Mostrar el registro sencillo del ítem

dc.contributor.authorKhan, Ali Hossain
dc.contributor.authorBertrand, Guillaume H. V.
dc.contributor.authorTeitelboim, Ayelet
dc.contributor.authorM, Chandra Sekhar
dc.contributor.authorPolovitsyn, Anatolii
dc.contributor.authorBrescia, Rosaria
dc.contributor.authorPlanelles, Josep
dc.contributor.authorClimente, Juan I.
dc.contributor.authorOron, Dan
dc.contributor.authorMoreels, Iwan
dc.date.accessioned2020-09-08T08:08:09Z
dc.date.available2020-09-08T08:08:09Z
dc.date.issued2020-04-10
dc.identifier.citationAli Hossain Khan, Guillaume H. V. Bertrand, Ayelet Teitelboim, Chandra Sekhar M., Anatolii Polovitsyn, Rosaria Brescia, Josep Planelles, Juan Ignacio Climente, Dan Oron, and Iwan Moreels. CdSe/CdS/CdTe Core/Barrier/Crown Nanoplatelets: Synthesis, Optoelectronic Properties, and Multiphoton Fluorescence Upconversion. ACS Nano, 2020, 14 (4), 4206-4215. DOI: 10.1021/acsnano.9b09147ca_CA
dc.identifier.issn1936-0851
dc.identifier.issn1936-086X
dc.identifier.urihttp://hdl.handle.net/10234/189582
dc.description.abstractColloidal two-dimensional (2D) nanoplatelet heterostructures are particularly interesting as they combine strong confinement of excitons in 2D materials with a wide range of possible semiconductor junctions due to a template-free, solution-based growth. Here, we present the synthesis of a ternary 2D architecture consisting of a core of CdSe, laterally encapsulated by a type-I barrier of CdS, and finally a type-II outer layer of CdTe as so-called crown. The CdS acts as a tunneling barrier between CdSe- and CdTe-localized hole states, and through strain at the CdS/CdTe interface, it can induce a shallow electron barrier for CdTe-localized electrons as well. Consequently, next to an extended fluorescence lifetime, the barrier also yields emission from CdSe and CdTe direct transitions. The core/barrier/crown configuration further enables two-photon fluorescence upconversion and, due to a high nonlinear absorption cross section, even allows to upconvert three near-infrared photons into a single green photon. These results demonstrate the capability of 2D heterostructured nanoplatelets to combine weak and strong confinement regimes to engineer their optoelectronic properties.ca_CA
dc.format.extent10 p.ca_CA
dc.format.mimetypeapplication/pdfca_CA
dc.language.isoengca_CA
dc.publisherAmerican Chemical Societyca_CA
dc.relation.isPartOfACS nano, 2020, vol. 14, no 4ca_CA
dc.rightsCopyright © American Chemical Societyca_CA
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/*
dc.subjectnanoplateletsca_CA
dc.subjectternary architectureca_CA
dc.subjectphotoluminescenceca_CA
dc.subjectk·p calculationsca_CA
dc.subjectfluorescence upconversionca_CA
dc.titleCdSe/CdS/CdTe Core/Barrier/Crown Nanoplatelets: Synthesis, Optoelectronic Properties, and Multiphoton Fluorescence Upconversionca_CA
dc.typeinfo:eu-repo/semantics/articleca_CA
dc.identifier.doihttps://doi.org/10.1021/acsnano.9b09147
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca_CA
dc.relation.publisherVersionhttps://pubs.acs.org/doi/abs/10.1021/acsnano.9b09147ca_CA
dc.date.embargoEndDate2021-04-10
dc.contributor.funderThe present publication is realized with the support of the Ministero degli Affari Esteri e della Cooperazione Internazionale and the Ministry of Science, Technology and Space of the state of Israel (IONX-NC4SOL), and by the Crown Photonics Center of the Weizmann Institute of Science. This project has also received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement no. 714876 PHOCONA). J.C. and J.P. acknowledge the support from MINECO (project CTQ2017-83781-P) and UJI (project B2017-59). We also acknowledge the TEM facility of the Nematology Research Unit, member of the UGent TEM-Expertise center (life sciences).ca_CA
dc.type.versioninfo:eu-repo/semantics/publishedVersionca_CA


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem