© Regeo. Geometric Reconstruction Group
WwWw.regeo.uji.es
Technical Reports. Ref. 11/2016

Perimeter detection in sketched drawings of
polyhedral shapes

P. Company; P.A.C. Varley and R. Plumed

linstitute of New Imaging Technology, Universitatdge |, Spain

’Department of Mechanical Engineering and Consiongtiniversitat Jaume I, Spain

Abstract

This paper describes a new “envelope” approach fetedting object perimeters in line-drawings veded from

sketches of polyhedral objects.

Existing approaches for extracting contours fromitdil images are unsuitable for Sketch-Based Maugllas they
calculate where the contour is, but not which elemefthe line-drawing belong to it.

In our approach, the perimeter is described in temf lines and junctions (including intersectiomslar -junctions)

of the original line drawing.

Index Terms: Sketches-based modelling. Polyhetiedes. Contour, Perimeter

1. Introduction

Detection of object perimeters is a fundamental fare
Sketch-Based Modelling (SBM)—the perimeter of an abje
“is such a fundamental cue to tri-dimensionalitgttit is
hard for humans to suppress it" [BT81].

Digital images which capture scenes of the realldvor
are veryrich in content (i.e., they contain a large amount of
information), but they typically store informatiat a low
semantic levele.g., raster or bitmap imagesn contrast,
SBM inputs are verysparseimages (they contain just a
reduced set of strokes), which can be converteu high
semantic line-drawings containing only lines anacjions.

In drawings which depict polyhedral objects, thee$ and
junctions in a drawing are graph-like representetithat
depict edges and vertices of the object.

Hence, existing approaches for identifying region

boundaries in digital images—even those adapted to
sketches and drawings [SauO3]—are inappropriate for

detecting perimeters in plain line-drawings: sentant
information would be lost in resampling lines asaater
map, which would then be processed inefficientlings
algorithms designed for large amounts of data; trel
output from such algorithms is a set of succesgoiats—
or sometimes an external polyline—which definealbr
which envelops the region of interest.

What SBM approaches require instead is identifyireg t
subset of lines and junctions which bound the depicof
the object. In this paper, we describe and assassiew
approach for determining the object perimeter.
approach uses the 2D line-junction connectivityhaf line
drawing, and works for bothwireframe and natural
representations (the former include hidden edgbdevhe

Our

latter exclude them). The output is thécuit (closed
sequence of lines and junctions) which forms thianpater.

Some lines only partially belong to the perimetae
visible part of an occluded line can terminate at a
intersection in a wireframe and at a T-junctiorainatural
line-drawing. We detect such intersections andrjions
and include them in the sequence of corners, wdmielthose
junctions, intersections or T-junctions that areirfd to
belong to the perimeter. Thus, the set of correeas iordered
subset of the set of junctions intersections anfattions.

The capability of the approach to work with
intersections allows it to find the perimeternotiltigraph
line-drawings (where no path of lines allows visitiall the
junctions). The perimeters of each separate suhgaap
determined in addition to the global perimeter.

The rest of the paper is organised as follows.i&e&
introduces useful terminology for our work and exps$ the
type of drawings used as input in our method. IatiSe 3
related work is discussed. Sections 4 explains loow
algorithm works to detect the perimeter of engimegr
sketches. Section 5 shows some examples usedidateal
the method. Finally, Section 6 summarizes our agichs.

2. Input information and ter minology

The input required by our algorithm idime-drawing a list
of junctions and a list of lines, where a line cecis two
junctions (note the similarity with the vertex-edgeaphs of
graph theory). Junctions are (x,y) coordinate painsl
usually correspond to vertices of the depicted aibjanes
tend to correspond to edges. But a simple edge pl&yrgo

a set of lines, depending on the input process. liftes

highlighted in thick-red in Figure 1 right couldolabe one

P. Company et allPerimeter detection in sketched drawings of palylleshapes 2

line or two; our perimeter detection algorithm altofor
either interpretation.

Some applications allow direct input of lines; athe
interpret sketches(in which lines may be overtraced for
emphasis) or even images. Although vectorisatidre t
conversion of sketches to line-drawings as illusttan Fig.
1, is still an open problem (as described in [JG3J}0
reasonably good solutions already exist for sketcog

polyhedral objects, as considered here. Zhang et al

T-junctions of natural line-drawings require no cpé
code for perimeter detection if treated as redietiral
junctions. The same applies for intersections irefrmes.
Since this implies that lines that represent actdagles are
split into a set of two or more sub-lines, somepprties of
the line may be lost (e.g. collinearity) unless emgich the
line-drawing with suitable information about geoneet
constraints.

