Mostrar el registro sencillo del ítem

dc.contributor.authorForner Escrig, Josep
dc.contributor.authorMondragon, Rosa
dc.contributor.authorHernandez, Leonor
dc.contributor.authorPalma Guerrero, Roberto
dc.date.accessioned2021-06-03T17:22:06Z
dc.date.available2021-06-03T17:22:06Z
dc.date.issued2021-07
dc.identifier.citationFORNER-ESCRIG, Josep, et al. Mechanical reliability analysis of nanoencapsulated phase change materials combining Monte Carlo technique and the finite element method. Mechanics of Materials, 2021, 158: 103886ca_CA
dc.identifier.issn0167-6636
dc.identifier.urihttp://hdl.handle.net/10234/193270
dc.description.abstractNanoencapsulated phase change materials (nePCMs) are one of the technologies currently under research for energy storage purposes. These nePCMs are composed of a phase change core surrounded by a shell which confines the core material when this one is in liquid phase. One of the problems experimentally encountered when applying thermal cycles to the nePCMs is that their shell fails mechanically and the thermal stresses arising may be one of the causes of this failure. In order to evaluate the impact of the uncertainties of material and geometrical parameters available for nePCMs, the present work presents a probabilistic numerical tool, which combines Monte Carlo techniques and a finite element thermomechanical model with phase change, to study two key magnitudes of nePCMs for energy storage applications of tin and aluminium nePCMs: the maximum Ran-kine’s equivalent stress and the energy density capability. Then, both uncertainty and sensitivity analyses are performed to determine the physical parameters that have the most significant influence on the maximum Rankine’s stress, which are found to be the melting temperature and the thermal expansion of the core. Finally, both a deterministic and a probabilistic failure criterion are considered to analyse its influence on the number of predicted failures, specially when dispersion on tensile strength measurements exists as well. Only 1.87% of tin nePCMs are expected to fail mechanically while aluminium ones are not likely to resist.ca_CA
dc.description.sponsorShipFunding for open access charge: CRUE-Universitat Jaume I
dc.format.extent10 p.ca_CA
dc.format.mimetypeapplication/pdfca_CA
dc.language.isoengca_CA
dc.publisherElsevierca_CA
dc.relation.isPartOfMechanics of Materials, 2021, 158: 103886ca_CA
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-sa/4.0/*
dc.subjectMonte Carloca_CA
dc.subjectFinite element methodca_CA
dc.subjectNanoencapsulated phase change materialsca_CA
dc.subjectMechanical reliabilityca_CA
dc.subjectSensitivity analysisca_CA
dc.titleMechanical reliability analysis of nanoencapsulated phase change materials combining Monte Carlo technique and the finite element methodca_CA
dc.typeinfo:eu-repo/semantics/articleca_CA
dc.identifier.doihttps://doi.org/10.1016/j.mechmat.2021.103886
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca_CA
dc.type.versioninfo:eu-repo/semantics/publishedVersionca_CA
project.funder.nameMinisterio de Economía y Competitividad (MINECO)ca_CA
project.funder.nameMinisterio de Economía, Industria y Competitividadca_CA
project.funder.nameFondo Social Europeoca_CA
oaire.awardNumberENE2016-77694-Rca_CA
oaire.awardNumberBES-2017-080217ca_CA


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como: Atribución 4.0 Internacional