
entropy

Article

Wavelet-Based Entropy Measures to Characterize
Two-Dimensional Fractional Brownian Fields

Orietta Nicolis 1,*, Jorge Mateu 2 and Javier E. Contreras-Reyes 3

1 Facultad de Ingenieria, Universidad Andres Bello, Viña del Mar 2520000, Chile
2 Department of Mathematics, Universitat Jaume I, E-12071 Castellon, Spain
3 Departamento de Estadistica, Universidad del Bio-Bio, Concepcion 4081112, Chile
* Correspondence: orietta.nicolis@unab.cl

Received: 25 December 2019; Accepted: 27 January 2020; Published: 7 February 2020
����������
�������

Abstract: The aim of this work was to extend the results of Perez et al. (Physica A (2006), 365 (2),
282–288) to the two-dimensional (2D) fractional Brownian field. In particular, we defined Shannon
entropy using the wavelet spectrum from which the Hurst exponent is estimated by the regression of
the logarithm of the square coefficients over the levels of resolutions. Using the same methodology.
we also defined two other entropies in 2D: Tsallis and the Rényi entropies. A simulation study was
performed for showing the ability of the method to characterize 2D (in this case, α = 2) self-similar
processes.
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1. Introduction

The concept of entropy was first introduced by [1] in thermodynamics as a measure of the amount
of energy in a system. Posteriorly, Boltzmann [2] was the first who gave a probabilistic interpretation,
setting the foundations of statistical physics. Shannon [3] proposed the entropy concept on the subject
of information theory as the average rate at which information is produced by a stochastic data source.
According to information theory, entropy is a measure of uncertainty and unpredictability associated
with a random variable (discrete or continuous), and Shannon entropy quantifies the expected value
of information generated from a random variable. The definition of entropy has been widely used
in many applications, such as neural systems [4], image segmentation through thresholding [5,6],
climatology, and hydrology [7–10]. Nicholson et al. [11] introduced spatial entropy to study earthquake
distributions. A temporal definition of entropy was used by [12–15] to study seismicity in different
parts of the world.

For a process characterized by a certain number N of states or classes of events, Shannon
entropy [3] is defined as

S = −
N

∑
i=1

pi log(pi), (1)

where pi is the probability of event occurrence in each i-th class. The choice of the base of the logarithm
is arbitrary: for practical convenience, we used base two throughout this paper (log ≡ log2). For pi = 0,
pi log2 pi = 0. Shannon entropy is maximal when all outcomes are equally likely, that is, S = log2(N).

A generalization of Shannon entropy is Rényi entropy proposed by [16] as

Sα =
1

1− α
log2

(
N

∑
i=1

pα
i

)
, (2)
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where α, α > 1, is a parameter. Shannon entropy is obtained from Sα as α→ 1 (see, e.g., [17]), and Rényi
entropy is non-negative in discrete Case (2). Finally, for any α1 < α2, we have Sα1 ≥ Sα2 (and Sα1 = Sα2

if and only if the system is uniformly distributed).
Another generalization of Shannon entropy is Tsallis entropy, proposed by [18] as

Tα =
1

α− 1

(
1−

N

∑
i=1

pα
i

)
. (3)

Tsallis entropy satisfies the following properties: (i) Tα ≥ 0 with (α− 1)Tα ≤ 1; (ii) Tα → S as α→ 1;
(iii) pseudoadditivity between two independent systems A and B: Tα(A, B) = Tα(A) + Tα(B) + (1−
α)Tα(A)Tα(B) (additivity is accomplished if α = 1); and (iv) it is a non-decreasing function of the
Rényi entropy because [19]

Sα =
1

1− α
log2[1 + (1− α)Tα].

However, probability density is not the only type of distribution that can give information, and
the definition of entropy can be extended to other types of distributions, such as energy distribution
based on wavelet coefficients [20]. A definition of Shannon wavelet entropy based on the energy
distribution of wavelet coefficients was proposed by [21–27]. In particular, Sello [21] defined temporal
wavelet entropy using continuous wavelets, and [20] introduced multiresolution wavelet entropy
by summing the energy for all discrete times, and discretizing scale j. Nicolis and Mateu [28] used
the anisotropic Morlet wavelet to define Shannon entropy in two-dimensional point processes. A
discrete version of Shannon wavelet entropy was proposed by [25–27,29–32] to characterize self-similar
processes with Gaussian and stationary increments. Recently, a similar approach based on wavelet
probability densities was proposed by [33] using the Fisher–Shannon method [15].

