Mostrar el registro sencillo del ítem

dc.contributor.authorForner Escrig, Josep
dc.contributor.authorNavarrete Argilés, Nuria
dc.contributor.authorPalma Guerrero, Roberto
dc.contributor.authorLa Zara, Damiano
dc.contributor.authorGoulas, Aristeidis
dc.contributor.authorValdesueiro, David
dc.contributor.authorvan Ommen, J. Ruud
dc.contributor.authorHernandez, Leonor
dc.contributor.authorMondragon, Rosa
dc.date.accessioned2022-02-11T10:02:32Z
dc.date.available2022-02-11T10:02:32Z
dc.date.issued2021-12-21
dc.identifier.citationFORNER-ESCRIG, Josep, et al. Numerical Modeling of the Mechanical Reliability of Multicoated Nanoencapsulated Phase‐Change Materials with Improved Thermal Performance. Solar RRL, 2021, p. 2100724.ca_CA
dc.identifier.urihttp://hdl.handle.net/10234/196724
dc.description.abstractNanoencapsulated phase-change materials (nePCMs) are investigated for enhancing thermal energy storage. However, the shell of these nanocapsules may fail due to stress developed during thermal processes, leading to melting enthalpy loss. To overcome this problem, SiO2 and Al2O3 coatings on Sn nanoparticles are synthesized by atomic layer deposition (ALD). To study the influence of shell thickness and composition on the probability of failure (POF) of nePCM shells in single- and multicoated nePCMs, a probabilistic numerical tool combining Monte Carlo techniques and a thermomechanical finite-element model with phase change are used. The uncertainties of the material and geometrical properties of nePCMs are included in the analysis. Both deterministic and probabilistic failure criteria are taken into account to consider the effect of dispersion on tensile strength. The results indicate that multicoated nePCMs enhance thermomechanical performance in relation to their single-coated counterparts. Both the numerical simulations and experiments confirm that the POF of nePCM shells and melting enthalpy loss in multicoated nePCMs lower with shell thickness. The results after 50 ALD cycles indicate that Al2O3 coatings exhibit better performance because a POF of 1.66% is obtained with 1.1% enthalpy loss, while the POF for SiO2 is 72.38% with 3.5% enthalpy loss.ca_CA
dc.format.extent11 p.ca_CA
dc.format.mimetypeapplication/pdfca_CA
dc.language.isoengca_CA
dc.publisherWileyca_CA
dc.relation.isPartOfSol. RRL, 2021ca_CA
dc.rightsCopyright © 2021 John Wiley & Sons, Inc. All rights reservedca_CA
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/ca_CA
dc.subjectnanoencapsulated phase-change materials (nePCMs)ca_CA
dc.subjectthermal energy storageca_CA
dc.subjectnanocapsulesca_CA
dc.titleNumerical Modeling of the Mechanical Reliability of Multicoated Nanoencapsulated Phase-Change Materials with Improved Thermal Performanceca_CA
dc.typeinfo:eu-repo/semantics/articleca_CA
dc.identifier.doihttps://doi.org/10.1002/solr.202100724
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca_CA
dc.type.versioninfo:eu-repo/semantics/acceptedVersionca_CA
project.funder.nameMinisterio de Economía y Competitividad (MINECO), Spainca_CA
project.funder.nameMinisterio de Economía, Industria y Competitividad (MINEIC), Spainca_CA
project.funder.nameFondo Social Europeoca_CA
project.funder.nameUniversitat Jaume Ica_CA
oaire.awardNumberENE2016-77694-Rca_CA
oaire.awardNumberBES-2017-080217 (FPI program)ca_CA
oaire.awardNumberE-2018-10ca_CA


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem