Creation of a demo of a Tactical

Role-Playing game with dynamic
Al

by

Oscar Gil Ferrer

Degree: Video Game Design and Development Supervised by:
Course: Bachelor’s Thesis Pedro José Sanz Valero
July 2, 2019

To everyone who believed in me

Acknowledgements

I want to thank my parents for being there through thick and thin. I want to thank my friends for
encouraging me to finish the project. I want to thank Miguel Chover Selles because without him,
this degree would not exist. And lastly, I want to thank Pedro José Sanz Valero for supervising
and approving the development of this crazy project.

Abstract

This document details the Technical Report of a Bachelor’s Thesis consisting in the development
of a demo of a Tactical Role-playing game in 3D using Unity. The basis of the project is a simple
turn-based strategy system together with a decision-based system previous to the combats. The
efforts of the project are put mainly on the research and development of Artificial Intelligence
techniques so as to provide the game of a dynamic Al

This will be done by implementing three distinct systems: a Visual Novel-like system that
will take into account the decisions made by the player to decide which scenario will be played
right after; an Emotion Controller to adjust the behavior of the different computer-controlled
units according to the situation of the battlefield; and an Error System that will take into account

previous inefficient actions of the units to diminish their value during the decision-making portion
of the Al

Keywords: RPG, Strategy, Al, Personality, Learning

Contents

1 Technical Proposal

1.1

1.2

1.3

1.4

1.5

1.6

Introduction L.

2 Game Design Document

21

2.2

2.3

24

2.5

3.1

3.2

Overview
2.1.1 Main Concept
2.1.2 Unique Selling Points
Gameplay L.
221 StoryPart.
2.2.2 Combat Part
Story
2.3.1 Setting.
2.3.2 Core Mechanics
HUD
241 StoryPart.
2.4.2 Combat Part
Screens

Basic Concepts for the Thesis

What is a Tactical Role-Playing Game?

“Academic” Al vs Video Game AI . . .

11

11

12

12

12

12

12

12

13

14

14

14

15

15

15

15

17

3.3 The Three Layers of Video Game AT
3.4 Decision-Making: Reinforcement Learning

3.5 Strategy: State Machine

Narrative Development

4.1 About Fungus
4.2 Technical Approach
4.3 Narrative Impact Lo

Tactics RPG System

5.1 Baseof thesystem
5.1.1 Capabilities of the engine L.
5.1.2 What the engine CANdo,
5.1.3 What the engine CANNOT do
5.1.4 Conversation Manager e
5.1.5 Alin the Base System

5.2 Implementations for the project o oo
5.2.1 Abilitieso
5.2.2 Minimum Range L o
5.2.3 Conversations
5.2.4 Units o e e
5.2.5 AL . L

5.3 Narrative Impact L

54 Flow of the AT e

Conclusions

6.1 Tester Opinion o o o

6.2 Personal Opinion oL L

6.3 Learning as a developer

6.4 Learning as a designero e e e

6.5 Constraints L e
6.5.1 Technical Limitations
6.5.2 Scheduling Problems L o

6.6 Final Conclusions L e

21

21

21

22

24

24

24

24

24

25

25

26

26

26

26

26

26

29

30

32

6.7 Future Lines of Work

7 Appendixes

71 Links. e
7.2 Algorithms
7.2.1 Machine Learning Algorithm
7.2.2 State Machine Algorithm o L.

List of Figures

2.1

2.2

3.1

3.2

3.3

4.1

4.2

4.3

5.1

6.1

Screenshot of the Story Part L 16
Screenshot of the Combat Part L. 16
Feedback loop on the first turn of an Al Mage 19
Feedback loop on the second turn of an Al Mage 19
Two different States of the State Machine 20
Example of a Fungus-made novel scene. 22
Flowchart of the thesis. 22
Commands on the Start block. o 0oL 23
Screenshot of a sample conversation using the Conversation Manager 25
Gantt Chart of the final time allotted 34

Chapter 1

Technical Proposal

1.1 Introduction

The Golden Age of Tactical Role-Playing Games (referred as TRPGs henceforth) has long come
and gone. Recent TRPGs do nothing more than capitalize on older franchises without bringing
much new to the table. There are exceptions to the norm, like the Firaxis reboot of the X-COM
franchise [1], the The Banner Saga duology [2] or even the last non-remake entry of the Fire
Emblem franchise [3].

It is true that these games can boast robust mechanics on combat, storytelling, management,
unit customization and a long et caetera. But there is one thing that most TRPGs do not pay
attention to even though it’s one of the most important aspect in a “Tactical” game: its Al

On most TRPGs, the enemy units limit themselves to attacking the nearest enemy without
really thinking if attacking is even the best available option. If there is an enemy within its search
area, it will invariably move towards it as long as it feels it’s superficially secure to do so. And by
superficially I mean that they look if they have enough ammunition, magic points, bullets, etc and
if they have enough health to not be put in some kind of ‘danger’ state. It doesn’t really matter
if the enemy has some kind of counterattack that will surely obliterate the unit as soon as it tries
to attack.

On the other hand, it seems logical that the unit does not really know what the enemy is
capable of at first glance, and while this is true, the AI doesn’t learn anything and keeps getting
countered by the same unit over and over, while other units wait for their turn to be countered as
well. This may seem like an extreme example, and the truth is that in general those games have
enough of an Al to keep the players entertained.

But I have to ask: is this really enough? Is there nothing that can be done to better these Als?
That’s where this project comes in. The goal of this project is to try to imbue the Als of TRPGs
with two crucial characteristics: basic learning, and personality.

The demo will be separated in two parts: The story part, and the combat part.

The story part will consist of text over static images relating the overarching story of the game
and some choices that will affect the initial situation of the combat part. This choices will affect
mainly on the “personality” part of the Als. An option may demoralize the enemy so that in the
combat part most enemies will try to flee while a small band will cover their retreat while another
choice may involve the enemy having the jump on the player units, turning the tables on the
aforementioned case in that now the enemy will try to cut any escape possibility for the player.

The combat part will take place in a grid-like environment with the camera offering an isometric
perspective. The position of the enemy and ally units within the grid will depend on the choices

made in the story part. Once the units are in position, a unit will take its turn depending on its
Agility stat, and following that order, from highest to lowest. On each turn the unit will be able
to attack, use an ability if able, move, or wait. Each of these actions is measured in tiles, to know
their range. This part will end once one of the two sides has completed their goal. If the enemy
completes their goal first is a game over, while if the player completes its goal first, the demo will
end on success. The demo will have a short story part and two different combats.

1.2 Related Courses

e VJ1227 Game Engines
e VJ1231 Artificial Intelligence

e VJ1218 Hyper Media Narrative and Video Game Analysis

1.3 Goals

e The creation of a malleable AI system that allows for basic strategies or changes depending
on story choices and character personality.

e The creation of a seemingly logical behavior for enemy units when exposed to the opponent
party’s capabilities.

e The creation of a coherent storytelling structure.

1.4 Scheduling

1. Writing of the technical proposal Shrs
2. Writing of the GDD 15hrs
3. Implementing the base combat gameplay 30hrs
4. Investigating Al techniques 45hrs
5. Implementing Al techniques 90hrs
6. Joining AI techniques with the storytelling 45hrs
7. Testing and revising 30hrs
8. Writing of the project’s final report 40hrs

The tasks have been planned in general terms by approximating how many hours SHOULD be
allocated on each task, and each task is dependent on the one before it. This is a one-man project,
and as such every task will be accomplished by the author of the thesis. Next I will detail the
tasks as much as possible.