However, the latter authors used a definition of wavelet entropy for characterizing self-similar
processes in the time domain, but an extension to the two-dimensional case has not been proposed so
far. In this work, we extend the definition of wavelet Shannon entropy proposed by [25–27] to provide
a characterization of an isotropic n-dimensional fractional Brownian field. The same methodology is
also used for defining wavelet-based Rényi and Tsallis entropies. A simulation study is provided to
prove and check the results.

The article is organized as follows: Section 2 provides some basic concepts of fractional Brownian
motion and its extensions. Section 3 gives some definitions of 2D wavelet transforms. Directional
wavelets and anisotropic wavelet entropy are introduced in Section 4. A simulation study is reported
in Section 5. The paper ends with some conclusions in Section 6.

2. Fractional Brownian Motion and Extensions

Fractional Brownian motion (fBm) denoted by {BH(t), t ∈ R}, is a Gaussian, zero-mean,
nonstationary stochastic process originally proposed by [34]. This process is called self-similar since,
for all a > 0, it satisfies

BH(at) d
= aH BH(t),

where H is the self-similarity or Hurst exponent parameter, and “ d
=” denotes equality in distribution.

The fBm process is characterized by the following covariance function:

RBH (t, s) = E{BH(t)BH(s)} =
σ2

H
2

[
|t|2H + |s|2H − |t− s|2H

]
, (4)

where

σ2
H = Γ(1− 2H)

cos(πH)

πH
, 0 < H < 1.

As can be seen from Function (4), the fBm is a nonstationary process, but with stationary
increments. These definitions can be extended to any dimension. The case of fBm generalization
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from one to higher dimensions is not unique. A simple generalization to a 2D surface is the fractional
Brownian field (fBf). The fBf is a Gaussian, zero-mean, random field BH(u), where u denotes the
position in a selected domain, usually [0, 1]× [0, 1]. Its covariance function is given by

RBH (u, v) = E [BH(u)BH(v)] =
σ2

H
2

(
‖u‖2H + ‖v‖2H + ‖u− v‖2H

)
, (5)

where 0 < H < 1, the variance σ2
H is

σ2
H =

2−(1+2H)Γ(1− H)

πHΓ(1 + H)
, (6)

and ‖·‖ is the usual Euclidean norm in R2 (see [35–37]). The increments of an fBf represent stationary,
zero-mean, Gaussian random fields because the variance of such increments only depends on distance
‖h‖ so that

E [BH(u + h)− BH(u)]
2 = σ2

H‖h‖2H ,

where σ2
H is given in Equation (6).

The extension to the d-dimensional case is straightforward [38]. For a d-dimensional fractional
Brownian motion, the covariance function is given by Equation (5) with u, v in Rd, and

σ2
H =

2−1−d−2HΓ(1− H)

π
d
2 HΓ( d

2 + H)
. (7)

Although many generalizations have been proposed to include anisotropy in Gaussian random
fields [37,39], in the following section, we only consider the isotropic version of the fBf.

3. Two-Dimensional Wavelet Transforms

In one or higher dimensions, wavelets provide an appropriate tool for analyzing self-similar
signals or objects. In the two-dimensional domain, wavelet transforms can be constructed through
translations and the dyadic scaling of a product of univariate wavelets and scaling functions. Using the
same setting as that provided in [35], the following so-called separable 2D wavelets can be defined as

φ(ux, uy) = φ(ux) · φ(uy),

ψh(ux, uy) = φ(ux) · ψ(uy),

ψv(ux, uy) = ψ(ux) · φ(uy),

ψd(ux, uy) = ψ(ux) · ψ(uy),

where φ and ψ are scaling and wavelet functions, and symbols h, v, d stand for the horizontal (h),
vertical (v), and diagonal (d) directions, respectively. So, any function g ∈ L2(R2) has the following
representation:

g(u) = ∑
k=(k1,k2)

cj0,kφj0,k(u) + ∑
j≥j0

∑
k=(k1,k2)

