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1  Introduction 

Online social media services, as Twitter, Facebook or Flickr, 

have changed the way of communication within communities 

and groups or between individuals. Monitoring and analysing 

this continuous flow of user-generated content can yield 

valuable information, which is not available from traditional 

sources. Twitters short messages (tweets) can be seen as a 

dynamic source of information enabling individuals, 

corporations and government organizations to stay informed. 

For instance, people are interested in getting advice, opinions, 

facts, or updates on news or events. Consequently, tweets can 

give the information to answer the usual 4W questions in the 

disaster management domain. What is happening, where and 

when an event is happening and who is involved. Within the 

140 characters of a tweet the question about the what can be 

answered. The remaining information about the where, when 

and who need to be extracted from the tweet’s metadata. The 

sender gives the who-information, the time stamp gives the 

when-information and the geo-reference gives the where-

information.  

This paper presents a prototype, which will monitor the 

Twitter stream and detect and analyse diverse kinds of natural 

disaster events. 

The Twitter stream, however, also contains large amounts of 

meaningless messages, polluted content, spelling or 

grammatical errors, improper sentence structures and mixed 

languages, which negatively affect the detection process. To 

handle these effects a considerable amount of literature has 

been published on detection approaches. The authors 

classified the representative techniques for a short review in 

three categories according to the event type, the detection task 

and the detection method.  

Depending on the event type, the techniques are classified 

into unspecified and specified event detection. Unspecified 

events of interest are typically driven by topics, that attract the 

attention of a large number of users. Because no event 

information is available numerous features that occur 

frequently are typically used to detect unknown events (cf. [9, 

10]). In contrast, specified event detection aims on known or 

planned event types. These events could be specified by the 

related information such as location, time, or performers. The 

techniques attempt to exploit Twitter’s textual content using a 

wide range of machine learning, data mining, and text analysis 

techniques (cf. [4, 8]).  

According to the detection task, the techniques are classified 

into new event detection (NED) and retrospective event 

detection (RED) techniques. Most research is focused on 

NED, which involve continuous monitoring of signals to 

exploit the timely information provided by Twitter streams. 

Knowledge about the event is integrated into the detection, by 

using filtering techniques as [8] or using additional features 

such as the location (cf. [5]). RED techniques are more 

focused on chronological data. The search capabilities allow 

retrieving individual tweets in response to a query. Because 

relevant messages may not contain any query term and new 

shortcuts as hash tags may merge over time, the challenge is 

identifying relevant messages. So, event retrieval from Twitter 

data is often focused on temporal and dynamic query 

expansion techniques (cf. [6]).  

Event detection from Twitter draws on different detection 

methods, including machine learning, data mining, natural 

language processing, information extraction and information 

retrieval. The major directions of the approaches are 

subdivided into supervised, unsupervised and hybrid 

approaches. Several supervised classification algorithms have 

been proposed for specified events, including for instance 

naive Bayes [9], support vector machines [8] or gradient 

boosted decision trees [7]. Most techniques for unspecified 

event detection from Twitter streams rely on clustering 

approaches as expectation–maximization algorithm [1] or 

threshold-based approaches as [9]. Above that, there are 

hybrid detection approaches proposed to identify Twitter 
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Social media services such as Twitter have become an important channel for reporting real-world events. For example, they can describe 
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messages. In [2], a factor graph model is used, which 

simultaneously extracts attributes of the event using a 

supervised conditional random field classifier. The review 

showed that the detection approaches are very specific 

regarding their respective aims. Thus they cannot directly be 

applied in a generic manner.  

The detection technique of this paper is a training-based, 

statistical robust NED algorithm for a specific domain of 

events. In contrast to the introduced approaches, the prototype 

described here includes spatial-thematic clustering, temporal 

monitoring and classifies event types in multiple languages to 

meet the requirements of the disaster domain (cf. Section 3). 

The experimental results (cf. Section 4) show the system’s 

performance based on various real-world events. 

 

 

2 General Framework 

This section will detail the data resource Twitter and the 

programmatically important characteristics of its API 

(Application Programming Interface). Additionally, the areas 

of investigation which are monitored by the system will be 

described 

 

2.1 Data ressource 

The developed application exploits Twitter as extensive data 

resource. Twitter provides real-time access to its worldwide 

ongoing traffic, called Firehose, through its Streaming API. 

However, only about 1% of all current tweets can be crawled 

for free.  

Since a main focus of the analysis of an event is its location, 

the application only uses geo-referenced tweets. To send a 

geo-referenced tweet, the user needs to explicitly allow the 

Twitter client on his device to access the device’s locational 

sensor (e.g. GNSS sensor). This results in approximately only 

2% of all tweets worldwide being geo-referenced.  

Besides the capability for keyword filtering, the API also 

allows for geospatial filtering in terms of bounding boxes. 

However, these methods are not applicable simultaneously. 

Nevertheless, these bounding boxes facilitate avoiding the 1% 

limit. 

 

2.2 Investigation Area 

The system is able to monitor any area around the globe for 

potential natural disasters, given a certain training period (c.f, 

Section 3.3). The areas are limited by a bounding box, due to 

Twitter’s Streaming API constraints (cf. Section 2.1). Figure 1 

shows the boundaries of the monitored test areas on a world 

map.  

The areas were selected based on their potential risk of 

natural disasters such as earthquakes, volcanic eruptions, 

tornados, etc., and the popularity of Twitter in the countries 

they contain or overlap. For example, the main part of China 

is not included, as the Twitter service is blocked there by the 

Chinese government since 2009. 