Writing of the technical proposal The technical proposal is the pitch of the project to the
supervisor, and as such should be short and concise, and while assessing the difficulty to make a
viable project is an important and costly part of it, no more than 5 hours should be put on this
task, as it is only the ‘presentation’ of the project.

Writing the GDD The GDD or Game Design Document is the document that shows all the
details of the game you are trying to develop, and is a continuation of the technical proposal. The
technical proposal is centered in the part that is the meat of the thesis (the innovative parts of
whatever game you are developing), while the GDD is centered in what is the skeleton of the thesis
(the genre, rules and components of the game around which you are developing the mechanics
detailed in the technical proposal). This document should not be too verbose either, but should
include every detail possible of how the game is formed (screens, how the player wins or loses,
controls, objectives, narrative, etc), therefore, allotting it 15 hours, triple the time for the technical
proposal, seemed appropriate.

Implementing the base combat gameplay As the base system of the thesis is from a tutorial,
it is necessary to allocate time to follow each step of the tutorial and implement it myself so as to
understand the ins and outs of the tutorial, rather than simply downloading the made project and
start from there. The tutorial is quite lengthy, covering everything that needs to be known about
the system, and showing the code little by little, as such, I allotted 30 hours, mostly due to having
to understand the tutorial and not follow it blindly.

Investigating AI techniques The theoretical approach to the thesis is the first thing done,
by explaining it in the technical proposal, however, concrete Al techniques have not yet been
defined. Machine Learning is one of the techniques that is going to be used, but how? What
kind of learning? Will the emotion system be implemented using a State Machine? Do I want to
delve into more complex techniques or should I implement it in the simplest way possible? These
questions need to be answered before even trying to enter into coding territory. 45 hours may seem
like a lot, but there is much theory to be investigated.

Implementing the AI techniques Pretty straightforward. Most of the time will be dedicated
to implementing the aforementioned techniques. Even so, this timeslot can be very variable de-
pending on the complexity of the techniques, but even so, to ensure that everything works as it is
supposed to, while taking into account any unforeseen circumstances, almost a third of the total
time is more than a fair amount of hours.

Joining the AI techniques with the storytelling This is also one of the most important
parts of the development. The final goal of the thesis is to see how a better Al can enrich the
narrative and help to better immerse the players in your game. As such, the techniques need
to make sense in the narrative. Not only that, but the implementation of the story part is also
included in this slot. Fungus is pretty simple to use, so really, most of the time will be spent on
preparing the scenarios, preparing the patterns for the Al, preparing the paths that can be taken
and implementing the skills that the units can use. 45 hours may be a stretch but more or less
hours can be taken or given depending on the time used on the previous slot.

Testing and revising This slot not only includes testing to make sure the game does not break
at any point, but also testing with other players to get results for the conclusions of the thesis.
That is, if the project accomplishes its objective to help with the narrative. As before, this slot is
very variable due to unforeseen bugs and critical errors than can occur after the implementation
is done.

Writing the project final report In the end, all the tasks, all the time allotted at the end of
the project, all the research, explanations, etc, has to be compiled on a single document that has
to contain every detail possible of the development of this thesis, and made to be understandable
by anyone who tries to read it even if they have no idea of Artificial Intelligence. At most it has
to occupy 50 pages, which is quite hefty, and also, after the preliminary evaluation, I will have to
add whatever the tribunal deems is missing. As such, 40 hours seems like a fair amount of hours.

10

1.5 Tools

e Unity 3D: The Game Engine used to create the game. [4]

e Fungus: A Unity add-on to help create visual novel-style storytelling. [5]

1.6 Expected Results

By the end of the project, the demo will consist of an opening narrative part with two choices, and
two different complete combats with opening narrative and different composition of enemy teams.
If the player loses all their units or kills all the enemy units, the demo will end.

11

Chapter 2

Game Design Document

2.1 Overview

2.1.1 Main Concept

This is a turn-based Tactical RPG with Visual Novel style narration in which the combat occurs in
an isometric grid with several levels of height. Both the Al and the player will be able to move their
units in turns while using specific abilities of each unit with the goal of completing the objective
of the level, which depends on the decisions made in the story part previous to the combat.

2.1.2 Unique Selling Points

e Dynamic Al capable of simple learning and basic strategy patterns, discouraging individual
actions

e Personality-based Al influenced by decisions made on the story part

e The ability to determine the approach to the battle before it even begins through decisions
made on the story part

2.2 Gameplay

The gameplay is separated into to clearly distinct parts, a Visual Novel-style part, and the combat
part.

2.2.1 Story Part

This is the part that takes place immediately after starting the game and will depict the backstory
of the game, and offering the player some decisions that will have impact into the combat part of
the game. The player will advance through the text by clicking anywhere on the screen and when
the decisions appear on the screen, the player will be able to click on the desired option.

12

2.2.2 Combat Part

Once the story section finishes after advancing through all the text, the combat part begins. On
this part, units are disposed on a grid, with its positioning depending on the choices made before,
for example, if the player chooses to ambush the enemy, the player units will begin surrounding
the enemy units, while if the player gets ambushed, the roles will be reversed. Once the units are
put on the grid, the objective of the combat will appear on the screen. As before, the objective
depends on the decisions made before. Ambushing means the objective to win the game would be
to eliminate all opposing units, while being ambushed would mean the objective would be to break
the enemy barricade and flee the scene to win.

After that, each unit’s turn will alternate depending on their speed stat. On each turn the
player will be able to:

e Move the unit: Once selected, colored tiles on the grid will mark where the unit is able to
move. Selecting a colored tile will make the unit move to that location.

e Attack with the unit: Same as with moving, colored tiles on the grid will mark the attacks
range. Once a valid enemy is selected, the unit will deal damage to the other unit.

e Use a unit’s special ability: Almost the same as attacks, except they may be able to target
enemies, allies or the unit itself depending on whether it is an offensive, or support ability.

e Defend with the unit: Ends the turn and the unit takes less damage until its turn rolls around
again.

Different kind of units will have different kinds of move and attack ranges, as well a different
skills. If the player moves the unit first, he will only be able to use the rest of the actions, while if
the player attacks or uses an ability first, he will only be able to move afterwards.

After all this, the player will be able to choose the orientation the unit will have until its next
turn. Instead of a 360° wheel, the player will only be able to orientate the unit north, south, east
or west. This is important as attacking a unit from the sides or behind will affect their aim and
damage, with attacking from behind being a guaranteed hit with a 120 percent damage multiplier.

All of these actions will be performed by pressing Z to accept, X to cancel, and the arrow keys
to navigate the menus or to select tiles on the grid.

Units

Melee Units

Melee units are only able to attack tiles adjacent to them, with only one tile of range. Melee
units’ attacks have a height tolerance of 2, meaning they can only attack units that are at most, at
2 height levels higher than the unit itself. All damage dealt by melee units is considered physical.

e Paladins: Paladins are defensively focused and therefore their offensive capabilities are re-
duced, but with their ability Holy Cross, they can combine their magical stats with their
physical stats to deliver a devastating blow, but with limited usage. Be careful though, as
lots of enemies can overwhelm the Paladin even with its powerful defense.

e Scouts: Units focused on mobility and offense, their skill, Blind, allows for harassing tactics
by reducing the enemy’s ability to aim.

e Soldiers: It is a middle of the road class with average offense a defense and whose skill Air
Blast is a weak ranged attack.