∑
i=h,v,d

di
j,kψi

j,k(u), (8)

with u = (ux, uy) ∈ R2, (k1, k2) ∈ Z2, φj,k(u) and ψj,k(u) being the translations and dilations of the
scaling function and of the mother wavelet, defined by

φj,k(u) = 22jφ(2jux − k1, 2juy − k2),

ψi
j,k(u) = 22jψi(2jux − k1, 2juy − k2),
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for i = h, v, d [40]. The scaling and detail coefficients in Equation (8), respectively, are given by

cj,k = 〈g, φj,k〉 = 22j
∫

IR2
g(t)φ(2jt− k)dt,

di
j,k = 〈g, ψj,k〉 = 22j

∫
IR2

g(t)ψi(2jt− k)dt,

for i = h, v, d. With this notation, j0 denotes the coarsest scale and therefore the lowest resolution in the
representation. A larger j corresponds to a finer scale, and therefore corresponds to a higher resolution.
If M × M is the size of the matrix representing a 2D object (for example, an image), the number
of coefficients for each level of resolution and direction i is 2j M × 2j M with j = −N, . . . ,−1 and
N = log2(M), where M must be taken a priori to be an integer power of 2, i.e., M = 2N . For further
details on wavelet theory, see [40,41]. Wavelet transform can be also extended to the n−dimensional
case (see, for example, [42] for a 3D case).

4. Shannon Wavelet Entropy for 2D FBF

In this section, in order to address Shannon wavelet entropy for a 2D fBf, we deal with a random
signal (with some second-order properties) for wavelet energy to be written in terms of expectations.
Following the notation of [26] for the one-dimensional case, 2D wavelet energy at resolution j can be
written as

Ei(j) = ∑
k=(k1,k2)

E[|di
j,k|

2],

and 2D relative wavelet energy (RWE) is given by

pi(l) =
Ei(l)

∑−1
l=−N Ei(l)

=
∑k=(k1,k2)

E[|di
l,k|

2]

∑−1
l=−N ∑k=(k1,k2)

E[|di
l,k|2]

, (9)

for varying index l, l = −N . . .− 1, being N is the maximal resolution level.
Consequently, 2D normalized Shannon, Rényi, and Tsallis wavelet entropies (NSWE, NRWE, and

NTWE, respectively) can be defined as

Si = − 1
log2 N

−1

∑
l=−N

pi(l) log2(pi(l)), (10)

Si
α =

log2

(
∑−1

l=−N [p
i(l)]α

)
(1− α) log2 N

, (11)

Ti
α =

1−∑−1
l=−N [p

i(l)]α

(α− 1) log2 N
, (12)

respectively.
For an fBf process BH(x), the detail coefficients are random variables given by

di
j,k = 2j

∫
IR2

BH(x)ψi(2jx− k)dx, (13)

where i = h, v or d. The detail coefficients have zero mean and variance (see [35,43]) given by

E[|di
j,k|

2] = 22j
∫

IR2

∫
IR2

ψi
(

2jx− k
)

ψi
(

2jv− k
)

E [BH(x)BH(v)] dxdv. (14)

From Equation (14), we can derive

E[|di
j,k|

2] =
σ2

H
2

Vψi 2−(2H+2)j, (15)
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where
Vψi = −

∫
IR2

∫
IR2

ψi(p + q) · ψi(q) |p|2H dpdq (16)

with p = 2j(x− v) and q = 2jv− k (see [35], for the derivation of this result). (16) only depends on
wavelets ψi and exponent H, but not on scale j.

An application of the logarithm with base two to both sides of Expression (15) leads to the
following equation:

log2 E[|d
i
j,k|

2] = −(2H + 2)j + Ci, (17)

where

Ci = log2

{
σ2

H
2

Vψi (H)

}
.

