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ABSTRACT A common assumption in the integral imaging reconstruction is that a pixel will be photo-
consistent if all viewpoints observed by the different cameras converge at a single point when focusing
at the proper depth. However, the presence of occlusions between objects in the scene prevents this from
being fulfilled. In this paper, a novel depth and all-in focus image estimation method is presented, based
on a photo-consistency measure that uses the median criterion in relation to the elemental images. The
interest of this approach is to find a solution to detect which camera correctly sees the partially occluded
object at a certain depth and allows for a precise solution to the object depth. In addition, a robust solution
is proposed to detect the boundary limits between partially occluded objects, which are subsequently
used during the regularization depth estimation process. The experimental results show that the proposed
method outperforms other state-of-the-art depth estimation methods in a synthetic aperture integral imaging
framework.

INDEX TERMS Synthetic aperture integral imaging, depth map estimation, all-in-focus image, partial
occlusions, 3D image processing.

I. INTRODUCTION
Three-dimensional (3D) optical image sensing and visu-
alisation technologies are currently applied in areas like
medical sciences, synthetic aperture radar in remote sens-
ing, entertainment devices or robotics [1]–[5]. One of the
most promising 3D approaches is based on Integral Imag-
ing (II) [6]–[15]. II is an autostereoscopic imaging method
that works under incoherent or ambient light. This is con-
siderably helpful when compared to other sensing tech-
niques (i.e holography, Ladar), which require an active
illumination system [16]. II might be used to infer the
three dimensional profile and the range of objects in a
scene [17]. 3D sensing with an II architecture has spe-
cific benefits in some applications such as segmentation
of objects from heavy background, and imaging through
obscuration and scattering media (see e.g. [18], [19] for
details).

In lenslet-based Integral Imaging systems, the achievable
resolution is restricted by the size of the lenslet and the
number of pixels allocated to each lenslet. In essence, the res-
olution of each Elemental Image (EI) is limited by three
parameters: the pixel size, the lenslet point spread function,
and the lenslet depth of focus [20]. In contrast to the lenslet-
based systems, Integral Imaging can be performed either in
a synthetic aperture mode or with an array of high-resolution
imaging sensors. This approach may be considered as Syn-
thetic Aperture Integral Imaging (SAII) [21]. SAII enables
larger fields of view (FOV) to be obtained with high reso-
lution 2D images because each 2D image makes full use of
the detector array and the optical aperture.

Several works [22]–[24] have tried to tackle two of the
problems that affect most the quality in a 3D reconstruction
scenario (and, in particular, in SAII). The first one is to define
a robust photo-consistency measure that detects when the
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surface of an object is in focus. The other problem comes
from the existence of occlusions, which is a strong drawback
to obtain accurate depth map estimations at objects’ depth
discontinuities. In particular, this problem comes from the
fact that once an object is in focus, the blurring of the object
canmake it more difficult to estimate objects at higher depths.

In relation to the photo-consistency problem, several strate-
gies have been applied. Some of them are based on the
assumption that photo-consistency can be characterized by
comparing pairs of images. For instance, the Normalised
Cross-Correlation (NCC), the Sum of Squared Differences
(SSD), Mutual Information based measures, etc. Other mea-
sures try to explicitly deal with, for instance, occlusions and
highlights [23], [25].

The other main problem is associated with the presence
of objects that partially occlude other objects in the scene.
Several approaches exist that try to minimise the effect
of occlusions on 3D reconstruction and depth estimation
[26], [27]. Wang et al. [28] separate the occlusion edges in
two view regions (occluded object versus occluder), where
only one of regions obeys the photo-consistency criterion.
Furthermore, the experiments are carried out under the frame-
work of a light-field occlusion model with plenoptic images.
One drawback of this technique is that it is used on a light-
field camera with very low disparities between EIs and depth
ranges on the reconstructed scene are smaller than in SAII.
Once the occluded region has been identified, there are

different strategies to eliminate (or at least, mitigate) them.
In other works the occluded pixels are substituted by pixels
not belonging to occluding areas from other views. This is
made by creating a variance map per elemental image and
applying a clustering technique to classify pixels into two
classes, foreground and background pixels, depending on the
variance value each pixel has [29], [30]. In [24] a similar
strategy has been used by means of a previous estimation
of depths of the edges belonging to the occluding objects,
in order to improve the accuracy in the depth map. Others
apply methods to fill in the missing information using, for
instance, inpainting techniques [31].

However, one should find a solution to the depth estimation
problem that may not depend on the need to have a priori
information about which camera correctly sees the whole
object, without any occlusion. In this sense, [32] proposes two
photo-consistency measures (shape from median and shape
from entropy).