13

Ranged Units

Ranged units specialize in ranged attacks but not necessarily have a basic attack range of more
than one, as seen with mages. Rangers damage is considered physical while mages’ skill damage
is considered magical.

e Rangers: Normal ranged units with a range of basic attack of 3 to 4 tiles around them. As
such, Rangers cannot attack at melee range. Their skill Arrow Rain allows them to attack
enemies in an area.

e Mages: Mages have the same attack range as melee units but reduced melee offense and
defense. As such, they have to be protected against melee units. They have 3 kinds of fire
magic with different ranges and will use them according to their strategy. They have a long
range but weak Fire Dart, a medium range medium power Fire Ball and a close range but
very powerful Fire Hands.

Stats

All units have the following stats:

e HP: Short for Health Points. How much damage a unit can survive before dying.
e PATK: Short for Physical Attack. How much melee damage can a unit deal.
e PDEF: Short for Physical Defense. How much can a unit mitigate physical damage.

e MATK: Short for Magical Attack. How much magical damage can a unit deal. As only
mages can deal magical damage, this stat is irrelevant for all others.

e MDEF: Short for Magical Defense. How much can a unit mitigate magical damage.
e RES: The capacity of the unit to resist status ailments.

e DODGE: The capacity of the unit to be able to dodge another unit’s attack.

e SPD: Short for Speed. How early will the unit’s turn come around.

e MOV: The movement range of the unit.

e JUMP: The height tolerance for the unit’s movement.

2.3 Story

2.3.1 Setting

The game will be set on a medieval fantastic era. The world has recently suffered a cruel war and
is living its aftermath. The player will take control of an strategist that tries to bring its unit back
to its country through enemy lines.

2.3.2 Core Mechanics

The meat of the project comes for the Al behavior of the enemy units. Given the different roles of
each of the units, each one will try to act according to the circumstances of both ally and enemy
units. Other TRPGs have individual strategies but don’t dwell much on group strategies or the

14

fact that the enemy can counter its tactics. As such, enemy units will try to maintain formations
according to their remaining forces, not repeat mistakes, such as that if a Ranger attacks an
immune Scout, nearby Rangers will not waste their attacks on that Scout anymore.

On the other hand, each unit will also have Emotions. If the battle is going well for them, they
may try to act more reckless while still being logical and adhering to their strategy, and be willing
to take more risks. When ambushed, though, the enemy units will try to flee, and not pay that
much attention to strategy for the most part while more level-headed units will try to cover the
retreat of their allies.

Relation to Story

These mechanics tie to the story in that being more confident, more fearful, or try to flee will be
affected by the decisions of the player on the Story Part of the game. If the player chooses to
attack from the front, the enemy will act confidently, knowing that they can take on a little unit
with no problem, but may start to act more cautiously once the player starts taking out on enemy
units. The enemy units will take into account how many and of which type of units their unit is
composed to form their strategy the same way a real person would.

2.4 HUD

2.4.1 Story Part

On the story part the player will see a background and plain text over it in a textbox that will
mark who is talking and a conceptual image of the character talking (or none if it is narration)

2.4.2 Combat Part

On the combat part the player will see the battlefield from an isometric perspective. The battlefield
will be divided in tiles in a grid pattern and both ally and enemy units will be spread on the grid.
When attacking, a little textbox will appear with data about the enemy unit, such as how much
damage will the unit deal to the other, and the percentage of success of the attack.

During enemy turns, little messages at the top of the screen will show what kind of action they
have selected, and during allied turns, the player will be able to navigate a menu on the bottom
right of the screen that shows the available actions for that unit on that turn. Unavailable options
will be greyed out.

2.5 Screens
The game will only have 2 screens:

e Story Part Screen 2.1

e Combat Part Screen 2.2

15

Alright, men! We're almost at the border!

Figure 2.1: Screenshot of the Story Part

Kamau @ Move

HP 102 /102 Action

MP 22 J Wait

Figure 2.2: Screenshot of the Combat Part

16

Chapter 3

Basic Concepts for the Thesis

3.1 What is a Tactical Role-Playing Game?

First of all, the most important thing would be to define the genre of game that is the whole core
around which the thesis will be build.

A Tactical Role-Playing Game or TRPG for short is a sub-genre on Role-Playing Games whose
main focus is the combat, being usually turn-based and taking place on a grid. This system is
inherited from pen and paper RPGs where maps are divided in grids for ease of movement options
and positioning. As the name of the genre suggests, the games are mostly focused on small-scale
skirmishes where tactics shine instead of more high-level strategies, like in grand strategy games
like Europa Universalis [6] or Real-Time Strategy games like Age of Empires [7].

While normal RPGs try to focus on world exploration, TRPGs follow a more closed type of
mapping (if any), like a graph, that serve as a background for the combat. Like normal RPGs,
though, the combat rules are kept mostly the same, with the characters having stats, equipment,
and abilities.

TRPGs mostly rose to prominence on Japan, where the most famous series of TRPG, like Fire
Emblem [3] being born there. As such, most conventions from Japanese RPGs are also inherited
with the combat actions being the same as on those games (using an action/attacking or defending),
plus the ability to move and having the actions subordinated to its range. On the other hand,
modern western TRPGs took the same approach as the Japanese ones, while its precursors were
more free-form.

3.2 “Academic” Al vs Video Game Al

The term Artificial Intelligence is used to refer to the ability of computer programs to solve prob-
lems, as programmed by a human. However, this term is too broad. AI can be used for a myriad
of things, from complex tasks like operating cars safely, to menial tasks like playing chess. As such,
it is necessary to make a clear distinction between what would be considered as “academic” Al,
and what we will be seeing in this thesis, Video Game Al.

“Academic” Al goals is for the program to make human-like decisions, being able to interact
with the real world, learning through outside stimulus, automation of day-to-day tasks, on an
optimal manner, even surpassing human capabilities. These things, however, are NOT the goal of
Video Game Al

The goal of Video Game Al is to develop companions and opponents to the player that are

17

able to think and decide, yet with all of the human flaws implemented. Players feel cheated if
they have to confront an Al that has faster reaction speed that is humanly possible, so the general
idea is to balance challenge and easiness so that, and this is the imperative word, the player feels
entertained.

3.3 The Three Layers of Video Game Al

Millington and Funge [8] defined three layers on Video Game Al that define the process that the
AT goes through to get the desired results. These three layers are:

Strategy. This layer concerns the algorithms that rule over the group behavior of the Al
Whether the opponents will adopt a more aggressive attack, a more defensive approach, try to
take control of the terrain, etc

Decision-making. This layer concerns the individual actions taken by each of the computer-
controlled actors by themselves, like attacking another actor, healing another actor, building,
remain passive, etc

Movement. This layer concerns the positioning of the computer-controlled actors, with behav-
iors such as patrolling, running, chasing, remaining static, etc

In broad terms, the Strategy determines the mindset of the group, which will define the goal
to be achieved by the actors. However, each actor has its own actions or may not be able to the
same thing as another actor, as such, the Decision-Making arranges which of the actions possible is
the one that helps in completing the overall goal, while Movement will dictate the best positioning
and movement-related actions to accompany the actions of the Decision-Making.

3.4 Decision-Making: Reinforcement Learning

Als are usually limited to whatever behaviour the developer has programmed, however, through
some algorithms it is possible for an Al to learn how to solve a problem by itself through the
use of examples. This is called Reinforcement Learning and is one of the approaches of Machine
Learning.