The Hurst coefficient of an fBf is estimated from the slope of the linear equation given in
Equation (17). The empirical counterpart of Equation (17) is regression defined in pairs,(

j, log2

∣∣∣di
j,k

∣∣∣2) , i = h, v, d, (18)

where
∣∣∣di

j,k

∣∣∣2 is an empirical counterpart of E
[∣∣∣di

j,k

∣∣∣2] [35].

By replacing Equation (15) into 2D RWE (9), we obtain the relative wavelet energy at direction i
for a 2D fractional Brownian field, that is,

pi(l) =
2−(2H+2)l

∑−1
l=−N 2−(2H+2)l

, (19)

for varying index l.
Since for isotropic processes, relative wavelet energy is independent of wavelet basis, pi(j) are

equal for each direction i = d, h, v. However, it could be not true for general isotropic processes without
the self-similarity condition. Next, we only considered the d−direction, and we denote by p(j) its
relative wavelet energy at each resolution j.

Proposition 1. Let H be the Hurst exponent parameter and N the number of resolution levels, then:

−1

∑
j=−N

2−j(2+2H) = 2(2+2H)

(
1− 2−(2+2H)N

1− 2−(2+2H)

)
.

For proof of Proposition 1, see the Appendix A. For a 2D object of M × M size, and with a
maximal resolution level already explicitly fixed to N = log2(M), Equation (19) can be written using
Proposition 1 as

p(j) =

(
1− 2−(2+2H)

1− 2−(2+2H)N

)
2−(2+2H)(j+1). (20)

Similarly to the 1D case described in [27], by replacing Equation (19) in Equation (10), and
considering γ = 1 in Proposition 1, wavelet-based Shannon entropy for a grid-sampled fBf and fixing
maximal resolution level N is given by

S(N, H) =
1

log2(N)
(2 + 2H)

[
1

2(2+2H) − 1
− N

2(2+2H)N − 1

]
− 1

log2(N)
log2

[
1− 2−(2+2H)

1− 2−(2+2H)N

]
, (21)
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which only depends on H and N. Equation (21) can be easily generalized to m dimensions by using

E
[∣∣∣di

j,k

∣∣∣2] = 2−(2H+m)σ2
H

in Equation (20), with

σ2
H = Γ(1− 2H)

cos(πH)

πH
, 0 < H < 1.

Proposition 2. Let H be the Hurst exponent parameter, N the number of resolution levels, and α > 1; then,

−1

∑
j=−N

[pi(j)]α =

(
1− 2−(2+2H)

1− 2−(2+2H)N

)α (
1− 2−α(2+2H)N

1− 2−α(2+2H)

)
.

For a proof of Proposition 2, see the Appendix A. By replacing Equation (19) in Equations (11)
and (12), and considering Proposition 2, wavelet-based Rényi and Tsallis entropies for a grid-sampled
fBf and fixing maximal resolution level N are given by

Sα(N, H) =
1

(1− α) log2 N
log2

{(
1− 2−(2+2H)

1− 2−(2+2H)N

)α (
1− 2−α(2+2H)N

1− 2−α(2+2H)

)}
, (22)

Tα(N, H) =
1

(α− 1) log2 N

{
1−

(
1− 2−(2+2H)

1− 2−(2+2H)N

)α (
1− 2−α(2+2H)N

1− 2−α(2+2H)

)}
, (23)

respectively; both only depend on α, H, and N.

5. Simulation Study

For illustrative purposes, we simulated N = 1000 2D fractional Brownian fields with 1024× 1024
size and H ranging from 0.1 to 0.9. Figure 1 represents two simulated 2D fractional Brownian fields
with H = 0.3 and H = 0.8, respectively. For each simulation, we estimatd the Hurst parameter H
and wavelet-based Shannon entropy S(N, H) using wavelet Daubechies 6. The boxplot represented
in Figure 2 shows the distribution of the Hurst parameter estimation for each value of H (for H =

0.1, . . . , 0.9).

(a) (b)

Figure 1. Simulated fractional Brownian fields (fBf) using (a) H = 0.3 and (b) H = 0.8.