The present paper tries to solve the two problems out-
lined before. On the one hand, through the application of
a photo-consistency measure, adapting a strategy proposed
in [28] based on a defocusing strategy to deal with spatial
information surrounding a pixel. On the other hand, by the
application of a photo-consistency measure based on the
use of the median distance [32] in order to deal with and
mitigate information coming from occluding objects without
any a priori information. Thus, the aim is to improve the
photo-consistency criterion compared to previous proposals,
in scenes with partial occlusions between objects. In addition,

an algorithm aimed at detecting occlusions is included for the
case of SAII in order to improve the results obtained during
the depth map regularization process.

The main contributions proposed in this work are:

• A photo-consistency measure based on the median dis-
tance between the EIs is proposed, in order to solve the
depth estimation errors due to the existence of partially
occluded objects. This measure combines a defocus and
a correspondence term for each RGB color channel.

• An improvement of the depth map regularization is pre-
sented using the minimum photo-consistency value for
each pixel at the optimal depth.

• Based on this depth map regularization improvement,
we also propose: (a) a confidence measure that estimates
the pixel depth estimation accuracy and (b) a way to
give approximate information on where the boundaries
between objects are.

• In real scenes where the ground-truth depth map is not
available, the estimation of the all-in-focus image error
is proposed as an approximation to assess the importance
of the artifacts generated by the depth map errors.

The present paper is organized as follows. Section II pro-
vides a brief overview of surface reconstruction, compar-
ing the use of median and average criteria in the photo-
consistency measure. A proposal to estimate occlusion
boundaries to improve the regularization of depth map is
presented in Section III. Section IV shows the different results
applied to synthetic and real scenes. Finally, some conclu-
sions are given in Section V.

II. PHOTO-CONSISTENCY BASED ON MEDIAN
DISTANCES
Integral Imaging consists of a multi-view technique that
allows a computational reconstruction of a 3D scene. To do
this, the EIs obtained during the acquisition stage are pro-
jected onto an image plane at an arbitrary distance through a
real pinhole or a lens. This is possible because the 3D objects
of the scene can be viewed as a combination of multiple depth
images. In this way, 3D information can be estimated and
analyzed by generating a series of images at different depths.

This 3D reconstruction scheme with SAII can be carried
out in the case where the cameras are located on a flat
surface [25], but also in the case where the positions of those
cameras are spread or in a free pose configuration in 3D
space [33]–[35].

Integral Imaging offers us a series of advantages over other
3D imaging techniques that can be exploited to overcome the
partial occlusion problem and extracting more accurate depth
information: (a) the capability to obtain a stack of images
in focus at different depths. (b) From a 3D reconstruction
of the scene, we can build an all-in-focus image as a crite-
rion to measure the visual quality of the depth map. (c) A
photo-consistency measurement for each depth level can be
estimated, and obtain a photo-consistency image measure for
each depth level. With this photo-consistency image measure
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FIGURE 1. Bathroom image focused at a depth of 710 cms from the camera array. In (a) we see the result obtained with the average criterion of the EIs
contributing for each pixel position, while in (b) we can see the same result using the median criterion.

we can get an assessment of the depth map’s confidence
and we can predict those areas with the highest uncertainty
that are coincident with the boundaries between partially
occluded objects.

Nevertheless, when estimating the depth map of a scene,
the accuracy can be degraded by the texture of the
objects, or by the fact that the occlusion between objects is
seen differently in each camera. This makes the correspon-
dence process between EIs more difficult to obtain, gener-
ating higher uncertainty in those regions. In this sense the
photo-consistency criterion is key to handle with projective
distortions and partial occlusions in the scene.

A. AVERAGE AND MEDIAN IMAGE PERFORMANCE IN SAII
Traditionally, the average criterion has been used as a method
to obtain an image in focus for a specific depth. One problem
that appears with the use of this criterion is that during the
3D reconstruction of the scene, objects close to the cameras,
once they are in focus, have a tendency to expand their
corresponding edges in the scene for images in focus recon-
structed at higher depths (see Figure 1 (a)). This expansion
effect initially varies depending on the FOV and the pitch
value of the cameras. In other words, this expansion effect
depends on the initial disparity that contains theEIs and varies
depending on the reprojection of its pixels on 3D planes at
different depths. In this work, we propose the use of the
median criterion so that this effect is substantially reduced,
being able to detect partially occluded regions more clearly
(see Figure 1 (b)).

The median criterion represents the value of the variable
in the central position of the dataset. In our case, when deter-
mining the RGB-values of a partially occluded object viewed
from a set of cameras, the median criterion removes those
cameras whose RGB-values are different from the majority
of them. In these cases, the median criterion will be a better
estimator for the surface intensity than the average criterion.
Specifically, this assumes that to correctly detect the RGB

values of a surface point occluded by a foreground object,
this must be seen by more than half of the cameras. This is
precisely the reason why median colors have been used in
matte extraction [36].

