Mostrar el registro sencillo del ítem

dc.contributor.authorGomez-Aguado, Daniel
dc.contributor.authorGimeno, Vicent
dc.contributor.authorMoyano-Fernández, Julio José
dc.contributor.authorGarcia-Escartin, Juan Carlos
dc.date.accessioned2022-11-08T08:23:04Z
dc.date.available2022-11-08T08:23:04Z
dc.date.issued2022-08-29
dc.identifier.citationAGUADO, Daniel Gómez, et al. QOptCraft: A Python package for the design and study of linear optical quantum systems. Computer Physics Communications, 2023, vol. 282, p. 108511.ca_CA
dc.identifier.urihttp://hdl.handle.net/10234/200722
dc.description.abstractThe manipulation of the quantum states of light in linear optical systems has multiple applications in quantum optics and quantum computation. The package QOptCraft gives a collection of methods to solve some of the most usual problems when designing quantum experiments with linear interferometers. The methods include functions that compute the quantum evolution matrix for n photons from the classical description of the system and inverse methods that, for any desired quantum evolution, will either give the complete description of the experimental system that realizes that unitary evolution or, when this is impossible, the complete description of the linear system which approximates the desired unitary with a locally minimal error. The functions in the package include implementations of different known decompositions that translate the classical scattering matrix of a linear system into a list of beam splitters and phase shifters and methods to compute the effective Hamiltonian that describes the quantum evolution of states with n photons. The package is completed with routines for useful tasks like generating random linear optical systems, computing matrix logarithms, and quantum state entanglement measurement via metrics such as the Schmidt rank. The routines are chosen to avoid usual numerical problems when dealing with the unitary matrices that appear in the description of linear systems.ca_CA
dc.format.extent18 p.ca_CA
dc.format.mimetypeapplication/pdfca_CA
dc.language.isoengca_CA
dc.publisherElsevierca_CA
dc.relationERDF A way of making Europeca_CA
dc.relation.isPartOfComputer Physics Communications, 2023, vol. 282ca_CA
dc.rights© 2022 The Author(s). Published by Elsevier B.V.ca_CA
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/ca_CA
dc.subjectlinear interferometersca_CA
dc.subjectquantum opticsca_CA
dc.subjectquantum experiment designca_CA
dc.subjectquantum informationca_CA
dc.titleQOptCraft: A Python package for the design and study of linear optical quantum systemsca_CA
dc.typeinfo:eu-repo/semantics/articleca_CA
dc.identifier.doihttps://doi.org/10.1016/j.cpc.2022.108511
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca_CA
dc.type.versioninfo:eu-repo/semantics/publishedVersionca_CA
project.funder.nameMinisterio de Educación y Formación Profesional, Beca de Colaboración en Departamentos Universitariosca_CA
project.funder.nameUniversitat Jaume Ica_CA
project.funder.nameMinisterio de Ciencia, Innovación y Universidades (Spain)ca_CA
project.funder.nameMinisterio de Economía y Competitividad, Españaca_CA
project.funder.nameMCIN/AEI/10.13039/501100011033ca_CA
project.funder.nameJunta de Castilla y León, Spainca_CA
oaire.awardNumberUJI-B2018-35ca_CA
oaire.awardNumberPID2020-115930GA-I00ca_CA
oaire.awardNumberMTM2017-84851-C2-2ca_CA
oaire.awardNumberPGC2018-096446-B-C22ca_CA
oaire.awardNumberRED2018-102583-Tca_CA
oaire.awardNumberUJI-B2021-02ca_CA
oaire.awardNumberPID2020-119418GB-I00ca_CA
oaire.awardNumberVA296P18ca_CA


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

© 2022 The Author(s). Published by Elsevier B.V.
Excepto si se señala otra cosa, la licencia del ítem se describe como: © 2022 The Author(s). Published by Elsevier B.V.