In this paper, we also allow for the alternativeramch:

[ZSD*06] summarise older approaches, and propose a leave the lines unsplit and add the perimeter mé&dion as

seeded segment growing algorithm for extractingplgical
primitives from a stroke.

S Y

Fig. 1. Strokes (left), segmented (right, uppeckhred
lines) and non-segmented (right, lower thick reé)in
collinear edges

Vectorisation does not correct the geometrical
imperfections inherent in sketching. However, aglas the
topology remains unaltered, our perimeter detection
algorithm is unaffected by such imperfections.

Vectorisation must however merge dangling endpoints
to produce junctions which depict valid verticegy(ffe 2).

>

Fig. 2. Merging of three endpoints (left) to fornsiagle
junction (right)

At T-junctions in natural line-drawings (see Figue
left), where the endpoint of one line should meat a
intermediate point of another line, vectorisatioayneither
split the second line, so as to produce two new lindstwh
meet the first line in an “ordinary” trihedral juian (Figure
3 middle), or leave the second line unaltered wilsuring
that the endpoint of the first line exactly medts second
line (Figure 3 right).

E
fi{

Fig. 3. T-junction (left) may either split the saddine
(centre), or ensure that the first line touchesgkeond

(right)

[

E

a complement, as our perimeter detection algorifam
designed to deal with both split and unsplit intet®ns and
T-junctions (see Section 4.1). Perhaps, this atera
increases computational complexity, but it will lefyly
preserve the design intent implicit in the stroiepicted to
be seen as lines that depict edges. Thus, foresteof the
paper, “junctions” are the ordinary ones—shares tippthe
lines in the 2D drawing that are assumed to be the
projections of the 3D vertices of a polyhedron—white
also consider the unsplit intersections and T-jionst We
name as corners to the ordered subset of the getaifons,
T-junctions and unsplit intersections that are fbtmbelong
to the perimeter.

3. Previous work

Our long term goal is extracting as many perceisees of
information about sketched line drawings as possiblthis
context, it has been stated that the number ofocor@dges
for polyhedron projections is small and the numbér
intersections of contour edges appears to be ewam m
favourable [KW96]. Thus, detecting the perimeter of
sketched drawings of polyhedral shapes is an istiege
goal, as far as we can get this information befegesearch
for more high semantic level cues that help ugtover the
3D shape implicitly depicted in the 2D line drawirighus,
on the contrary of other well-known approaches (&N
[PBD*01]), we do not know information about facesdan
their orientations while we search for the perimelast on
the contrary, we try to get the perimeter in orieunse this
information in a later search for visible and odeld faces.

Besides, we can distinguish between perimeter and
silhouette, since the latter is usually definedaaset of
successive points—or sometimes an external pohgdine
which defines a border which envelops the regidantefest,
and constitutes a cue for figure-to-ground distorct
[IFH*03]. This implies that the output silhouettéroost of
the approaches applied to sketched drawings ohpdigal
shapes is not a subset of the original set of Bmeljunctions
of the polyhedron, but an overlaid entity [QJL*07].

The first work directly related with perimeter detien
in drawings of polyhedral shapes is the Roberts’skvam
perception of three-dimensional objects from linevdngs,
which includes a whole section on Polygon Recognitio
[Rob63], [Rob65]. Roberts’'s approach is simple and
efficient. First, at each junction, all lines contesl to that
junction are ordered by their orientation. The skdor a
polygon starts at a random line, and at each jongcthe line
we follow is the next in the ordered list after thee along
which we arrived. The process is repeated untilitiitel
junction is reached again, and the circuit is diasea cycle
(Figure 4).

P. Company et allPerimeter detection in sketched drawings of palylleshapes 3

Figure 4. Robert’s approach for detection of polggan a
natural line-drawing

This method can be used to identify regions in mahtu
drawings (regions can correspond to faces of thecgbor
to part-faces as in Fig. 5 left), and can also fimelexterior
boundary polygon. It fails for wireframe drawindsid. 5
right).

Labelling methods (from Huffman [Huf71], Clowes
[Clo71] and Waltz [Wal72], to Varley and Martin [VN@],
[VMOOb]) may obtain the perimeter (Fig.5 left), ks is
not their main goal, and they require cataloguewvadid
junction labels—so far, only trihedral and tetratad
junctions have been catalogued fully; full catalegwf 5-
hedral junction labels and beyond are not practical

Figure 5. Labelled natural line-drawing (left) anioet
corresponding wireframe (right)

4. Our approach

We want to find a sequence of lines—plus the cpoeding
junctions—which defines the perimeter as a clogsuliit.
Our strategy should be tailored to the actual neddbe
reconstruction approach (we advocate a “cascag@baph
which first detects simple cues such as perimetdrthen
uses these results to further analyse the lineidgaw
searching for more complex cues). We only extraet t
information from the line-drawing that we shall deg@ot
“as much as possible”, as with labelling methods).

