are many proposals of tolerance representation models. All of them are able to deal with the dimensional 
and geometrical orientation tolerances, but not all of them can handle form tolerances. The Degree of Freedom 
(DoF) tolerance model is a tolerance representation model used by different tolerance propagation methods. This 
tolerance model does not allow modelling form tolerances, which are considered negligible by most authors. 
However, when mating components in an assembly, form deviations can cause small kinematic adjustments that are 
added up to those caused by size and orientation tolerances. These additional kinematic displacements increase the 
final variability and their contribution may be relevant in some particular cases (e.g. small components in contact 
with much larger surfaces). 

There is a plethora of proposals of tolerance representation model and tolerance propagation methods for 3D 
tolerance analysis. However, misunderstanding of the two concepts is present in literature, and often they mixed up 
or they are distinguished, being both considered under terms such as “mathematical models for tolerance 
representation” or similar terms. Khan [1] carries out an interesting review work in this field, although the difference 
between models and methods is not made. 

From the works of Shah [2], Case [3], Khan [1], and other author’s proposals, the tolerance representations 
models can be established: Offset models, Parametric models, Variational Surface model (VSM), DoF models, 
Multi-variate region models, etc. According to the way in which each model represents the tolerances, not all of 
them are capable of treating the form tolerances and not all of them are able to differentiate among different types of 
tolerances (size, orientation, form). 

Regarding the methods for tolerance propagation, there are also multiple proposals. Each propagation method 
uses a specific representation model, but the same representation model can be used by different propagation 
methods. The main methods for tolerance propagation are: Vector Loop or Direct Linearization Method (DLM) [4, 
5]; Small Displacement Torsor (SDT) [6]; Technologically and Topologically Related Surfaces (TTRS) [7]; 
Homogeneous Transformation Matrices method (HTM); Tolerance Map (T-Map) [8, 9], Unified Jacobian-torsor 
method [10], and others. SDT, TTRS, HTM, and Jacobian Torsor are methods based on the DoF model. On the other 
hand, only the DLM and the T-Map incorporate the treatment of form tolerance, and the Vector Loop and TTRS 
methods are implemented in commercial CAT (Computer Aided Tolerancing) systems. 

In this work, a proposal to incorporate form tolerances in the matrix transformation method for tolerance 
propagation is presented. The tolerance propagation method is based on the DoF tolerance representation model. The 
work begins by reviewing the main existing proposals of tolerance representation models and tolerance propagation 
methods. Next, section 3 describes the DoF tolerance model and the matrix transformation method. In section 4, the 
proposal to incorporate form tolerances in the matrix transformation method is described. Then, in section 5, the 
proposal is evaluated applying it to a case study. For simplicity, the case study used in this work is a 2D one with 
components that only have flat surfaces, but the proposal can be extrapolated to 3D cases. 
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2. The matrix transformation method for tolerance analysis 

The matrix transformation method for tolerance analysis is based on the work of Whitney [11] for the modeling 
of the resulting tolerances in an assembly due to its own action. The method was proposed by Gerbino and Serrano 
[12] and developed by Serrano [13]. It is based on the DoF tolerance model, and makes use of homogeneous 
transformation matrices, with some particularisations, for tolerance propagation. 

In the DoF tolerance model, the geometric element (feature) affected by the tolerance keeps its ideal form, but 
changes its position and orientation. The feature has a local reference system to which the position and orientation 
variations are applied (three translations and three rotations in the most general case). The space covered by the 
feature when these variations are applied determines the tolerance zone. This substitution principle of the real 
feature is shown in Fig. 1. The real element (with complex errors in form, position and orientation) is approximated 
by a substitute feature. The geometry of the substitute feature has the same nature as the nominal (a plane remains a 
plane, a cylinder remains a cylinder, etc.), but its position and orientation are fitted to that of the real feature, that is, 
the form is kept invariant, but not the position or orientation. 

nominal feature substitute feature

real featuretolerance zone

T

 

Real Feature Tolerance Zone 

Substitute Feature Nominal Feature 

 

Fig. 1. DoF tolerance model: approximation of a real geometrical feature to the nominal substitute feature with modification of position and 
orientation, and the resulting tolerance zone (the geometry variations are shown in aggrandized way) [12]. 

The position and orientation of the substitute feature is obtained by multiplying the homogeneous transformation 
matrix that defines the reference system of the original ideal feature by a homogeneous transformation matrix M 
referred to the local reference system. In the matrix M, the parameters (u, v, w) and (α, β, γ) represent the three 
translations and the three rotations/angles with respect to the local reference system (x, y, z). In the case of the 
variations induced by the tolerances, it can be assumed that (α, β, γ) << 1, so that in the matrix M the small 
deviations between the nominal feature and the substitute feature can be approximated to the equivalent 
infinitesimals. By introducing them into the matrix M, the matrix of variations (or deviations) MV is obtained as 
shown in Eq. 1, where s = sin() and c = cos(). The components of this MV matrix indicate the DoFs that do not keep 
the geometry of the feature invariant. This type of tolerance modelling enables the representation of position, size 
and orientation tolerances, but not of form tolerances. 
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The matrix transformation method for tolerance analysis uses 4x4 homogenous transformation matrices to locate 
in the space each individual component in relation to a coordinate system. The matrix locating each component in 
terms of position (p) and orientation (R) is referred as matrix of position (MP). Each MP uses six variables, three 
translations (according to the X, Y, Z axes) and three rotations around the same axes, and its expression is identical 
to the matrix M in equation (1). In this way, each component is assigned a reference system that locates it in a space 
through an MP. Additionally, each component feature is assigned a reference system that is located with respect to 
the component reference system through its corresponding MP. Each MP is referred as MPa,b, indicating that it is the 
matrix of position of the reference system of element b with respect to the reference system of element a. 

The matrices of position define and locate each component in an assembly, but they are not sufficient to describe 
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completely the assembly, since the contact relations between components have not been defined. To do this, 
matrices linking two parts through a contact relationship between their surfaces is defined. Each of these matrices, 
which have the same structure as the matrices of position, is referred as Matrix Link (ML). Each ML locates a 
feature of a component with respect to a feature in contact of the other component. In this way, the location of one 
part with respect to another part can be known according to the contact restrictions between them. For example, in 
Fig. 1 the location of part 2 (its reference system) with respect to part 1 through feature Ai and Bk of part 1 and 2 
respectively is as follows: MPP1,P2 = MPA,Ai·MLAi,Bk·MPB,Bk

-1. 
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Fig. 2. Two parts with their reference systems and link matrices ML that allow moving from one to another through two different paths. The 
structure of the MP (matrices of position) is also shown. 

These ML matrices are directional, so that ML1→2 ≠ ML2→1. Therefore, it is necessary to specify the direction 
of the link (e.g. in previous example MLAi,Bk ≠ MLBk,Ai). For this reason, a link must specify which is the support 
part and which is the supporting part (master and slave in the relationship). 

On the other hand, when a variation occurs in any of the surfaces that make up the assembly, a redistribution of 
the components takes place. This means that the ML relating each pair of surfaces will be modified according to the 
free DoF in the relationship, that is, a kinematic variation will occur between each pair of surfaces. This variation is 
introduced in the link through the Kinematic Matrix (MK) that establishes the fixed and free DoF between each pair 
of surfaces in contact. In this way, the new link matrix will be ML '= ML • MK. For example, in the case of a plane-
plane contact relation, the Z axis must be kept invariant, so the kinematic matrix is the one indicated in Eq. 2.  
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The position with respect to the Z axis (Cz) and the angles with respect to the X and Y axes (Cβ y Cα) are fixed 
(constants), while the small displacements with respect to the X and Y axes (fx and fy) and the angle with respect to 
the Z axis (fγ) are free. Therefore, the free parameters will be unknown and must be resolved according to the rest of 
the kinematic restrictions of the assembly. 

3. Proposal of incorporation of form tolerances in the matrix transformation method for tolerance analysis 

The DoF tolerance model is based on the fact that the involved real element affected is replaced by a substitute 
feature. This substitute feature keeps its ideal form (the same of the nominal feature), but changes its orientation and 
position, varying both within a tolerance zone, as shown in Fig. 1. This allows to model and control the size, 
orientation and position variations of the real feature, but not its form. Several authors explain that controlling the 
form is not necessary, since its effect on a tolerance chain is much less than those due to size, orientation and 
position variations. Form tolerances are assumed to be of less magnitude and are included in the former. 
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However, on certain occasions additional variations due to form tolerances may be relatively important, 
particularly when contact surfaces have significant size differences. Typically, variation allowances in a feature are 
consistent with its size for the same quality requirement. For that reason, the orientation and position of a small 
element in size in contact with a much larger element in size can be altered due to the form variations of the latter, as 
shown in Fig. 3. In this figure, the variation of the dimensional characteristic C owned to the form variations of the 
contact surface with part P1 can be seen. 

 

ΔC 

C C’ 

D P2 

P1  

Fig. 3. Influence of form tolerances in the final value of a dimension in the case of contact between two surfaces of the same quality and very 
different size (form errors in part P2 of smaller size have not been included). 

Some authors propose the incorporation of additional DoF to the kinematic ones in the joint, such as a size DoF 
and a shape DoF with the aim of setting the tolerances completely: form, size and location. However, this 
incorporation is proposed to be considered in a support system to tolerance specification and consistency analysis 
(tolerance form must be smaller than dimensional and orientation tolerances, etc.), but not to be applied to assess the 
form tolerance influence on tolerance propagation. An important issue to be considered is how the extraction of the 
substitute feature from the real feature will be done. This process is very much related to the inspection system to be 
used. Since the substitute feature must be the best approximation to the real feature, the criterion used is similar to 
the one employed in CMM machines, that is, minimisation of the fitting error, giving the position of the centre (or 
reference) and its orientation (Fig.1). 

In addition, the way of including the influence of form tolerances depends on the type of contact between 
surfaces (type of surfaces in contact and DoF limited by the contact). For that reason, reference contacts will be 
distinguished from support contacts. The former are contacts limiting 1 DoF, particularly 1 translation. Support 
contacts are contacts limiting 2 DoF in 2D (1 translation and 1 rotation), and 2 or 3 in 3D (1 translation and 1 
rotation, or 1 translation and 2 rotations). 

In the case of the reference contacts, the form error will result in the contact not being made on the substitute 
features, but slightly displaced. Therefore, form errors influence must be expressed as an additional translation. In 
the case of the support contacts, in addition to the translation, an extra rotation in relation to the rotations locked in 
the contact. In both cases, an additional translation or rotation must be considered. Hence, the form errors 
contribution must be realised in the MK matrix, since in fact they mean a change in the DoF or in the value of their 
contribution in relation to what it was initially set in that matrix. 

Once the contribution of the form errors and how this contribution is incorporated in the tolerance propagation 
method have been established, the next step is to quantify the value of the contribution. In the case of the reference 
contact, the additional translation will depend on the points of the surfaces where the real contact may be produced 
in relation to the theoretical contact of the substitute features and on the value of the form tolerances. In the 
borderline case, the contact could be produced between two waviness peaks, one peak and one valley, or even two 
valleys. Thus, the translation would be equal to the sum of the form variations of each surface. However, it is highly 
unlikely that this borderline case occurs, so the squared contribution pointed out in Eq. 3 is proposed. This 
contribution is specified by the reference contact between surfaces 2A and 3B (the surface 2 of a part A and the 
surface 3 of mating part B), which is less penalising. 

The estimation of the contribution of the form tolerances in the case of support surfaces is much more complex, 
since the contact is influenced by the relative surface size and by the order of the value of the form variation relative 
to the surface size. When sizes are similar, the contact will not appear between the valleys of both surfaces and it is 
very unlikely that the contact is produced between a valley and a peak. In these cases, the contact will be produced 
mostly between peaks. However, when difference in size is significant, the probability of contact between valleys 
and peaks increases. For that reason, to consider the additional translation and rotation due to the form deviations Δf 
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(flatness, straightness, roundness, …), the values Δpf and Δrf specified in Eq. 4 are proposed. These values have 
been specified for the support contact in 2D between surfaces 2A and 3B, being L2A and L3B the characteristic size 
of each surface respectively, L2A the smallest surface and having surface 3B the rotation. 
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The above described proposal of incorporation of form tolerances is based on the one developed by Serrano [13] 
to incorporate form tolerances in an Integrated Model for Tolerance Management in Design and Manufacturing in 
3D Systems. In this work, the proposal is described in more detail. 