This approach is the basis of the Error System of the thesis. By receiving feedback in the form
of damage results, the unit bases its attacking options on which one is the best for the defending
unit.

As can be seen, on turn 1, all abilities are initialized with a max value so as to have the Al
try every single ability before settling on the best option. The Al uses Fire Dart on the Player
Unit and it receives feedback, that is the damage done to the unit, and stores it in a pair (ability,
target) as the key. Once the AI has received feedback on all the possible abilities, it will be able
to decide which one is really the best ability to use on that target. This is a brute-force learning
algorithm that differs on the fact that the AI does not predict the results and achieves the best
option immediately, but rather slowly learns based on actual results, like a human would do.

3.5 Strategy: State Machine

A finite-state machine or State Machine for short, is an abstract machine that can only be one
state at a time. In terms of AI, a State Machine can make an actor behave one way or another
depending on the active state. For example, during Calm state, a guard may be patrolling on the
same route over and over, but as soon as the state changes to Alert, the guard may start to chase
the player and attacking it while in range.

18

Fire Dart Turn 1

Resuit: 0009

Fire Ball | Player Unit |- [Damage Resuilt |

Result: 8880

Fire Hands

Feedback

Figure 3.1: Feedback loop on the first turn of an AT Mage

Fire Dart

Turn 2

Resuit: 201

Fire Ball |——— |Player Unit |-+ [Damage Result]

Result: 9002

Fire Hands

Feedback

Figure 3.2: Feedback loop on the second turn of an AT Mage

In Video Game Al the State Machine has been deprecated a long time ago by the use of
less error-prone systems, as real time may have an Al reacting to multiple stimuli at the same
time, producing an overlap of states, or making it set a state that is not the correct one by some
combination of stimuli that coincides with the trigger for an unrelated state.

However, in the ambit of this thesis, the turn-based system works in our favor for implementing
a state machine that cannot possibly fail. In turn-based environments we can control which stimuli
affects our Al actors and in which order making a State Machine a simple and viable solution.

As seen in the figure 3.3, this is how the Emotion System will work. At the beginning of each
turn, the state machine will evaluate if its state should change, and if it does, the active attack
pattern of every unit will change according to whatever emotion (state) is active at the time. In
this example, the default attack pattern will make use of the Error System to learn as stated in
the previous section, while the shaken attack pattern will make the AI keep learning but instead
forgoing Fire Hands, recharging its Magic Points every three turns and even forcing the Al to use
Fire Darts on some turns. The emboldened attack pattern uses a similar pattern, but instead
forgoing the weaker attack and even recharging its Magic Points.

19

STATE: Default STATE: Shaken

Default Shaken Emboldened Default Shaken Emboldened

Attack Attack Attack Attack Attack Attack

Pattern Pattern Pattern Pattern Pattern Pattern

Fire Darts Fire Darts Fire Ball Fire Darts Fire Darts Fire Ball

or or or or or or

Fire Ball Fire Ball Fire Hands Fire Ball Fire Ball Fire Hands

or or

Fire Hands Fire Dart Fire Ball Fire Hands Fire Dart Fire Ball
Recharge Fire Hands Recharge Fire Hands
Fire Dart Fire Ball Fire Dart Fire Ball
Repeat Repeat Repeat Repeat

Figure 3.3: Two different States of the State Machine

The state check is done each AT turn due to the fact that the units get their turns according to
their speed instead of each side getting to move every unit at the same time. As such, it is possible
that from one turn to another, the state has changed.

20

Chapter 4

Narrative Development

For the development of the Story Part, we will be using an add-on to Unity called Fungus |[5].
With this system, the objective is to tie the gameplay with plot and player decisions. At the start
of the game, the player will be given background information through visual novel-style screens
and at the end of that, will be given a choice, that will determine which map will be the one the
player will play in. This is important because the player may choose to partake, following examples
featured in the thesis, in an all-out attack versus an invasion force with a relatively small platoon,
being outnumbered from the start, which thanks to the Emotion System detailed earlier, would
make the enemy units feel emboldened as soon as the battle begins. On the other hand, the player
may choose to cross through a less defended post, which will result in the ensuing battle being
more fair.

4.1 About Fungus

First of all, since Fungus is not a default library for Unity, it would be appropriate to explain the
basics of it so that the approaches can be better understood.

Fungus uses a flowchart system composed of blocks of commands. This commands include
things like making a character say a block of text, showing a menu to select choices, change a
character’s sprite, change the background, change the music, and even call methods of a class. If
a choice is used, a block can fork into other blocks, which can subsequently fork into other blocks,
or the simply can advance into another block for ease of separation of commands.

These commands are easy to use with no need to program except for integration purposes,
and can manage everything from a database of characters, places, etc for ease of reference, to the
backgrounds, textboxes, sprites, etc. It is completely possible to make a functional visual novel
game without having to code anything.

4.2 Technical Approach

This part needed no theoretical research, therefore we will jump directly to the technical approach.

The thesis, will consist of a single screen for the story part, with a menu with two choices that
will go to two different scenarios on the gameplay part. As such, we will make use of three different
blocks on the flowchart.

The Start block will have all the Say commands that show two characters, Captain Alphonse and
Officer Roderick, speaking about the aforementioned background information. Once the characters

21

Alright, men! We're almost at the border!

Figure 4.1: Example of a Fungus-made novel scene.

= Game Started=

Figure 4.2: Flowchart of the thesis.

stop talking, two Menu commands will show the player two options: either participate in an all-out
attack, or decide on a more sneaky approach.

On the Menu commands we can see at the end that the two other blocks of the flowchart are
mentioned. This is to indicate which option will branch to each block. On each of those blocks is
a single Call command that will call the method of a class called SceneTransition whose only job
is to execute a LoadScene command on the two different scenarios.

4.3 Narrative Impact

It may not seem like much, but this bit of story keeps the players invested in the battles they have
to fight after the narration, as it provides motivation for the survival of characters the player cares
about.

This demo does not intend to come up with that much depth to their characters, but is more
focused in showing the fact that the choices do affect the battles after that, as one of the battles
is more difficult than the other.

This fact also ties with the A, as each scene has a different configuration of enemies that thanks
to the Emotion Controller depicted on upcoming sections will determine different personalities for
the units involved in the battle.

The two choices involve ambushing a less defended point to cross the border so that the units can
return to their country or try to attack the main battalion that wants to invade to weaken it while
trying to cross the border. The first choice involves a combat with fewer units while the second

22

Figure 4.3: Commands on the Start block.

choice will involve a more difficult combat with more units and a different board composition.

23

Chapter 5

Tactics RPG System

5.1 Base of the system

This project has made use of a tutorial [9] to implement a robust Tactics RPG system based in
the game Final Fantasy Tactics Advance [10]. This system is very customizable and makes use of
very modular parts so that the user can add classes, abilities and the like without much trouble.

5.1.1 Capabilities of the engine

First of all, it would be necessary to explain what the provided engine in the tutorial can and
cannot do, so as to ascertain the work done by the student. The following lists will itemize terms
related to the thesis work and not everything the engine can do as it is not important to the work
done.

5.1.2 What the engine CAN do

e Generate custom maps

e Generate character classes and abilities

Interchange control between Al and player between turns

Control communication between classes with a “Notification Center”

Make the AT follow a strict attack pattern

Calculate best target of an attack based on hit percentages

5.1.3 What the engine CANNOT do

e Have menus outside of the main game (no title screen, map selector, etc)

Have the AI make its own decisions based on the state of the game

e Have different kinds of patterns for the Al that can be changed on the fly

Have the AI evaluate its decisions once made and store the results

e Have a narrative component intertwined with the gameplay

24

5.1.4 Conversation Manager

This system also includes a Conversation Manager so that the developer is able to insert a conversa-
tion as an intro to the battle, as a defeat conversation, and as a victory conversation. Unfortunately,
it does not support choices, and it is loaded after the board and units, so is not able to influence
the disposition of the board and units, therefore the need to use Fungus to be able to implement
choices.

Nevertheless it is very useful for adding more flavor to the battle.

Let's just get this
over with.

Figure 5.1: Screenshot of a sample conversation using the Conversation Manager

5.1.5 Al in the Base System

The creator of the tutorial wanted to make a kind of “dumb” AI, but not dumb in the sense that it
makes dumb decisions, but in the sense that it cannot foresee what the player may do by simulating
future turns, but rather, it plays by the actual turn, without much regard for consequences as long
as it has the best present result. As such, it may take actions that may be seen as “dumb” in the
long run.

I am going into detail of two important parts of the Al system that I tinkered with to implement
the Emotion Controller and Error System.

Ability Pickers

The system makes use of Ability Pickers to determine which abilities the AI can use. This objects
have as children which abilities the unit will use in a determined order, and it has two types of use,
a fixed picker, where the unit uses only the determined ability, and a random picker, that uses the
abilities assigned into that picker a random. For example, let us use a mage’s pattern:

e Fixed: Fire Ball
e Fixed: Fire Hands

e Random: Attack or Fire Hands

According to this set of pickers, on the first turn, it will use a Fire Ball, the second turn it will
use the Fire Hands, on the third turn it may use a normal Attack or the Fire Hands again, on the
fourth it will return to the beginning, using Fire Ball, etc

25

Plan of Attack

The Ability Pickers determine “what” the unit will do, but the Plan of Attack will determine “how”
will it use this ability to maximize its effect. As different abilities have different ranges and areas of
effect, and may even be angle dependent, an algorithm will determine the best targets depending
on distance, angle, number or enemies caught in the area, etc and will fill the Plan of Attack with
the information relative to the tile it will select as target in the end (as there may be multiple
equally valid targets, they are selected randomly).

5.2 Implementations for the project

5.2.1 Abilities

The abilities that came with the tutorial are mostly copies from the abilities from Final Fantasy
Tactics Advance, and I had to implement my own to use in the project. The combats of the thesis,
for ease of demonstration, will feature only Soldiers, Scouts, and Mages. Most of the used skills
are already implemented except the three levels of fire magics for the Mage.

5.2.2 Minimum Range

I had to make two searches, one from the unit to the minimum range, and the other from the unit
to the maximum range, and then, return the difference of both searches, thus having a list with
only tiles from the minimum range to the maximum range.

5.2.3 Conversations

Obviously, the generic conversation included in the tutorial was not appropriate for the setting and
atmosphere of the project, so I had to modify all three (intro, defeat and victory) conversations.
This was very easy as the scripts modify the editor to create ConversationData, that are assets
that contain the conversation you want to be shown.

5.2.4 Units

The generic units provided by the tutorial are one of each of a rogue, warrior and mage, but
these did not comply with the idea of units that I had in mind, therefore I had to compile all the
implemented abilities, stats and movement types into the appropriate units that are stated in the
Game Design Document (referred henceforth as GDD). This was also trivial to do as it did not
require any script tinkering, only creating Unit Recipes (which is the way the system has to create
units to put in-game).

5.2.5 Al

The meat of the project, the Al was the main focus of my programming efforts to implement
ways of giving personality to the units and have them “learn” without having to resort to complex
algorithms like Machine Learning, and when studying the tutorial I found that the system lent
itself to be modified for my two main ideas.

26

Error System

The first system is giving the Al the ability to evaluate the effectiveness of their attacks after the
action is done.

Theoretical Approach The theoretical approach to this system is pretty simple. When it is
the AI turn to attack, the AI will have stored the results of past interactions of their attacks on
the target.

Ex.: Let us say a Paladin attacks a Mage with a magic-based attack. The Mage, having
higher magical defense, will receive little damage, which will be reflected on a result table. On
the Paladin’s next turn, it will check the table and notice that the magic-based attack has a lower
score than the other attacks, so he will chose another attack instead of attacking with the same
one again.

This way the AI “learns” by combining elements of dumb AI (following a pattern without
questioning whether or not is the best course of action) and smart AI (simulating thousands of
games and always choosing the best course of action). Smart Als can be considered too unfair,
as it will never make a mistake, while dumb Als may be considered too easy as they will never
break out of their established pattern. Combining both Als makes for an Al that starts dumb but
becomes smart the more the game advances, making for more interesting match-ups.

Technical Approach The technical approach to the system, however, is not so simple. The Al
provided by the tutorial can evaluate which target is the best AFTER the attack has been chosen,
but after careful consideration, due to stipulations of the thesis, it has been deemed unnecessary
to do those calculations, as the classes presented in the thesis are not able to target more than one
foe/ally or have fixed areas of effect.

However, the calculations of the tutorial include the code to check if any target is in range
before and after moving, which would be impossible to calculate if the attack has not been chosen
yet.

Therefore, the best solution would be the following:

The tutorial uses a class called Ability Picker to choose an ability to use in that turn. The class
in itself is pretty simple. It gets an ability name and looks for it in the unit, and if it does not find
anything, it selects the first option of the abilities list, which is a melee attack.

This class, however, is only an abstract class, and it has a method that has yet to be imple-
mented, the Pick method. To show how it works and how it should be implemented to work on
the thesis, let us have a look at one of the already implemented Ability Picker concrete classes.

The Fixed Ability Picker, simply selects the Ability that has been passed as a parameter and
looks for it in the unit in question, and then, adds it to the PlanOfAttack.

While this class may seem unnecessary, it adds a new parameter to the PlanOfAttack, the
target. As not all the abilities target enemies (such as healing or buffs, or even abilities that can
only target the unit itself), and leaves us room in the Pick method so that we can choose which
abilities we want to pick for that turn, which brings us to how are we going to implement the Pick
method to select which ability we want to use based on previous experiences, but first, we need to
look at another method to understand the two-part approach to the problem.

The Evaluate method on the ComputerPlayer class is the method that evaluates the best targets
for the ability once it has been chosen. As said earlier, this evaluations are mostly redundant due
to the lack of abilities in the thesis that make use of those calculations, but is necessary due to
the fact that it can calculate where the ability can hit before and after moving the unit without
having to actually do so.

27

Further down is the most important to our calculations, PlanDirectionDependent, as it is the
one that searches every possible target tile and looks for all of the possible targets of the ability.
The RateFireLocation method just adds a mark to the location if it contains a valid target for the
ability so that the PickBestOption does not have to brute-force again. This method evaluates the
HitRate for each valid mark and puts on a list the ones with the higher attack rate and in the end
selects one of the targets at random from the final list, since all of the targets on the list share the
same HitRate.

Now that we know how the engine works, its time to show how are we going to modify it so
that it adds another layer of evaluation.

First things first, every Unit object should be able to store pairings of Ability-Target-Value,
therefore, we will add a List of structs to every Unit, which will be initialized as empty. As it is
not known whether a Unit will ever use an Ability over a certain Target, it is best to initialize the
structs as they are used.