For finding the perimeter we firstly identify theper
junction—which together with the leftmost, rightrh@nd
lower junctions (i.e., those with the biggest og g8mallest
x- or y-coordinate) must belong to the perimeter. Thus, th
upper junction becomes the first corner, and atleae of
the lines connected to it must also belong to #raneter.

As we follow the perimeter clockwise around the
drawing, we arrive at each junction (like junctidhin
Figure 6) along amcomingline which is already part of the
perimeter (line €in Figure 6), we determine asutgoing

line to add to the perimeter (this outgoing lindl eien be
the incoming line at the next junction, and so cfe
outgoing line is always the leftmost line as vievienn the
incoming line (line e in Figure 6). In determining the
leftmost line, angles between lines must be nosadlio the
range (0°, 360°)—this has the additional benefi¢rduring
that the interpretation is independent of the daton of the
line-drawing.

Figure 6. Inner angles between lines sharing thetiom V

To find the initial outgoing line at our startingnjction,
we have no previous incoming line. Instead, we ase
artificial incoming line which arrives verticallyt @ur start
upper junction (i.e. parallel with the y-axis) (§&&-Po) in
Figure 7).

Figure 7. Inner angles relative to the x axis

The procedure ends when we return to the firsteorn
Dangling lines are defined as those lines with enépoint
not connected to other lines (line 0-4 in FigurelB)case
that current corner is not connected to other lithes the
one most recently added to the perimeter (dangtieg, this
line is added again to the perimeter. Then its emdp are
re-added as corners in reverse order.

In pathological cases where the starting cornéréend
of n dangling lines (or chains of dangling lines), vilew
the algorithm to go through the initial cormerl times.

P. Company et allPerimeter detection in sketched drawings of palylleshapes 4

2

Figure 8. Simple perimeter with dangling lines

Our algorithm also copes with lines which belondyon
partially to the perimeter, as can happen in wéaneie
drawings of non-convex polyhedra. There are two
possibilities: one junction belongs to the perimebert the
other does not (as with lines 0-1 and 10-11 in féduleft);
or part of a line belongs to the perimeter, whieeindpoints
do not (as with line 2-15 in Figure 9 right).

Figure 9. Partial lines in the perimeter

To consider intersections or T-junctions, each tameew
line is added, we test whether any other linesssres end
at—the current perimeter line. If so, we inspece th
intersection points. The closest intersection pamtthe
previous junction will be added to the perimeteif #swere
a corner, and the left turn along the interseclimg is also
added to the perimeter as its outgoing line. Smaingle
line may include more than one T-junction (e.g.ee@eb in
the test-drawing of Figure 10), the crossing tessibe
reapplied to the new outgoing line. If no line nsicts the
current line, the far endpoint will become the neptner.

1 3 5

—

0 me———f
TQ\/Tl T, \/T3
2 4
8 7

Figure 10. Two segments of the same line, delinbyed
pairs of T-junctions, belong to the perimeter

4.1. Thealgorithm

The input to the algorithm are lists of the (x,y)-
coordinates of each junction and the head andutaitions
of each line. The algorithm first calculates dedive
information: subgraphs information and a list ohek
connected to each junction. Note that intersectams T-
junctions can be calculated only once—in advanced—an
used as required. The procedure to detect subgiapas

breadth-first search to visit all junctions conmecto an
arbitrarily selected first junction. This results the first
subgraph. Repeating the procedure for any not-ygitied
junction results in a second subgraph. The proeedsir
complete when no more junctions remain unvisited.

The output of the algorithm is a list of orderatek and
corners that belong to the perimeter (Perimeted.iaed
PerimeterCorners). Positive numbers in the list aher
refer to junctions of the original line drawing, iehnegative
numbers are pointers to a list of intersection$-gunctions
that belong to the perimeter. The coordinates & th
intersections and T-junctions that belong to thiénpeter are
saved (list TX), as much as the lines that prodeaeh
intersection (list TEdges). Note that the distiogtbetween
intersections and T-junctions is simple: the irget®n is a
T-junction if it is close to one vertex of the oaigg edge.