Results were similar to those obtained by [27] for the one-dimensional case: the wavelet-based
estimator had good performance for H > 0.3. In Figure 3, wavelet-based Shannon entropy measures
are compared with the theoretical result of Equation (21) using H = 0.1, . . . , 0.9. In particular, in
Figure 3a, we used the empirical wavelet coefficients for estimating wavelet-based entropy, such as in
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Equation (10). In Figure 3b, we used the estimated Hurst parameters for estimating the wavelet-based
Shannon entropy of Equation (21).

Although the variability of wavelet-based entropy was higher in the empirical case, median values
were very close to the theoretical results. This result can be used for characterizing a 2D fractional
Brownian field and describing its entropy.

Additionally, we estimated wavelet-based Tsallis and Rényi (for α = 2) entropies for the simulated
2D fractional Brownian fields (Figure 4a,b, respectively) and we compared them with their theoretical
values for each H (with H = 0.1, . . . , 0.9). These plots show that Tsallis and Rényi entropies both
decreased with higher values of H. However, more robust methods have to be used for estimating
Hurst parameters when H is very small (for example, for H = 0.1), since the wavelet method seems to
underestimate real values, hence affecting the estimation of entropy measures. Since the result of this
work allows to estimate entropy measures independently of the used wavelets, a different method
could be used for estimating the Hurst parameter. In Figure 5a,b, we show the different behavior of
Tsallis and Rényi entropies, respectively, for different values of α.

Figure 2. Boxplots of estimated Hurst parameter for each H parameter (H = 0.1, . . . , 0.9). Dashed
line, identity.

(a) (b)

Figure 3. (a) Boxplots of empirical wavelet-based Shannon wavelet entropy and (b) theoretical
wavelet-based Shannon entropy using estimated Hurst parameters. Dashed line, theoretical wavelet
Shannon entropy S(8, H) for H = 0.1, . . . , 0.9.



Entropy 2020, 22, 196 8 of 11

(a) (b)

Figure 4. Boxplots of theoretical wavelet-based (a) Tsallis and (b) Rényi entropies using estimated Hurst
parameters. Dashed line, theoretical Tsallis (Tα(N, H)) and Rényi (Sα(N, H)) entropies, respectively,
for α = 2 and H = 0.1, . . . , 0.9.
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Figure 5. Theoretical wavelet-based (a) Tsallis and (b) Rényi entropies for N = 9, H = 0.1, . . . , 0.9, and
α > 2.

6. Conclusions

In this work, we derived a mathematical expression for defining 2D Shannon, Tsallis, and Rényi
entropies for a 2D fractional Brownian field. Results showed that the different proposed entropies are
independent from the choice of wavelet function, allowing the use of different methods for estimating
the Hurst parameter. The proposed formulations could be used in many applications where the
generating process is a 2D fractional Brownian motion. Furthermore, these results could easily be
extended to the n− dimensional case. Some generalizations could also be considered for the study of
anisotropic fractional Brownian fields by taking into account continuous wavelet transform, such as
fully anisotropic wavelets introduced by [44] and successively used by [28]. Finally, our future steps
are evaluating and validating these results on real datasets.
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Appendix A

Proof of Proposition 1. Consider first a general result for geometric progression sum:

−m

∑
j=−N

arj =
a(r−m − r−N+1)

1− r
, m = 0, 1, 2, . . . . (A1)

By replacing m = a = 1 and r = 2−(2+2H) in (A1), we have that

−1

∑
j=−N

2−j(2+2H) =
2(2+2H) − 2(2+2H)(−N+1)

1− 2−(2+2H)
= 2(2+2H)

(
1− 2−(2+2H)N

1− 2−(2+2H)

)
.

Proof of Proposition 2. Considering Probabilities (19), we have that

−1

∑
j=−N

[pi(j)]α =
−1

∑
j=−N

2−αj(2H+2)(
∑−1

l=−N 2−(2H+2)l
)α .

Using Proposition 1 and (20), the proof follows from

−1

∑
j=−N

[pi(j)]α =

(
1− 2−(2+2H)

1− 2−(2+2H)N

)α −1

∑
j=−N

2−α(2H+2)(j+1).
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