4. Case Study 

In this section the previously proposal is applied to the assembly composed of parts A and B, shown in Fig. 4 
which includes the functional representation using “assembly graph (A-graph)” [14]. The function requirement FR1 
implies a distance relationship between a point on the surface 4 of the piece A (P4A) and another point belonging to 
surface 4 of part B (P4B). This distance will be measured in the direction established by the FR1. 
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Fig. 4. Assembly with part relations and functional requirement (FR1), A-graph and part surfaces identification. 

Therefore, if the FR is defined in the reference system of part A according to Eq. 5, where P’
A,4A and P’

A,4B, 
written out in the part A reference system, are obtained from points P4A and P4B, according to the Eq. 6 that include: 
1) the variation matrices MV4A and MV4B, quantifying the deviations of features 4A y 4B induced by the tolerances; 
2) the position matrices MPA,4A and MPB,4B, positioning features 4A y 4B with the part A and B references systems; 
and 3) the position matrix MP’

A,B, positioning the part B reference system with respect to part A reference system. In 
the Eq. 6, the matrices MV present the form shown in Eq. 7, where ty#,X and rz#,X are the displacement and angle 
deviations of surface # for the part X.  

In order to compute the position matrix MP’
A,B, the two possible paths throw the part features in contact are 

considered. These paths result in the Eq. 8, where the matrices MK are expressed as a function of four variables, 
corresponding to the four free DoF in the contacts between the parts A and B. Specifically, a free DoF (displacement 
in X) in the contact between surfaces 1B and 1A and three DoF (displacement in X and Y and rotation in Z) in the 
contact between surfaces 2A and 2B. For this case, the matrices MK have the expressions (9). 
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In order to obtain these four variables, four equations are needed. Two equations result from equalling the 
positions in X and Y obtained by the two paths shown in A-Graph (Fig. 1) for the MP’

A,B, which must be unique. 
The other two equations are obtained from proposing the uniqueness of the contact point of surfaces 2A and 2B 
(point P0 shown in Fig. 1 is considered, since it is the one that penalizes the most). From the four equations, the 
variables corresponding to the four free DoF are obtained as a function of the feature variations for the part A and B. 

Once the variables for the free DoF are known, the FR1 can be expressed as in the Eq. 10 where |FR1|0 is the 
nominal value, when all feature deviations are zero, and dFR1 is the functional requirement variation corresponding 
to a certain combination of deviations in the part features. The term dFR1 is linearized, expressing it as a linear 
combination of feature deviations weighted with sensitive coefficients. These sensitive coefficients quantify the 
isolated effect of each feature deviation and they are calculated, using the partial derivatives. Its expression is shown 
in Eq. 11, where MV[i, j] are the components of the variation matrices. In the case at hand, the expression of dFR1 is 
shown in Eq. 12. 
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In order to include the form tolerances, the kinematic matrices for the support contact (1A-1B) and for the 
reference contact (2A–2B) must include the contributions previously explained (Eq. 4). For the support contact 
between 1A-1B the kinematic matrix will be (Eq. 13). 

For the reference contact, the term pf2A,2B (explained Eq. 4) should be included in the kinematic matrix, but this 
is not possible because its position corresponds to a free DoF. In these cases, the kinematic matrix does not change, 
and this condition is imposed in the equation relating the contact point between surfaces 2A and 2B. In a similar 
way, the variables corresponding to the four free DoF are obtained as a function of the feature variations for part A 
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and B, and the functional requirement in expressed as in Eq. 10. The dFR1 is linearized likewise, but including the 
terms added for the form tolerances. The final expression for dFR1 including form tolerances effect is in Eq. 14. 
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5. Conclusions and future works 

The DoF tolerance model does not incorporate form tolerances and tolerance propagation methods based on DoF 
suppose form tolerances negligible. However, as has been justified, in certain cases its influence may be relevant. In 
this work a proposal to consider form variations in the HTM method, based on DoF model, has been presented. To 
this end, additional translations and rotations are included, which has been quantified for the worst case. The 
proposal has been applied and validated on a 2D case study, that allows to show the additional variation provided by 
the form deviations. 

In future work, the application of the proposal will be generalized to the 3D problems and it will be generalized 
to include other geometries (cylinders, spheres, any surfaces, etc.). At the same, the inclusion of form tolerances in 
other methods (SDT, TTRS, Jacobian Torsor) will be investigated. 
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