Mostrar el registro sencillo del ítem

dc.contributor.authorWang, Haibin
dc.contributor.authorGonzález Pedro, Victoria
dc.contributor.authorKubo, Takaya
dc.contributor.authorFabregat-Santiago, Francisco
dc.contributor.authorBisquert, Juan
dc.contributor.authorSanehira, Yoshitaka
dc.date.accessioned2016-04-21T14:59:29Z
dc.date.available2016-04-21T14:59:29Z
dc.date.issued2015-11
dc.identifier.issn1932-7447
dc.identifier.issn1932-7455
dc.identifier.urihttp://hdl.handle.net/10234/158911
dc.description.abstractNanostructured solar cells are a promising area of research for the production of low cost devices that may eventually be capable of complementing or even replacing present technologies in the field of solar power generation. The use of quantum dots (QDs) in solar cells has evolved from being simple absorbers in dye-sensitized solar cells to sustaining the double functions of absorbers and carrier transporters in full solid state devices. In this work, we use both optical and electrical measurements to explore the diffusion limitations of carrier transport in cells made of a heterostructure combining lead sulfide (PbS) QDs as absorbers and hole carrier and zinc oxide nanowires as electron carrier material. The results show efficient charge collection along the PbS-QD/ZnO nanowire (NW) hybrid structure. This is because of the formation of band bending in the ZnO collector, allowing efficient charge separation and spatially well-separated carrier pathways, yielding a hole transportation of over 1 μm. We have also found a limitation in open-circuit voltage (Voc) associated with band bending in the ZnO collector.ca_CA
dc.description.sponsorShipThis research is supported by the Japan Science and Technology Agency (JST) thorough its “Funding Program for Core Research for Evolutional Science and Technology (339-5 CREST)” and New Energy and Industrial Technology Development Organization (0520002 NEDO) and the Ministry of Economy, Trade and Industry (METI), Japan. The work is also supported by Generalitat Valenciana (ISIC/2012/008 Institute of Nanotechnologies for Clean Energies, PROMETEO/2014/020). This work is partly supported by JX Nippon Oil & Energy Corporation. Cordial thanks are due to Toyo Corporation for the use of the ModuLab system (Solartron) for obtaining IMPS data.
dc.format.extent10 p.ca_CA
dc.format.mimetypeapplication/pdfca_CA
dc.language.isoengca_CA
dc.publisherAmerican Chemical Societyca_CA
dc.relation.isPartOfThe Journal of Physical Chemistry C, 2015, vol. 119, núm. 49ca_CA
dc.rightsCopyright © 2015 American Chemical Societyca_CA
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/*
dc.subjectDye-sensitized solar cellsca_CA
dc.subjectNanocrystalsca_CA
dc.subjectNanostructured materialsca_CA
dc.subjectNanowiresca_CA
dc.subjectOpen circuit voltageca_CA
dc.titleEnhanced Carrier Transport Distance in Colloidal PbS Quantum-Dot-Based Solar Cells Using ZnO Nanowiresca_CA
dc.typeinfo:eu-repo/semantics/articleca_CA
dc.identifier.doihttp://dx.doi.org/10.1021/acs.jpcc.5b09152
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccessca_CA
dc.relation.publisherVersionhttp://pubs.acs.org/doi/abs/10.1021/acs.jpcc.5b09152ca_CA
dc.type.versioninfo:eu-repo/semantics/publishedVersion


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem