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1 Introduction 

Spatial interpolation is an essential tool for 
continuously deriving climate information over space 
based on data at particular locations. Low accuracy and 
precision in spatial interpolation occurs in regions with 
a few climate data, e.g. in developing regions where the 
available number of data is often technologically and 
economically constrained [1, 2]. However, 
representativeness of corresponding climatic fields is 
also one of the important data characteristics and may 
ensure satisfactory accuracy and precision in spatial 
interpolation in data scare regions [3]. 

Consequently, the research question of this study was 
- can high representativeness of climate data ensure 
satisfactory accuracy and precision in spatial 
interpolation despite their scarcity?  

 
 

2 Study area 

In Bangladesh, only 34 meteorological stations 
currently report daily precipitation and temperature over 
147,570 km2 areal extent [4], and thus distinguish it as a 
data scarce region (Figure 1 (a)). During the period of 

1948-2007, there is a gradual increase in the number of 
data locations for precipitation and temperature, i.e. 
from 8 to 32 and from 10 to 34, respectively (Figure 
1(b)). 

 
 

3 Materials and Methods 

The daily precipitation and temperature data during 
1948-2007 in Bangladesh were used. Two annual 
climate indices – the annual total precipitation in wet 
days (PRCPTOT) and the yearly maximum value of the 
daily maximum temperatures (TXx) were computed [5, 
6]. 

The representativeness of the climate indices was 
quantified by the measure of the regional coefficient of 
variation (k, expressed in terms of a percentage) [7]. 

Required number of data (n) for obtaining 
satisfactorily accurate and precise interpolated surfaces, 
i.e. root mean square error (RMSE) of the interpolated 
values lower than or equal to 5% of the regional mean 
(M) of the observed indices [8, 9], was estimated and 
compared to the available n according to [10, 11]. 

The Universal Kriging (UK) spatial interpolation 
model [12] was applied using the ‘gstat’ package [13] 
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Abstract 

Data scarcity is a major scientific challenge for accuracy and precision of spatial interpolation of climatic fields, especially in climate-
stressed developing countries. Methodologies have been suggested for coping up with data scarcity but data have rarely been checked for 
their representativeness of corresponding climatic fields. Here, influences of number and representativeness of climate data on accuracy and 
precision of their spatial interpolation were investigated and compared. Two precipitation and temperature indices were computed for a long 
time series in Bangladesh, which is a data scarce region. The representativeness was quantified by dispersion in the data and the accuracy 
and precision of spatial interpolation were computed by four commonly used error statistics derived through cross-validation. The 
precipitation data showed very little and sometimes null representativeness whereas the temperature data showed very high 
representativeness of the corresponding fields. Consequently, interpolated precipitation surfaces showed little accuracy and precision 
whereas temperature surfaces showed high accuracy and precision despite the scarce data. The results indicate that representativeness of 
climate data, i.e. variability of climate phenomenon, is more crucial than the number of data for accuracy and precision of spatial 
interpolation and should be treated with higher importance. 
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in R [14]. The pooled variogram [15] parameters for 
three successive periods: 1948-1972, 1973-1992 and 
1993-2007, taken from Bhowmik [16], were fitted to 
the UK model. The accuracy and precision of spatial 
interpolation were measured by four error statistics: (1) 
root mean square error (RMSE), 2) mean absolute error 
(MAE), 3) systematic root mean square error (RMSEs), 
and 4) unsystematic root mean square error (RMSEu). 
These were computed using the ‘gstat’ [13] and 
‘hydroGOF’ [17] packages. 

 
Figure 1: (a) Spatial distribution of the 34 current 
meteorological stations in Bangladesh and (b) 
increasing number of the data for precipitation 
(n(Precipitation)) (top) and temperature 
(n(Temperature)) (bottom) during 1948-2007. 

(a) 

 
(b) 

Source: Author produced from the data [11]. 
 

The bivariate normality between the available n and 
the k was tested using the Henze-Zirkler’s Multivariate 
Normality Test [18] in the ‘MVN’ package of R [19] 
and they were significantly (p<0.001) well fitted. The 
explained variability in the available n (generalized 
linear model with the ‘poisson’ family) and k (simple 
linear regression model) by each other were analyzed 
and the residuals of both models were extracted to 
obliterate the effects of the available n and the k on 
each other. 