B. DEPTH MAP AND ALL-IN-FOCUS RECONSTRUCTION
FOR MEDIAN DISTANCES
In [28] and [37] the use of a photo-consistency measure
is proposed by combining a defocus and a correspondence
measure in a light-field camera. This measure, made by these
two terms, was extended to the case of SAII in [24] and [33].
The defocus measure allows for an optimal contrast to be
obtained in a certain patch of the image with the aim to
improve stability over occluded regions. Nevertheless, out-
of-focus regions, such as certain high frequency regions and
bright lights, can produce a higher contrast that is not desired
for an accurate depth estimation. In addition, the patch size
also has an impact on the sensitivity measure because the
defocus blur may exceed the patch size.

Correspondence measurements make depth estimation
possible using photo-consistency measures and have been
commonly applied in stereo problems. In these cases, a sta-
tistical measure is usually applied to resolve matching ambi-
guities in displacements between images. Furthermore, large
displacements between EIs could cause correspondence mea-
sures at erroneous depths.

In order to combine the strategies of both criteria,
correspondence and defocus, based on the proposed cost
function defined byVaish et al. [32], we have defined a photo-
consistency measure combining a defocus and a correspon-
dence term. Consider the case of a 3D point Pj = (Xj,Yj,Zj)
belonging to a plane surface, which is viewed by a set of m
cameras. Consider that the distance of that plane in relation
to the optical center of a reference camera with focal distance
f is given by Z = d . This reference camera that we will call
central camerawill perform the reconstruction process of the
scene. Denote by pij = (x ij , y

i
j) the pixel coordinates of the
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FIGURE 2. Camera setup acquisition of a 3D point of the scene.

point Pj projected into the EI of the i-th camera and Edi (p
i
j)

its RGB-value. Denote by Sdj = {E
d
i (p

i
j) : i = 1, . . . ,m}

the set of the corresponding pixels projected from the point
Pj to each one of the m input EIs for a depth Z = d . From
the information stored in Sdj , we can estimate a measure
for the average for each RGB color Edavg = mean(Sdj ) and
the median for each RGB color Edmed = median(Sdj ) of
the EIs.

In our approach, the first term (correspondence term)
defines a cost function equal to the sum of median distances
for each RGB color, of all pixels projected Edi (p

i
j) in the

m cameras with respect to Edmed and with the pixel pcj cor-
responding to the EI of the central camera Ec with RGB-
value Ec(pcj ). It is worthwhile to indicate that the projections
of the 3D point vary at different depths on the EIs for all
cameras, except in the case of the EI of the central camera.
Thus, the correspondence term is defined by the following
expression:

Cd
RGB(p

c
j ) =

RGB∑
r=1

(
median{|Edi (p

i
j)−E

d
med |r }

+median{|Edi (p
i
j)−Ec(p

c
j )|r }

)
, ∀i=1,. . .,m

(1)

where r refers to the number of the color channel in the
RGB image. Analogously, for the defocus term, we define
the distance between E(pcj ) and E

d
med as follows

DdRGB(p
c
j ) =

RGB∑
r=1

|Ec(pcj )− E
d
med |r (2)

Therefore, the proposed photo-consistency measure
PdRGB(p

c
j ) would be given by the sum of the two terms:

PdRGB(p
c
j ) = DdRGB(p

c
j ) + Cd

RGB(p
c
j ). These distances based

on the median criterion are estimated for each pixel and
for each color channel by taking normalized RGB-values
between 0 and 1 in the EIs. In addition, the photo-consistency
estimate is made from the sum over the three color
channels.

When comparing the photo-consistency image for each
depth, some noise can be observed in these images, specially
in scenes with high texture surfaces or with many edges
between objects. This noise can be reduced applying an accu-
rate noise filtering technique based on Total Variation regu-
larization [38]. This technique applies a denoising technique
and depends on a parameter λ that affects the balance between
removing noise and preserving the photo-consistency image
content for each depth. In our experiments we have used a
value of λ = 60.
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Additionally, neighborhood information can be added by
applying a bilateral filter technique with a spatial mean and a
zero mean Gaussian kernel functionGs to the image intensity
differences of Ec, centered at the current pixel around a
window W , and with a standard deviation equal to 0.1. This
is an empirical parameter that establishes the influence of
the photo-consistency measurements of the neighbors in the
filter. Thus, for each pixel pcj with coordinates (xcj , y

c
j ) in

Ec(pcj ), we can define the following cost function for each
depth value d as:

LRGB(pcj , d) =

∑
pc∈W PdRGB(p

c
j )Gs(|(Ec(p

c
j )− Ec(p

c))|)∑
pc∈W Gs(|(Ec(pcj )− Ec(p

c))|)

(3)

In relation to the window size, the larger the size of the
window, the greater accuracy is reached in the depth map
because it achieves a better coherence between neighboring
pixels. However, in scenes with thin objects a large window
can degrade the accuracy of the depth in those areas. One way
to solve this problem is to discriminate the low texture areas
with respect to the areas that contain texture or have edges
of objects in the central image camera. Thus, we define a
pixel-wise measure as a gray-level variance typically used as
a focus measure [39].