Next, we will create the class ConditionalAbilityPicker. This Picker will create a PlanOfAttack
for each of the abilities included in the Picker and once completed, will compare the struct of each
one and retain the one with the highest damage value. In case of a draw, it will pick the last one.

On the comparison part, the method will look for the structs on the caster’s list, and if a struct
of the combination is not found, it will add one to the list, with an initial damage value of infinity.
This is made so that the unit tries its other abilities instead of always picking the first one tried,
as it would do if the damage value started at 0.

The difficulty in implementing this part comes from the fact that this new Picker has to change
parts of other methods that could start a chain reaction where the other type of Pickers stop being
compatible with the new code, which is not what we are looking for. On the contrary, as stated in
the next section, we make use of all of the available Pickers.

Final Approach In the end, as seen in the Pick method the final result did not diverge that
much from the Technical Approach, except for the fact that Pair is now a class, and implemented an
Equals method that only compared its ability and target and not its damage. This is done because
due to the generality of the ArrayList, one cannot modify the members of the list, therefore, we
need to create a new pair with the updated damage value, remove the previous one, and add the
new one to the list.

Emotion System

This system will make the AI units change patterns to adapt to the circumstances of the battlefield.

Theoretical Approach This system adds an upper layer to the previous system. While the
“error system” only depends on the own results of each unit by itself, the “emotion system” evaluates
each turn the state of the battlefield (in the case of the thesis, number of units per side), to choose
one of the three attack patterns available to each Al unit.

This has been done to apply more flexibility to the AI of the game. Now it will be able to
change attacks based on results, and change entire patterns based on the state of the battlefield.
The “emotion” conditions will be the same for every Unit, but the strategy of each attack pattern
will depend on the type of unit.

For example, if a mage sees that it is being outnumbered, it will resort to skills with a larger
range even if they do less damage. In the specific case of the thesis, the new attack pattern will
forgo the lesser ranged skills such as Fire Hands (2-tile range) and will use Fire Ball less frequently
(5-tile range), while making Fire Darts its main source of damage (7-tile range).

28

On the other hand, a warrior will make use of more aggressive tactics in its pattern as a last-
ditch effort to turn the tide of the battle. Following the previous example, in the thesis that would
mean that while the default attack pattern will use some of its turns to defend or recover with
a spell, the new attack pattern will make sure that every turn is dedicated to either attacking
physically or using an offensive skill.

Technical Approach On the previous system we saw that on the Evaluate method, the first
thing done is assigning the AttackPattern of the unit to a variable. As it is now, the method will
pick the only AttackPattern available in the prefab. When we add the other two attack patterns
we will need a test to see which should be the active pattern.

To do so, first we need to name the patterns appropriately, therefore, the three patterns will
be called “default Attack Pattern”, “shaken Attack Pattern” and “emboldened Attack Pattern”.
The next step would be to call the check before assigning the pattern to a variable. This check
will traverse the unit list checking the Alliance field of each one and counting how many of each
Alliance there are. If there are double or more player units than enemy units, the check will return
the string “shaken”; if there are double or more enemy units than player units, the resulting string
will be “emboldened” and in any other case, the method will return a null.

This string will now be used twice. First, the method will show a message on the screen that
says “[UnitName] feels [emotion|” to notify the player of the change in pattern for the unit. Then,
after that, it will be used to check for the attack pattern by name, by using it as an addendum
to the transform.find() method. That is, unit.transform.find(string + “ Attack Pattern”). As a
failsafe, the method will look directly for the default attack pattern and show “|UnitName]| feels
normal” instead of “|[UnitName] feels default” if for any reason the string is a null. Also, the unit
will store its last state and will check if the new state is the same as the last state and in case
of being the same, will not show the message to the player, but if it is not the same, aside from
showing the message, the method will reset the position of the index in the AttackPattern, making
it start again on the new pattern.

Final Approach In the end, this part was also kept mostly the same as stated in the Technical
Approach. Every turn, before the Evaluate method selects an Attack Pattern, the method Eval-
uateState is called to look how many of each Alliance is present on the board, and when done,
assigns a state. The extra step that had to be taken was changing the UnitRecipe class so as to
accommodate all three Attack Patterns, and changing the UnitFactory class to instantiate all the
patterns without duplicating the Driver component on the unit object. Also, due to the Attack
Patterns being so simple, the index is not reset, as it would not have virtually any effect on the
game.

5.3 Narrative Impact

As stated in the Technical Proposal, most other TRPGs do have some semblance of personality,
but it does not vary as the game progresses, leading to some dumb decisions, and are not able to
adapt their Emotions to the current setting of the battle.

Also, most Als fall on two camps. Too smart to commit errors, or too dumb to learn from
them. Too smart Als feel unreal, as they should not be able to predict how much damage they are
able to do before doing it (on a side-note, this is something the players need, though, to not feel
like their efforts are wasted testing on who they are able to do more damage), while too dumb Als
feel easily exploitable and not much of a challenge.

These changes could be completely internal and not show any visual cues, making the player
none the wiser, but I feel that the feedback helps the player feel like their actions have consequences
on the overall battle other than simply diminishing the opponents capabilities by maiming or killing
them, and also that the AT is not that easily exploitable, making them rethink their strategies.

29

The central idea of the Emotion and Error Systems is to provide the Al units with a stronger
personality, being able to respond to their own actions, evolving from dumb to smart given enough
time, and having human-like feelings that forces them to make decisions based on whether they
are alone or in a group.

These systems may have no bearing in the story itself, but they do not need to. Turning the Al
units into something more than targets to kill is the real objective of the systems, thus helping with
the emergent narrative and strengthening the overall impact of the story on the player, making
them question their own decisions more than just trying to reach the ending.

5.4 Flow of the Al

So, with the basis of the thesis and the in-depth explanation out of the way, and as a summary of
everything explained, let us see how the flow of the Al of the thesis works with in-game examples.

In this first test scenario, we will have a Player Unit (called Alaois) and an Al-controlled Mage
with their starting positions one next to the other, and Fire Darts will have a full 7-tile range
instead of 5-7. Also, the attack pattern for the mage will only include the ability the use either
Fire Dart, Ball or Hands depending on the feedback.

To begin, once the Al gets its turn, a call to the Evaluate method will be made, to know what
actions are present on the Attack Pattern of the active unit. Once the method retrieves the Attack
Pattern, it will find that the action to be taken is to either use Fire Dart, Fire Ball or Fire Hands,
governed by the Conditional Ability Picker.

The Conditional Ability Picker works by selecting a target and movement position for each of
the abilities selected in the picker. For each of these abilities, it will compare it with the actual
maximum value (initialized at 0), and replace its maximum with the value of the ability if it is
higher or equal. Once all, in this case three, abilities have been tested, the one with the highest
value will be the one executed.

In this example, all three abilities will have an initial value of 9999, so the last skill tested will
be the one executed. Here, it is Fire Hands. Once selected, the unit will move to a random tile
from where it is able to use the ability (in normal cases it would move to the tile that gives the
unit the best hit rate, but since magic has a 100% hit rate, the tile selected is random, as all of
them have the same hit rate), and then use it.

Once this is done, the OnApply method on the DamageAbilityEffect will be called. This class
is the one that calculates the damage done, and also stores that damage into the unit’s paired list
(the list that stores pairings of ability, target, and damage done on the last use). In this case, 11
damage has been done, and the pairing “Alaois - Fire Hands - 9999” will be updated to “Alaois -
Fire Hands - 11”. Then, the unit positions itself facing Alaois, and its turn ends.

On its next turn, the comparison will boil down to using only Fire Ball or Fire Darts, since
Fire Hands has a value of 11 for that target, while the other two still have the initial value of 9999.
This time Fire Dart gets selected and the same process applies, moving to a random tile and using
the ability. Fire Dart’s pairing value will be 4, as it is the damage done to Alaois this turn.

Finally, on its third turn, the mage will use the only untested ability yet, Fire Ball, which deals
8 damage. With this all 3 abilities have been tested and have proper values. As such, in its fourth
turn it will compare the three values obtained on the previous turns: Fire Hands’ 11, Fire Dart’s
4 and Fire Ball’s 8. The winner is Fire Hands value of 11, and that means that the AI unit has
learned that the most optimal ability to use on Alaois from now on will be Fire Hands.

There are exceptions to this flow, those being, not having range for some or all of the abilities,
and having multiple targets. By not having range on one or more skills, the Ability Picker will
ignore those abilities for the value comparison, as moving to be in range is only a last option if no
other ability is in range. This can be seen in the Pick method, where if by the end finalPlan has

30

no ability, this plan becomes the optionalPlan, moving. This makes sense because from a purely
numerical value, attacking gives more value than moving even if by moving the unit could access
more powerful abilities.

On the other hand, if there are multiple targets within range, the Conditional Ability Picker
will test each ability on each of the different reachable targets. In the previous example, if another
player-controller unit was next to Alaois, the AI unit would have to test all three abilities again
with the other target, and once tested, the AT would not only compare the abilities with themselves,
but also with the other targets. We already know that Fire Hands is the most damaging ability on
the mage’s repertoire, but if for some reason the other target had returned a higher value for Fire
Ball than using Fire Hands on Alaois, the mage would begin using Fire Ball on the other target
until the ranges and/or targets changed.

The aforementioned scenario is shown in-game in one of the videos in the appendices.

Lastly, we will have another test scenario, this time with 10 AI units, and 5 player-controlled
units.

The first unit to act is an Al-controlled one, therefore, EvaluateState is called. There, the
result of the evaluation will be “Emboldened”; as there are 10 Enemy units, and only 5 Hero units,
fulfilling the condition of having double or more Enemy units than Hero units. The units initial
state is always Default even if it is going to change immediately in the first turn. As such, since
lastState is not the same as the actual state, the BattleMessageController will show a message
on-screen that shows that the actual unit feels emboldened.

Then, once the state has been decided, the pattern is assigned using a FindChild method with
the structure “state + job of the unit + Attack Pattern”. After this, we enter on the Decision-
making layer described in the previous scenario.

This last scenario is the one depicted if the player chooses a frontal attack instead of trying
to ambush.As a hypothetical of this scenario, if the player were to defeat an enemy unit without
suffering any loss themselves, the next AI units would have its state changed to “Default” due to
the new check returning a result of 9 Enemy units against 5 Hero units, therefore not fulfilling any
of the two conditions that mark either “Shaken” or “Emboldened”.

31

Chapter 6

Conclusions

6.1 Tester Opinion

To better understand the project, I asked a group of 5 people with experience on TRPGs but no
previous knowledge of the thesis if they saw any noticeable difference between the Al of the project
and the usual Al of the TRPGs they had played. The set of questions was the following:

e What is your degree of skill on TRPGs?

e How many different TRPGs have you played?

Did any of them have an Al outside of the norm?

After playing, did you notice any difference with a normal Al from other TRPGs?

Did you find the game difficult?

Did you feel any more invested in the story?

Tester 1 was a seasoned veteran of the genre and as such cruised through the demo with no
problem at all. They commented that the game was pretty easy and while the messages made the
Emotion System apparent, he did not find any change at all over the course of the game. As such,
they did not feel invested at all on the story, as the messages felt tacked on in an effort to make
the NPCs more alive than they really were.

Testers 2 and 3 were more of a middle-of-the-road fans of the genre, liking it a lot but not
having time to invest on many games or prioritising other kind of games. Both of them had
similar experiences with the game, comparing the system and the GUI with Final Fantasy Tactics
Advance, while making no comment on the AI. Through the questions it could be learned that
they did not pay much attention to it but were pleasantly surprised when the message showed
that the enemies had changed emotion, but did not feel any more invested in the story at all. The
difficulty seemed normal but they felt it was too easy to miss with the skills.

Tester 4 had played the least of the group, with only beginning to enjoy the genre recently, and
as such had more problems at the time of testing. They felt that the difficulty was increasing as
the game progressed, and felt that by the end the enemies were spamming the same type of ability
until their emotion changed. While not to the point of feeling cheated, they felt the Al had some
kind of unfair advantage, but it did not last long because it happened near the end of the game.
The narrative aspect fell flat on them because they were focused solely on ending the game as fast
as possible.

Tester 5 was kind of an experiment, as they had no previous experience with TRPGs, but were
interested in narrative-focused games. The aspect of having to choose strategies before the battle

32

even began was seen as a good idea, and while the Emotion System was perceived as innovative,
the lack of conversation during the game made the NPCs feel as flat as faceless grunts.

6.2 Personal Opinion

Putting aside what has been learned though the process of the thesis, it has been made clear that
not only the systems did not have as much narrative impact as initially thought, but also that a
system that learns as slowly as this one does, does not make sense in the context of brief skirmishes
or with units that can be defeated in as little as three turns, leaving no possibility for the system
to be really put into effect.

The Emotion System, while simpler, had a better effect on the minds of the testers due to the
fact that it affected the whole enemy side, but also fell flat due to the fact that the changes in
patterns were not drastic enough, focusing mainly on the frequency of attacks rather than deeper
strategies.

6.3 Learning as a developer

This project made me able to adapt myself to the work of others to implement my own ideas
making use of the given systems and complementing them instead of working against the system,
therefore boosting my teamwork capabilities even if I had to work on the project by myself.

Also, T found myself thinking about what other features I could add to the system to better
implement the main ideas instead of simply dumping all necessary work into the implementation
of the idea.

And finally, it helped me think critically on which features I could realistically implement
against the deadline, which were more important on the overall intention of the project and which
ones were simply secondary, helping me avoid feature creep.

6.4 Learning as a designer
This project made me able to think of features that helped improve the overall project, even if at
first they seemed to not really add anything of interest.

Also, by following the tutorial I was able to see how other people think about what they feel is
important to add as features, like its approach to AI made me understand that “perfect” Als are
boring and even unfair, and that giving them a certain “dumbness” would make more satisfying to
defeat.

And finally, it also helped me think about how the features I added could help into making a
more deep narrative, instead of thinking them as mechanics for the sake of mechanics.

6.5 Constraints

6.5.1 Technical Limitations

Due to how the placement of the units works in the original system, I was not able to place the
units using variables, and therefore unit position will be hardcoded for each of the scenarios.

33

6.5.2 Scheduling Problems

At first, it seemed like what would occupy most of the time of the project would be the pro-
gramming, yet at the end of it, I realized most of the time was dedicated to the research on how
to implement the ideas before even touching any code. As stated in the “approaches” sections,
seemingly simple tasks can be made much harder when trying to adapt them into another, bigger
system, as the one in the tutorial.