Finally, the bivariate normality in the residuals of n 
and k separately paired with each of the error statistics 
were tested [18]. Consequently, four simple linear 
regression models were fitted with the residuals of n 
and k as predictors (independent variables), separately, 
to predict the four spatial interpolation error statistics 
for both the indices (PRCPTOT and TXx). The 
percentage of variability in the response variables 
explained by the residuals of n and k was evaluated by 
the adjusted coefficient of determination (R2) and 
through the statistical significance (p<0.05) of their 
corresponding regression parameters. 

 
 

4 Results and Discussion 

An average k of 41% was observed for PRCPTOT 
resulting from a range of 24.57-59.51% whereas for 
TXx the average k was 6.2% with a range of 3.26-
23.97% (Table 1). Thus, the TXx data were mostly 
representative of the climatic field, whereas PRCPTOT 
data were unrepresentative. 

For PRCPTOT, the number of available data did not 
meet the requirement for obtaining satisfactory 
accuracy and precision of spatial interpolation 
according to the computed k in any of the time steps 
(Table 1). On the contrary, in 43 time steps out of 60 
(72%), the available n of TXx data met the requirement 
for satisfactory accuracy and precision. 

The available n and k could significantly explain each 
other though the explained variability and slopes were 
very low (Table 2). On an average, k explains much 
higher variability of the error statistics than the 
available n and showed statistical significance when n 
and k were independent of each other (Table 3). The k 
explains 39.67% [78.16%] of the variability in the 
RMSE of spatial interpolation of PRCPTOT [TXx] and 
the corresponding regression parameters were 
statistically significant. Complementarily, n explains 
only 13.56% [3.38%] of the variability in the RMSE of 
PRCPTOT [TXx], thus its regression parameters are not 
statistically significant. More than 70% of the 
variability in each of the error statistics of TXx is 
explained by k except for RMSEu. Thus, the 
representativeness of the data, i.e. the variability of the 
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climate phenomenon, is more crucial than the number 
of data for ensuring accuracy and precision. The 
number of data is weakly related with the accuracy and 

precision, whereas their representativeness has a 
significant relation. The results are in line with [20]. 

  
 

Table 1: Computed representativeness (k – coefficient of variation) of the climate 
indices (PRCPTOT and TXx) at every time step (years) of the study period and 
corresponding available and required number of data (n) according to the measured k 
(Kelley, 2007; Lynch and Kim, 2010) for satisfactorily accurate and precise (RMSE - root 
mean square error <=5% of the regional mean of the indices (M)) spatial interpolation. 

Years k (%) Available n Required n (RMSE<=5%M) 
 PRCPTOT TXx PRCPTOT TXx PRCPTOT TXx 

1948 53.59* 3.69 8 10 985 10 
1949 47.38 8.04 9 11 758 43 
1950 54.97* 3.35 10 11 985 8 
1951 53.79* 4.41 11 12 985 12 
1952 37.94 6.44 10 12 423 35 
1953 32.92 3.26 12 13 303 7 
1954 36.71 4.38 13 14 423 11 
1955 31.22 6.29 12 11 303 34 
1956 24.57 6.85 14 14 137 37 
1957 33.49 9.97 15 16 303 54 
1958 46.61 7.52 15 17 758 41 
1959 34.41 7.06 15 17 303 38 
1960 42.15 5.68 15 17 573 31 
1961 59.51* 4.90 16 18 985 16 
1962 36.98 4.58 16 18 423 15 
1963 36.05 4.67 15 17 423 15 
1964 40.71 4.99 18 19 573 16 
1965 42.57 7.49 17 18 573 40 
1966 46.47 7.86 21 23 758 42 
1967 46.17 23.97 19 20 758 137 
1968 43.45 4.95 19 20 573 16 
1969 44.49 8.49 20 23 573 46 
1970 34.88 4.98 20 22 303 16 
1971 53.34* 3.77 20 23 985 12 
1972 45.54 4.98 19 21 758 16 
1973 40.05 7.49 20 22 573 40 
1974 43.25 5.19 20 21 573 21 
1975 43.85 7.72 22 22 573 42 
1976 42.05 8.38 21 23 573 45 
1977 44.16 4.80 26 25 573 15 
1978 39.50 4.86 23 25 423 16 
1979 51.35* 5.02 26 26 985 26 
1980 44.85 4.91 25 25 573 16 
1981 44.74 3.67 25 27 573 10 
1982 47.11 3.92 27 29 758 13 
1983 42.48 4.60 27 29 573 15 
1984 32.84 5.37 27 29 303 29 
1985 39.56 6.76 28 30 423 30 
1986 26.15 5.75 28 30 209 30 
1987 36.17 5.90 29 31 423 31 
1988 37.99 5.67 29 31 423 31 
1989 47.31 7.24 30 33 758 32 
1990 39.06 4.53 30 33 423 14 
1991 37.57 4.09 32 34 423 13 
1992 39.57 5.94 32 34 423 32 
1993 36.75 3.97 32 34 423 13 
1994 53.90* 5.64 32 34 985 30 
1995 32.16 5.95 31 33 303 32 
1996 38.33 5.06 31 33 423 27 
1997 32.61 4.07 31 33 303 13 
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1998 42.04 4.35 31 33 573 14 
1999 34.17 4.67 32 33 303 15 
2000 49.42 3.12 32 34 758 8 
2001 51.07* 3.16 32 34 985 8 
2002 29.77 5.39 32 33 209 29 
2003 48.09 12.81 31 33 758 69 
2004 28.25 10.95 32 34 209 59 
2005 37.85 5.18 32 34 423 28 
2006 40.27 3.53 32 34 573 8 
2007 28.55 4.15 32 34 209 13 