F(xc, yc) =
∑

(xc,yc)∈W

(Ec(xc, yc)− µ)2 (4)

where W is the r × r neighborhood of a pixel at position
(xc, yc) and µ is the mean gray-level of pixels withinW . The
selection of r is a trade-off between robustness to noise and
spatial resolution. In this work we use a value of r = 11
such that when F(xc, yc) < 0.0001, the pixel is considered
belonging to a low texture area, and considered as signifi-
cantly textured, otherwise. From this threshold, we apply the
bilateral filter with a window size ofW = 11×11 for the first
case and a window size ofW = 3× 3 for the second case.
Finally, the optimal depth is determined over all depth

planes minimizing the cost function LRGB(pcj , d) as:

L̂RGB(pcj , d
∗) = argmin

d∈[Zmin,Zmax ]
LRGB(pcj , d) (5)

where L̂RGB(pcj , d
∗) is the minimum photo-consistency value

for each pixel pcj at the optimal depth d∗.
The method proposed in this section is referred as Photo-

consistencymeasure based onMedian distances (Photo-Med)
and it will be used in Section IV.

The method proposed here satisfies the three specifications
discussed at the beginning of Section II: (a) establish a stack
of images Edmed at different depths where the objects of
the scene are in focus at that depth. (b) Since we have an
estimated depth for each pixel, we can get the RGB value
for that depth and create an all-in-focus image. This image
has a strong dependence with depth estimation because depth
errors appear as artifacts in the all-in-focus image, especially
in textured surfaces. (c) We can obtain the photo-consistency

measurement for each depth level. This allows us to represent
an image that we call Ephoto (value for each pixel in which its
value is minimum) and that we will use to predict the limits
between partially occluded objects.

III. THE ROLE OF OCCLUSIONS IN DEPTH
REGULARIZATION
After an initial depth map estimation (see Eq. 5),
we can refine the results with a global regularization
term using a smoothness term similar to that applied
in [28]. In that work, the authors define a predictor com-
posed by three terms for assessing if a particular pixel is
occluded, by combining depth, correspondence and refocus
cues.

One drawback associated to the depth information is that
it contains errors due to the fact that the photo-consistency
measure is not able to focus at the proper depth generating
false edges that mislead the regularization process.

The second and third terms are related to the strategy used
to obtain the depthmap. Authors apply theirmethod in a light-
field camera, where the disparities between the EIs are very
low. This allows the non-occluded zone to maintain the vis-
ibility to the corresponding object, at different depths. How-
ever, when the disparity between EIs increases (for instance,
in SAII), the number of cameras that see the partially occluded
object varies with depth, and that approach fails in SAII
where there are larger disparities in EIs than in lenslet-based
plenoptic images. Therefore, we propose a new approach
based on the photo-consistency measure to solve this
problem.

A. ESTIMATION OF PARTIAL OCCLUSIONS IN SAII
During the initial depth map reconstruction process, we have
stored the photo-consistency measurement for each depth
level. This allows us to represent an image called Ephoto with
the minimum photo-consistency value L̂RGB(pcj , d

∗) for each
pixel pcj (see Figure 3 (b)). When observing this figure we can
see how the photo-consistency measure obtains low values
in regions where there are no occlusions, while this value
increases in occluded areas and around them. This indicates
that there is a conflict in the distance measure for the different
cameras in relation to Edmed and Ec(pcj ). Note that the photo-
consistency measure decreases in the occlusion areas around
the object edges. Therefore, the occlusion zones are on the
edges of the image where there is also high uncertainty
in Ephoto.

The analysis of the photo-consistency measure Ephoto can
be used to get information about two fundamental aspects in
the regularization process: (a) to have a confidence measure
that estimates the pixel depth estimation accuracy and (b) to
provide us an approximate information on where the bound-
aries between objects are.

In order to detect the boundary limits of the depth dis-
continuities between objects, first we apply a Canny filter
on the EI of the central camera Ec obtaining a binary mask

1056 VOLUME 7, 2019



J. M. Sotoca et al.: Depth and All-in-Focus Image Estimation in SAII

FIGURE 3. Occlusion predictor for a synthetic scene (a). The edges (e) are obtained through the intersection of the masks Mc
occ (b) and Mphoto

occ (c).
We show the Canny filter (f) applied on the ground-truth depth map of the scene.

M c
occ (see Figure 3 (c)). This mask contains accurate edges

between objects but it also contains edges due to changes in
color. Next, we apply a Canny filter on Ephoto and apply a
morphology filter to dilate the edgesMphoto

occ (see Figure 3 (d)).
Finally, we estimate the intersection between these two binary
masks and refine the output mask by joining small segments
into only one (see Figure 3 (e)):

Mocc = M c
occ ×M

photo
occ (6)

In Figure 3 (f) we show the Canny filter applied to the
ground-truth depthmap of the scene (Mtruth). Themain differ-
ences are found in the picture hanging on the wall and in the
window that has the same depth as that of the corresponding
walls in the ground-truth depth map.

B. DEPTH REGULARIZATION
Given an initial depth map obtained by the proposed method
(see Eq. 5), a regularization process with a Markov Random
Field (MRF) is applied to generate the final depth map.
Thus, we can define and minimize the energy with unary and

pairwise terms as

F =
∑
p

E1(p, ld (p))+
∑
p,q

E2(p, q, ld (p), ld (q)) (7)

where p and q are neighboring pixels, and ld (p) and ld (q)
are the depth label values for the pixels p and q respectively.
The first term E1(p, ld (p)) expresses that depth labels ld (p)
should agree with the observed data while the second term
measures the depth smoothness level between neighboring
pixels.

Consider that N (ld ) is the number of depth levels in the
interval [Zmin,Zmax] and l∗d ∈ [1, . . . ,N (ld )] is set of all
possible depth label values. If ld (p) is the initial depth map
label value of pixel p, then the first data energy term for all
possible depth labels l∗d is given by

E1(p, ld (p)) = min{|ld (p)− l∗d |,N (ld )/2}

∀l∗d ∈ [1, . . . ,N (ld )] (8)

and the second data energy term relates the depth map level
value of pixel p with its corresponding neighboring pairwise
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FIGURE 4. Synthetic scenes used in the work. From left to right: Bathroom, Living-room and Toysroom.

pixels and it is defined as

E2(p, q, ld (p), ld (q))

=
Ephoto(p)0.1 + Ephoto(q)0.1 + 1

|∇(Ec(p))−∇(Ec(q))| + k|Mocc(p)−Mocc(q)|
(9)

where Ephoto(p) is the minimum photo-consistency value or
confidence function, ∇(Ec) is the gradient of the EI of the
central camera Ec andMocc is a binary mask with value equal
1 if it is an occlusion edge, and 0 otherwise. Parameter k
with value equal to 105 is a weighting factor to penalize the
propagation in the regularization process when detecting an
occlusion, that is, a change in the maskMocc.

The numerator measures the degree of confidence in the
depth map, while the denominator penalizes the difference
between the image gradients and the difference in the occlu-
sion mask Mocc between neighboring pixels. The minimiza-
tion is solved using a standard graph-cut algorithm [40]–[42]
to obtain the final depth map estimation.

IV. EXPERIMENTAL RESULTS
In order to analyze the performance of the technique proposed
in this paper, we compare it with two other 3D reconstruction
techniques based on the average image criterion for each
depth Edavg. The first one is the proposal by Wang et al. [28]
where we have only changed the image reconstruction pro-
cess of each depth used in a light-field camera by the one
used in SAII. The rest of the method remains the same as
the original work including estimation of occlusions using a
metric on angular pixel patches, color consistency constraint,
occlusions prediction and depth regularization.

The second one called Elemental Imaging from Edge
removal (EIEd-rem) approach [24], removes the edges of
objects in the EIs when they are in focus. This is a problem
that appears when using the variance where the objects close
to cameras, once they are in focus, have a tendency to expand
their corresponding edges in the scene for images in focus
at higher depths. This method does not treat the problem of
partially occluded objects. Therefore, in order to include this

method in the comparison, we have added to the method the
same proposal of occlusion estimation and depth regulariza-
tion to the one proposed in this work.

In both techniques, the photo-consistency measure has also
two terms of the same nature as the one proposed in this paper:
correspondence and defocus, but the definition of these terms
is different. The correspondence term is equal to the variance
and the assessment of distances between the EIs in relation
to Edavg is based on the average criterion for each pixel and
for each color channel. The defocus term is similar to our
proposal but changing Edmed by Edavg. In addition, we have
analyzed the occlusion estimator performance, and its role in
depth regularization from the initial photo-consistency image
Ephoto obtained.

A. DATASET DESCRIPTION
A series of images were used to test the performance of
the proposed depth estimation with occlusion handling strat-
egy. Some of them, of synthetic nature, were created using
Autodesk 3DS Max. These synthetic images correspond to
indoor scenes (and they will be called Bathroom, Living-
room and Toysroom) (see Figure 4). A ground-truth depth
map based on the z-buffer algorithm is available for all the
synthetic images, in terms of graphical units. The equivalence
1GU ≡ 1cm is used in these scenes.

The other group of images corresponds to real images of
three different scenes, acquired using a 3×3 array of Stingray
F080B cameras. These cameras were located in a square grid
with the optical axes pointing in parallel directions. Image
resolution for each camera was 1024 × 768 pixels. Images
in Figure 5 show the elemental image corresponding to the
central camera, for the three scenes. In the first scene, a USAF
test was printed and pasted on a ceramic tile. This ceramic
tile allowed us to have the test in an orthogonal position in
relation to the optical axes of the cameras. The second scene
corresponds to a series of toys placed at different depths in
relation to the camera array. Finally, the third scene shows
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FIGURE 5. Real scenes obtained in our laboratory. From left to right: USAF test, Toys and OcclusionTree.