The complete flow of our perimeter detection funti
is as follows:

PerimeteByEnvelope()

{
FirstCorner= GetUpperJunction()

PreviousCorner= FirstCorner
PreviousCorner.y += 1

CurrentCorner= FirstCorner
NumTJ=0

CurrentLine= -1
NextCorner= FirstCorner

TJ=false

do
if (NextCorner >= 0) //The current corner is a junction
{ CurrentLine= GetOutgoingLine(CurrentCormner,

PreviousCorner)
PerimeterLines.push_back(CurrentLine)

PreviousCorner= CurrentCorner
if (AnyIntersection (CurrentLine))

XPoint= GetCloserlIntersection(CurrentLine)
XLine= GetlnterceptingLine(CurrentLine)
TJ=is_T-Junction()

NextCorner= -1 //The next comner is an intersection

}

else

NextCorner= GetFarJunction(CurrentLine)
}
}

else //The current corner is an intersection

{

PreviousLine= CurrentLine
CurrentLine= XLine
PerimeterLines.push_back(CurrentLine)

if (TJ)
CurrentLine= XLine

P. Company et allPerimeter detection in sketched drawings of palylleshapes 5

PreviousCorner= XPoint
if (AnyIntersection (CurrentLine))

XPoint= GetCloserIntersection(CurrentLine)

XLine= GetlInterceptingLine(CurrentLine)

TJ=is_T-Junction()

NextCorner= -1 //The next corner is an intersection
}

else

NextCorner= GetFarJunction(CurrentLine)

}
}

if (NextCorner >= 0)

PerimeterCorners.push_back(NextCorner)
CurrentCorner= NextCorner

}

else

{
TX.push_back(XPoint)
NumTJ - -

TEdges[-NumTJ-1].push_back(CurrentLine)
TEdges[-NumTJ-1].push_back(XLine)

PerimeterCorners.push_back(NumTJ)

}

while (CurrentCorner != FirstCorner)

}

For the sake of simplicity, we have omitted the fes
dangling lines that occur at the beginning of tbarsh (see
Section 3) and a trap for infinite loops (stop rftsiting as
many junctions as the figure contains).

The perimeter finder is successively called afading
the corresponding subgraph in thetabase

The function to determine the closest intersectioimt
excludes both the current edge and the edges cearteadt,
S0 as to prevent detecting false intersections dmivthe
current edge and edges that share its endpoirgsuifistion
also, when required, identifies a junction thabbek to the
outgoing line of a T-junction.

The full source code of the algorithm is freely italzle
at [CVP16].

5. Validation

To test the validity of the approach, we used figpes of
sketch:

1. Sketches whose line-drawings are bounded by simple
perimeters of full lines connected at junctionse(se

Figure 11).

2. Sketches whose line-drawings are bounded by
perimeters which include partial lines crossing at

intersections or T-junctions (see Figure 12).

3. Sketches whose line-drawings are bounded by

perimeters which include non-trivial combinations o
intersections or T-junctions (see Figure 13).

. Sketches of complex “flat” drawings to validate the

algorithm in the presence of complex intersectiangd
singular points (Figure 14).

SHr
5=
Yy

Figure 11. Perimeters of full lines

LKy
SN

P. Company et allPerimeter detection in sketched drawings of palylleshapes 6

as st

Figure 12. Perimeters including isolated T-juncton

i
SN
22 (ol
=
W XY

& G

Figure 13. Perimeters including complex combinadiofi
junctions and intersecting lines

e

| .V

Figure 14. Drawings of flat shapes including intetsens
and other singular points

Finally, we tested that our approach successfdteats
the perimeters of subgraphs, as well as the pezmadtthe
full line-drawing (Figure 15).

SIS

Figure 15. Perimeters of the full line-drawing are t
subgraphs

We note that natural drawings with T-junctions may
easily become decomposed into subgraphs if we tisptio
T-junctions as explained in Figure 3. Thus, a linawing
such as the first example in Figure 13 producesetisub-

P. Company et allPerimeter detection in sketched drawings of palylleshapes 7

perimeters in addition to the main perimeter shamvithe
figure.

Our approach is simple and its computational cest i
small. One example with 117 edges and 71 vertiaksst
less than one millisecond (Figure 16). The algamith
(Section 4.1), including pairwise tests for crogsiines, is
o(r).

Figure 16. Example of perimeter calculation for a
populated line-drawing

6. Conclusions

Perimeter detection is a basic and useful stagekatch-
Based Modelling.

Existing approaches for perimeter detection intelgi
images are inappropriate, as neither the inputhputput
fit the needs of Sketch-Based Modelling.