*Null representativeness, i.e. k>50% 
Source: Author produced. 

Table 2: Coefficients of the simple linear regression model and generalized linear models with poisson family fitted to the 
representativeness (k – coefficient of variation) and the available number of data (n) of the climate indices (PRCPTOT and 
TXx), respectively, where were the n and k were respectively the predictors. The intercept, slope and the adjusted explained 
variability of the models are presented with the coefficients’ statistical significance (p<0.05). 

Response variables 
Predictor variables 

n 
PRCPTOT TXx 

 Intercept 
Standard 

slope 
Standard 

error 
R2 

(%) 
Intercept 

Standard 
slope 

Standard 
error 

R2 
(%) 

k 
(Simple linear 

regression model) 
45.38* -0.18* 0.13 1.91 7.54* -0.05* 0.05 0.31 

 k 
 PRCPTOT TXx 

 Intercept 
Standard 

slope 
Standard 

error 
R2 

(%) 
Intercept 

Standard 
slope 

Standard 
error 

R2 
(%) 

n 
(Generalized linear 

model with the poisson 
family) 

3.47* -0008* 0.004 4.44 3.30* -0.02* 0.009 1.98 

*Statistically significant at p<0.05 
Source: Author produced. 

 
Table 2: Coefficients of the simple linear regression models fitted to the error statistics (RMSE – root mean square error, 

MAE – mean absolute error, RMSEs – systematic root mean square error and RMSEu – unsystematic root mean square 
error), where the representativeness (k –coefficient of variation) and the available number of data (n) of the climate indices 
(PRCPTOT and TXx) were separately the predictors. The intercept, slope and the adjusted explained variability of the linear 
regression models are presented with the coefficients’ statistical significance (p<0.05). 

Response variables 
Predictor variables 

Residuals of k 
PRCPTOT TXx 

Error Statistics Intercept 
Standard 

slope 
Standard 

error 
R2 

(%) 
Intercept 

Standard 
slope 

Standard 
error 

R2 
(%) 

MAE 102.36* 7.91* 1.64 27.53 -0.09* 0.23* 0.02 76.29 
RMSE 86.42* 11.59* 1.84 39.67 -1.09* 0.49* 0.03 78.16 
RMSEs -18.85* 9.36* 3.14 11.82 -2.21* 0.56* 0.05 72.34 
RMSEu 88.44* 8.24* 2.84 11.14 -0.42 0.32* 0.03 60.88 

 Residuals of n 
 PRCPTOT TXx 

Error Statistics Intercept 
Standard 

slope 
Standard 

error 
R2 

(%) 
Intercept 

Standard 
slope 

Standard 
error 

R2 
(%) 

MAE 579.18 -6.60 1.72 17.92 2.29 -0.04 0.01 3.22 
RMSE 723.43 -7.01 2.19 13.56 3.08 -0.05 0.03 3.38 
RMSEs 539.07 -7.56 3.20 7.18 2.57 -0.05 0.03 2.28 
RMSEu 501.66 -3.27 2.99 0.30 2.28 -0.03 0.02 2.14 

*Statistically significant at p<0.05 

Source: Author produced. 
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It can be argued that the number of observations is 

somehow affecting the accuracy and precision of spatial 
interpolation of the indices, despite not being significant 
in general, and that its influence is considerably lower 
than the representativeness (Table 2) [21, 22]. Hence, in 
regions with abundant data, satisfactory accuracy and 
precision could be obtained without taking their 
representativeness into account [23]. However, in data 
scarce regions, the representativeness of the climate 
data should be treated with high importance.  
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