TABLE 1. Experimental setup parameters. The first three images are the synthetic images created using Autodesk 3DS Max. The other three are real
images acquired with the 3 × 3 camera array. In all case the units are in centimeters.

a person that is sat down behind an indoor plant, which is
partially occluding a gesture he is doing.

Table 1 shows the acquisition configuration parameters
used in these experimental results. Second and third columns
show the camera rack configuration, and the depth range from
Zmin to Zmax with a step size of Zstep. Fourth and fifth columns
give the specification details of the II pickup process, where
(cx , cy) is the physical size of the camera sensor and pitch
is the pitch of the cameras. A focal length of f = 50mm
is used for the synthetic scenes and f = 8mm, for the real
scenes.

In the case of the real scenes, we have used a variable step
size Zstep, being this step length smaller when it is closer to the
camera array, and larger as the distance increases. To establish
a variable depth scale d in the scene, we define a range of
values L(d) ∈ [0, . . . ,N (ld )−1], and we apply the following
rule:

d =
Zmin

1− L(d) ∗
(

1− Zmin
Zmax

(N (ld )−1)

) (10)

In addition, the depth map ground-truth is available for
the synthetic scenes. This allows us to assess the quality of
the depth estimation results through the application of two
figures of merit. The first one of them is the Root Mean
Squared Error (RMSE), defined as:

RMSE =

√√√√ 1
r × c

∑
(i,j)

[Ẑ (i, j)− Z∗(i, j)]2 (11)

where r and c are the number of rows and columns in each
image, Ẑ is the ground-truth depth map and Z∗ is the esti-
mated depth map for a pixel at position (i, j).

The second figure of merit is the Structural Similarity
Index (SSIM) [43]. This index is used to assess the similarity
between two images. Its value depends on a window size
defined by the user. In this work, a window size of 11 × 11
pixels has been used to estimate this measure. Its SSIM index
for two windows,Wx andWy, both of size 11× 11 would be
given by:

SSIM (Wx ,Wy) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ

2
y + c1)(σ 2

x + σ
2
y + c2)

(12)

where µx and µy refer to the average values for windows
Wx and Wy, respectively and σx and σy to its correspond-
ing variance values. σxy refers to the covariance of Wx and
Wy. c1 = (k1 ∗ N (ld ))2 and c2 = (k2 ∗ N (ld ))2 are two
constants used to stabilize the ratio in case the denominator
gets low values. These constants depend on two small values
k1 = 0.01 and k2 = 0.03 and N (ld ) that is the number of
levels used to reconstruct the depth map. In this paper we
have adopted the same values for k1 and k2 as those used in
the original work [43] for the case of a Gaussian window.
SSIM ∈ [−1, 1], and the closer the SSIM value to 1, the most
similar the two windows,Wx andWy, are.
In practice, a single overall quality measure for the entire

depth map is considered. In [43], the authors use a mean
SSIM (MSSIM ) index defined over all possible windows as:

MSSIM =
1

r × c

∑
(i,j)

SSIM (Wx(i, j),Wy(i, j)) (13)
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TABLE 2. RMSE , MSSIM-Depth and MSSIM-Focus values for the 3 synthetic scenes without and with regularization. Best values for each case are given
in bold.

This second figure of merit has been used to measure
two types of errors in terms of visual quality. First, if the
ground-truth depth map is available, we can estimate the
similarity between the estimated depth map and the ground-
truth depth map. We have called this error measure MSSIM-
Depth. Furthermore, we can obtain the all-in-focus image and
check the importance of the artifacts generated by the errors
in the depth map. In this case we can compare the all-in-focus
image with the EI of the central camera Ec. We have called
this error measureMSSIM-Focus.

B. RESULTS AND DISCUSSION FOR SYNTHETIC SCENES
Figure 6 presents the ground-truth depth map images in the
first row. In these images we can see how the boundaries of
the objects are well defined, recognizing in detail the changes
in the shape of the objects at different depths. In rows 2, 3,
and 4 the results of the initial depth map for the method by
Wang et al., EIEd-rem and Photo-Med are shown. In rows 5,
6 and 7 the results of the depth map regularization process for
the three methods are shown.

Table 2 shows the RMSE, MSSIM-Depth and MSSIM-
Focus values associated to the depth estimation grouped per
synthetic scene for the cases of Figure 6. The mean values
show the average estimated value for the three scenes.