In fact, those sections are the result of the research, and while the final implementation followed
quite well the research, some changes were needed to be made. As a result of this, the end schedule
went far different from the initial plan.

b Project Kickoff ’ Project Close
9 Feb 9 Jul

Feb Mar Apr May Jun Jul

Writing the GDD

Implementing the tutorial
Planning the Machine Learning
Planning the State Machine
Planning the Story Part
Implementing the Machine Learning
Implementing the State Machine
Implementing the Story Part
Writing the Technical Report
Correcting the Technical Report
Alpha Testing

Gameplay Testing

Figure 6.1: Gantt Chart of the final time allotted

While it may seem disproportionate to spend so much time on theory, it was necessary due
to the need to understand all the ins and outs of the system provided by the tutorial, as starting
to code with only a superficial understanding of the flow of the algorithms provided would have
caused major problems. This also shortened the coding time considerably, therefore, while the
initial schedule diverged greatly from the final schedule, the total hours did not vary as much.

6.6 Final Conclusions

While it has been a learning process that made me appreciate more the well-made and balanced
Als of commercial TRPGs, it has also made me realize that ideas that look good on paper may not
seem all that good or even outright bad once implemented and tested, which is kind of frustrating
but also puts an emphasis to the importance of testers, not only to know if the game works as
intended, but also to note the inherent problems of the project itself.

On a more specific note about the Al, the idea of making a “dumb” AI that turned into a
“smart” Al by learning, only punished those less experienced with the genre instead of enriching
the experience for everyone, as intended, and did not have any effect on the narrative as a whole,
at least from a player perspective.

In the end, it is sad that the project ended like this, but not every project can be a victory.

34

6.7 Future Lines of Work

I initially thought of this idea because it seemed like a simple way to enhance the narrative
experience in an indirect kind of way, and as an aspiring narrative designer, it is always interesting
to try new approaches instead of the traditional narrative, or try working in aspects that do not
seem directly related to the narrative yet could help with immersion.

But the process of making this project made me realize that I may be more suited to more
traditional narratives and may need to practice on that route before trying again on more obscure
ways to improve the narrative.

35

Bibliography

[1]
2]
3]
4]
[5]
[6]
7]
18]
19]

[10]

X-COM. https://en.wikipedia.org/wiki/X-COM, Feb 2018.

The Banner Saga. https://en.wikipedia.org/wiki/The_Banner_Saga, Feb 2018.

Fire Emblem. https://en.wikipedia.org/wiki/Fire_Emblem, Feb 2018.

Unity 3D. http://www.unity.com, Feb 2018.

Fungus. http://fungusgames.com, Feb 2018.

Europa Universalis. https://en.wikipedia.org/wiki/Europa_Universalis, Feb 2018.
Age of Empires. https://en.wikipedia.org/wiki/Age_of_Empires, Feb 2018.

John Funge Ian Millington. Artificial Intelligence for Games (2nd edition). Elsevier, 2009.

Jon Parham. Liquid Fire. http://theliquidfire.com/2015/05/04/
tactics-rpg-series-intro/, May 2015.

Final Fantasy Tactics Advance. https://en.wikipedia.org/wiki/Final_Fantasy_
Tactics_Advance, Feb 2018.

36

https://en.wikipedia.org/wiki/X-COM
https://en.wikipedia.org/wiki/The_Banner_Saga
https://en.wikipedia.org/wiki/Fire_Emblem
http://www.unity.com
http://fungusgames.com
https://en.wikipedia.org/wiki/Europa_Universalis
https://en.wikipedia.org/wiki/Age_of_Empires
http://theliquidfire.com/2015/05/04/tactics-rpg-series-intro/
http://theliquidfire.com/2015/05/04/tactics-rpg-series-intro/
https://en.wikipedia.org/wiki/Final_Fantasy_Tactics_Advance
https://en.wikipedia.org/wiki/Final_Fantasy_Tactics_Advance

Chapter 7

Appendixes

7.1 Links

e Link to the repository of the project
e Video demonstrating the Error System

e Video of general gameplay of the demo

Addendum: For the project to work on Unity, one has to download Fungus and also select
Parse Jobs on the pre-production contextual menu. The project uses a json file to get the stats of
every unit, so the file has to be parsed with that option. This only needs to be done once.

37

https://github.com/Karrion/Aftermath-TFG-Complete
https://youtu.be/dJgNfMmmZNw
https://youtu.be/UgKQA5wyctk

7.2 Algorithms

7.2.1 Machine Learning Algorithm

public override void Pick(PlanOfAttack finalPlan)
{
PlanOfAttack optionalPlan = new PlanOfAttack();
for(int i = 0; i < pickers.Count; i++)
{
PlanOfAttack plan = new PlanOfAttack();
BaseAbilityPicker p = pickers[i];
p.Pick(plan);
cp.Evaluate(plan) ;
if (plan.ability == null)
{
optionalPlan = plan;
continue;
}
string unit = plan.unit.name;
string ability = plan.ability.name;
Unit.Pair pair = new Unit.Pair(unit, ability);
if (owner.pairings.Contains(pair))
{
pair = (Unit.Pair) owner.pairings[owner.pairings.Index0f(pair)];
}
else
{
owner.pairings.Add(pair);
max = pair.damage;
}
if (pair.damage >= max)
{
max = pair.damage;
finalPlan.ability = plan.ability;
finalPlan.target = plan.target;
finalPlan.movelLocation = plan.moveLocation;
finalPlan.firelLocation = plan.firelLocation;
finalPlan.attackDirection = plan.attackDirection;
finalPlan.unit = plan.unit;
}
bmc.Display("Current max: " + max + " by " + ability);
X
max = 0;
if (finalPlan.ability == null)
{
finalPlan.ability = optionalPlan.ability;
finalPlan.target = optionalPlan.target;
finalPlan.movelocation = optionalPlan.moveLocation;
finalPlan.firelLocation = optionalPlan.firelLocation;
finalPlan.attackDirection = optionalPlan.attackDirection;
finalPlan.unit = optionalPlan.unit;
}

finalPlan.complete = true;

38

7.2.2 State Machine Algorithm

string EvaluateState()

{
string state = "";
int heroes = 0;
int foes = 0;
for(int i = 0; i < bc.units.Count; i++)
{
if (bc.units[i].GetComponent<Alliance>().type == Alliances.Hero) heroes++;
else foes++;
}
if (foes >= heroes * 2) state = "Emboldened";
else if (heroes >= foes * 2) state = "Shaken";
else state = "Default";
return state;
}

39

	Technical Proposal
	Introduction
	Related Courses
	Goals
	Scheduling
	Tools
	Expected Results

	Game Design Document
	Overview
	Main Concept
	Unique Selling Points

	Gameplay
	Story Part
	Combat Part

	Story
	Setting
	Core Mechanics

	HUD
	Story Part
	Combat Part

	Screens

	Basic Concepts for the Thesis
	What is a Tactical Role-Playing Game?
	``Academic'' AI vs Video Game AI
	The Three Layers of Video Game AI
	Decision-Making: Reinforcement Learning
	Strategy: State Machine

	Narrative Development
	About Fungus
	Technical Approach
	Narrative Impact

	Tactics RPG System
	Base of the system
	Capabilities of the engine
	What the engine CAN do
	What the engine CANNOT do
	Conversation Manager
	AI in the Base System

	Implementations for the project
	Abilities
	Minimum Range
	Conversations
	Units
	AI

	Narrative Impact
	Flow of the AI

	Conclusions
	Tester Opinion
	Personal Opinion
	Learning as a developer
	Learning as a designer
	Constraints
	Technical Limitations
	Scheduling Problems

	Final Conclusions
	Future Lines of Work

	Appendixes
	Links
	Algorithms
	Machine Learning Algorithm
	State Machine Algorithm