Published SBM approaches are inappropriate for
wireframe representations and multigraph line-dnai

We have developed a new approach for determiniag th
perimeter of a 2D line-drawing which works for bottural
line-drawings and wireframes. It does not requirg ather
information than lines and junctions. It is not itied to
particular types of polyhedron.

Our new approach quickly and correctly detects
perimeters of line-drawings vectorised from skesclod
polyhedral objects, and defines the perimeter sighaet of
lines and junctions of the original line-drawing.

7. Acknowledgements
We gratefully acknowledge the helpful comments foé t
anonymous reviewers that greatly helped us to ingthe
final version of this paper.

8. Refer ences

[BT81] Barrow H.G. and Tenenbaum J.M. (1981)
"Interpreting line drawings as three-dimensional
surfaces”, Atrtificial Intelligence, 17(1-3), 75-11881.

[Sau03] Saund E. (2003) Finding Perceptually Closed
Paths in Sketches and Drawings, IEEE Transactians o

Pattern Analysis and Machine Intelligence, 25(4), p
475-491.

[JGH*08] Johnson G., Gross M.D., Hong J., Do E.Y.L.
Computational support for sketching in design: aenev
Foundations and Trends in Human-Computer
Interaction, Vol. 2, No. 1 (2008) 1-93

[ZSD*06] zhang X., Song J., Dai G., Lyu M.R.
Extraction of line segments and circular arcs from
freehand strokes based on segmental homogeneity
features. IEEE Trans. Systems, Man, and Cybern8&gcs,
(2), (April 2006).

[KW96] Kettner L., Welzl E.: Contour edge analysis f
polyhedron projections, in: W. Stral3er, R. Klein RRw
(Eds.), Geometric Modeling: Theory and Practice,
Springer, 1997. (Proc. Internat. Conf. Theory and
Practice of Geometric Modeling in Blaubeuren,
Germany, October 1996.)

[PBD*01] Pop M., Barequet G., Duncan C.A., Goodrich
M.T., Huang W., and Kumar S.: Efficient Perspective
Accurate Silhouette Computation. In Proc. 17th Ann.
ACM Symp. on Computational Geometry, pp. 60—68,
Medford, MA, 2001

[IFH*03] Isenberg T., Freudenberg B., Halper N.,
Schlechtweg S., Strothotte T.: A Developer's Guime
Silhouette Algorithms for Polygonal Models, |IEEE
Computer Graphics and Applications, v.23 n.4, p.28-3
July 2003 [d0i>10.1109/MCG.2003.1210862]

[QJL*07] Qin Z., Jia J., Li T.T. and Lu J.: Extrarg 2D
Projection Contour from 3D Model Using Ring-
Relationship-Based Method. Information Technology
Journal, 6: 914-918, 2007.

[Rob63] Roberts L.G. Machine Perception of Three-
Dimensional Solids. PhD Thesis. MIT, Certified bytd?e
Elias (Thesis Supervisor). 1963.

[Rob65] Roberts L.G. Chapter 9: Machine Perception of
three-dimensional solids. Optical and Electro-Cgitic
Information processing, The MIT Press, Cambridge,
Massachusetts and London, England. 1965.

[Huf71] Huffman D.A., 1971. “Impossible objects as
nonsense sentencedvachine Intelligence Edinburgh
University Press, pp. 295-323.

[Clo71] Clowes M.B. On Seeing Things. Artificial
Intelligence, Vol. 2 (1971), pp. 79-116

[Wal72] Waltz D.M. Generating Semantic Descriptions
from Drawings of Scenes with Shadows. Tech Rept Al-
TR-271, M.L.T., Cambridge USA, 1972.

[VM0Oa] Varley P.A.C. and Martin R., 2000 (a). “A
system for constructing boundary representationd sol
models from a two-dimensional sketch. Frontal geoyne

P. Company et allPerimeter detection in sketched drawings of palylleshapes

and sketch categorisation”1st Korea UK Joint
Workshop on Geometric Modeling and Computer
Graphics

[VMOODb] Varley P.A.C. and Martin R., 2000 (b). “A
system for constructing boundary representatioid sol
models from a two-dimensional sketch. Topology of
hidden parts”. 13 Korea_UK Joint Workshop on
Geometric Modeling and Computer Graphics

[CVP16] Company P., Varley P.A.C. and Plumed R,
2016. Source code for finding perimeters in 2D-line
drawings of polyhedral shapes.
<http://www.regeo.uji.es/FindingPerimeter.htm>,
Regeo (2016), Geometric Reconstruction Group,
http://www.regeo.uji.es. Accessed October 2016.