Analyzing the results in Table 2, we observe that Photo-
Med gets better performance results in the initial depth map
in terms of RMSE values than Wang et al. and EIEd-rem for
Bathroom and Living-room scenes. In addition, rows 2 to 4 in
Figure 6 show that in Photo-Med the shape of the objects’
depth discontinuities is better defined within the map espe-
cially in the regions with thin shapes.

In the case of Toysroom, the results of our method in terms
of RMSE are worse than EIEd-rem. However, when analyzing

the depth map visual quality (see rows 3 and 4 of Figure 6),
we see that Photo-Med defines the shape of the objects in a
better way but includes more noise in the background wall
which occupies more than 50% of the image. In this sense,
the advantage of EIEd-rem is because the method removes
the edges of the objects and reduces the background noise but
increases the computational cost to generate the final depth
map. However, none of the methods is able to accurately
estimate the depth for objects whose surface has low texture.

In relation to the approach proposed by Wang et al.,
the angular patch around de edges of the occluding objects
divides the set of cameras into two regions, where only one of
them obeys the photo-consistency criterion. This hypothesis
is valid provided that the disparity between the EIs is low,
so that the region of cameras that correspond to the non-
occluded zone maintains the visibility of the object at differ-
ent depths. Nevertheless, this is not fulfilled as the disparity
and the range of depths increases, and therefore the amount
of cameras that see the partially occluded object varies with
the depth, which affects the method accuracy.

Regarding the measurements of MSSIM-Depth and
MSSIM-Focus, we can say that, in general, higher values are
obtained by Photo-Med and therefore the visual quality that
can be observed is better.

When analyzing the results of the regularization process
for the three methods, we should emphasize how the results
significantly increase the depth accuracy. In Bathroom scene,
the value of RMSE is more accurate in the regularized version
of Photo-Med, while in Living-room and Bathroom, EIEd-
rem obtains better results (see Table 2). For Living-room the
differences betweenEIEd-rem andPhoto-Med are in the lamp
area around the window and the vase on the table (see rows
6 and 7 of Figure 6). In Toysroom the errors are concentrated
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FIGURE 6. Methods are given in rows and synthetic images in columns. The first row shows
ground-truth depth maps. The methods that were tested are: Wang et al., EIEd-rem and
Photo-Med, without regularization, and the corresponding versions after regularization.
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FIGURE 7. First row shows (from left to right) the photo-consistency image Ephoto for the methods Wang et al., EIEd-rem and Photo-Med respectively.
Second row shows the corresponding all-in-focus image for these methods. Zoomed-in image areas have been included in these images to highlight the
increase in the all-in-focus image quality.

in the back wall, where the initial depth map has many inac-
curacies due to the existence of low texture regions. In this
sense the regularization algorithm homogenizes the surface,
but this does not mean that the correct depth is found.

Although the proposed algorithm to estimate occlusions is
able to detect the borders between partially occluded objects
and use this information in the regularizer, in the case of
EIEd-rem the photo-consistency values of the Ephoto images
are not so precise, losing part of the depth of some objects,
especially for the case of thin areas. This is due to the ability
of the median criterion to deal with reconstruction values at
depth discontinuities and occluding areas.

In the case of the Wang et al. approach, the depth map
result improves after the regularization process. However
in our experiments, the proposed Energy functional in the
equations 8 and 9 for the depth regularization gets a more
accurate 3Dmap in the SAII scenes than the expressions used
in [28]. This may be due to the errors in the initial depth
map labels used in its expression for the depth regularization
and the occlusion prediction method they propose, which was
designed for small EIs disparities in lenslet-based plenoptic
images.

Finally, we would like to point out how the all-in-focus
image for the case of the regularized depth map is usually
worse than for the case without regularization (see the

MSSIM-Focus values in Table 2). Thus, although homogeniz-
ing the depth values in a certain area improves the depth map,
it may result in the loss of certain visual details on object
surfaces in the all-in-focus image that the initial depth map
contained. Thus, specific details of the scene such as curved
surfaces or objects with thin areas may be impaired in their
accuracy performance. In addition, initial errors in the depth
map can be amplified during the regularization process.

C. RESULTS AND DISCUSSION FOR REAL SCENES
Figure 8 shows the results obtained by the different methods
on the images acquired by the 3 × 3 camera array. Rows
1, 2 and 3 show the results of the initial depth map for
Wang et al., EIEd-rem and Photo-Med approaches. In rows
4, 5 and 6 the results of the depth map regularization process
for the three methods are also shown.

Table 3 showsMSSIM-Focus values associated to the errors
detected in the all-in-focus image when compared to theEI of
the central camera. In this case, being a real scene, we do not
have information about the correct depth values of the objects
in the scenes, and therefore we can only analyze the visual
information of the depth map and the errors that the estimated
map makes when the all-in-focus image is created.

Table 3 clearly shows how Photo-Med method gets bet-
ter accuracy results in terms of MSSIM-Focus value when
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FIGURE 8. Depth estimation results for three real scenes. For each one of them, the following methods are given in rows (from left to
right): Wang et al., EIEd-rem and Photo-Med approaches. The corresponding regularized versions are in rows 4, 5 and 6.

compared to Wang et al. and EIEd-rem. Note that EIEd-
rem is the most imprecise and generates more artifacts in its
corresponding all-in-focus image.

Figure 7 shows the result of the all-in-focus image gen-
erated by the three methods for the scene OcclusionTree.
It can be seen how the quantity of artifacts or noise due to
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TABLE 3. MSSIM-Focus values for the three real scenes. Best values for each case are given in bold.

inaccuracies in the depth map is much greater in the case of
the EIEd-rem andWang et al. methods than for Photo-Med.
Nevertheless, in complex scenes the Photo-Med method

does not always achieve a good correspondence between the
different cameras in order to give a satisfactory response, as it
can be seen in the partially occluded crystal in the upper right
part of the image or traces of leaves that appear on the wall
in the background.

These errors also affect to the information that is obtained
through the photo-consistency values of the Ephoto image,
and that are used to detect the occlusion boundaries between
objects that are used to assign a confidence value to each pixel
in the regularizer. This can be seen in the Figure 7 where the
proposed measure in this work achieves a higher precision
to detect occlusions. In the second row in Figure 7, images
also show two zoomed areas where the all-in-focus image
results are better for the Photo-Medmethod, in relation to the
minimization of different types of artifacts that usually appear
around occluding objects.

These errors also affect the information that is obtained
through the photo-consistency values of the Ephoto image,
and that are used to detect the occlusion boundaries between
objects and to assign a confidence value to each pixel in
the regularizer. This can be seen in Figure 7, where the
proposed measure in this work achieves a higher precision
to detect occlusions. In the second row in Figure 7, images
also show two zoomed areas where the all-in-focus image
results are better for the Photo-Medmethod, in relation to the
minimization in the appearance of different types of artifacts
around occluding objects.

When comparing Wang et al. and EIEd-rem vs. Photo-
Med for the real scenes in Figure 8 we can see that the
EIEd-rem method introduces a larger amount of noise in the
depth maps. Specifically, in the EIEd-rem method the area
of the objects expands, and therefore their shapes are not
well defined (at different depths). This appears clearly in the
USAF test y Toys scenes. This also applies to the stapler and
other objects that appear on the top of the laboratory tables.
In the case of the Toys scene, the methods are able to find
the approximate distance for most of toys although as we
have indicated Wang et al. and EIEd-rem do not define the
details of the objects with the same degree of precision as the
proposed Photo-Med depth boundaries.

In relation to the regularized images, it is worth mentioning
that the results obtained byPhoto-Med are quite convincing in
their final visual appearance. Thus, some problems related to

surfaces with low texture or changes in illumination like the
reflections that are produced by the glass in the laboratory
windows are relatively well resolved. However, the photo-
consistency measure can only ensure that it will work well on
surfaces that contain enough texture, and therefore allowing
to focus the object at the proper depth.

V. CONCLUSIONS
This paper has presented a depth estimation method for SAII
based on a novel photo-consistency measure that uses the
median distance in order to deal with and mitigate the errors
coming from occluding objects. The main interesting feature
in this approach is to find a solution in the 3D reconstruction
process that does not take into account any a priori informa-
tion about which camera correctly sees the object at a certain
depth in the case of scenes with occlusions. The only assump-
tion is related to the number of cameras that correctly see
the object point surface to reconstruct. In addition, a robust
solution is proposed to detect the boundary limits between
partially occluded objects for the case of SAII. This is a
critical aspect in order to improve the depth map during the
regularization process.

For the comparison with other state-of-the-art methods,
two photo-consistency-based techniques have been included
that also contain the correspondence and defocus terms as
the one proposed in this work. The methods have been tested
in two groups of images, one of synthetic nature and other
consisting of real scenes acquired with a 3× 3 camera array.
Furthermore, two measures were used to assess the quality of
the depth estimation results.

Analyzing the results we can conclude that the proposed
method obtains satisfactory results with a better performance
than the other methods for most of the real and synthetic
scenes. In addition, regarding visual appearance, we can indi-
cate that the shape of the boundaries in the objects is better
defined in the resulting depth map with the proposed method
as compared to the other ones considered in our experiments.

It is also worthwhile noting that the observed depth map
resulting from the proposed approach generates a minor error
in the all-in-focus image, which serves as a practical indicator
of the depth map quality, especially in the case of real scenes
where, in general, it is not possible to have information about
the ground-truth depth map.

This loss of accuracy in the all-in-focus image for the case
of synthetic scenes opens the possibility of a future line of
research that would use a regularization function that would
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APPENDIX
See Table 4.

TABLE 4. Symbols Used in this Paper.

not only take into account the depth map information but also
the error that is committed when the all-in-focus image is
reconstructed.
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