For example, the bounding box WestSouthAmerica (cf. 

Figure 1) was chosen because of its high risk of volcanic 

eruptions. The geographical extent ranges from 57° south to 

27° north and from 115° west to 64° west. 

 

Figure 1: Map of the investigation areas and their names in 

the system 

 
 

 

3 Analysis Workflow 

This section will describe the implemented prototype with its 

analysis workflow in detail. The prototype is an automatic 

system for multilingual, real-time detection, classification, 

spatial-thematic clustering and temporal monitoring of natural 

disaster events. It is not a RED implementation, but a 

successfully running system that operates twenty-four-seven.  

 

Figure 2: Prototype architecture and analysis workflow 
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3.1 Prototype Architecture 

The implementation is primarily based on the Java 

programming language with embedded calls to Matlab scripts 

which e.g. execute numerical calculations. However, the main 

benefit of using Matlab is the efficient storage of sparse 

matrices as .mat-files (cf. Section 3.2). The visualization 

component is based on JavaScript.  

Figure 2 depicts the complete architecture and analysis 

workflow of the implemented prototype exemplified for a 

single area of investigation. The basic requirement is a 

broadband internet connection to assure the access to 

Twitter’s Firehose. However, the system is tolerant of 

communication disruptions to the Twitter service, as it 

immediately tries to re-establish the connection, usually 

successfully within a few seconds. Thus, even general 

network failures only result in the system not being able to 

detect events during that period. Shortly after the internet 

connection is restored the system will continue unaffectedly. 

MongoDB a document-oriented, open-source database is 

used as data storage technology. As many other NoSQL 

technologies, it has the advantages of a dynamic schema. 

MongoDB uses the BSON (binary JSON) format, which is an 

enhanced version of the JSON format used by Twitter to 

provide their tweets via the API. Thus, the incoming tweets 

are stored on-the-fly without any further processing needed. 

Furthermore, the spatial indexing capability of the database 

allows for extreme fast retrieval of stored tweets based on 

their location data, i.e. their geographical coordinates. 

The incoming tweets are stored in a collection with a capped 

connection, i.e. after a certain time frame (here 10 minutes) a 

tweet is deleted from the database. In contrast, the analysed 

events and their corresponding tweets are stored persistently. 

 

 

3.2 Message Gridding 

The foundation for the powerful detection mechanism is the 

mapping of the messages to a regular (numerically) 2-

dimensional grid based on their geographical coordinates. 

Thus, also small-scale or regional natural disasters can 

efficiently be detected and do not disappear in the noise of the 

tweet baseline of the complete bounding box. 

The chosen spacing of the grid points of 0.25° in the test 

areas is a balance between the speed of detection and the 

spatial granularity. Depending on the geographical latitude the 

spacing corresponds to an approximate distance of 25 to 28 

km. Consequently, the cells of the grid are 0.25°   0.25° and 

exactly cover the area of the respective bounding box. The 

incoming messages are assigned to the cell that covers the 

location where they were sent from. The temporal resolution 

of the system for the test areas is set to one minute, i.e. during 

one minute the messages are counted per cell and at the end of 

each minute the grid is stored as .mat-file with an according 

timestamp (date and time). In general, this time range ensures 

a sufficient number of tweets w.r.t. the chosen grid spacing to 

enable a robust statistical evaluation. 

 

 

 

 

 

3.3 Training Phase 

For a statistically robust and reliable detection, a training 

phase was conducted for each of the ten areas of investigation.  

In [3] is shown that the usual baseline of tweets of a specific 

region significantly differs between at least two types of days. 

This difference is strongly correlated with the percentage of 

Twitter users in this region who have to work on the next day. 

The highest accordance across all days of the week lies 

between 4pm and 6pm local time. To Account for these 

findings, a 24 hour period (i.e. a day) starts at 5 pm local time 

respectively. Moreover, the prototype distinguishes between 

24 hour periods starting on a Friday, on a Saturday or on 

another day of the week. With the temporal resolution of one 

minute, the system stores 1440 grids per day and bounding 

box. 

The training comprised 30 complete 24 hour periods for 

each of the three types of days. Thus, the mean value and the 

standard deviation of the amount of tweets could be derived 

for each cell for every minute of a day (and of course for each 

bounding box). 

 

 

3.4 Frequency Analysis 

The first indicator of an event in general, is an exceptional 

increase or decrease of the volume of tweets in a specific 

region. So far, the prototype only handles the case of 

increasing Twitter traffic, as it facilitates a meaningful and 

robust content analysis. 

To decide whether an unusual high amount of tweets 

occurred in a cell during the time step of one minute, the 

counted number of tweets   is subject to a hypothesis test. 

Herein,   is checked against the mean value   and the 

standard deviation   of the cell in the preceding minute. The 

derived statistical values (  and  ) from the training phase are 

automatically weekly updated in the running system. The null 

hypothesis    in the test is defined as no event happened. The 

alternative hypothesis    consequently is defined as an event 

happened.  

The significance level is set to      and the power of the 

test is        . The test value is calculated as 
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is derived. Finally, if    , the systems accepts the 

alternative hypothesis    and thus identifies a significant rise 

in tweets in the respective cell. 
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3.5 Multilingual Event Classification  

The next step analyses the content of the tweets in the cells, 

which were identified through the hypothesis test, to try to 

assign them a certain class or type of natural disasters.  

Therefore, the system retrieves the tweets from the 

preceding minute and the respective cell from the database 

based on their timestamp and geographical coordinates. After 

that, the textual content of the tweets is scanned by a 

multilingual keyword search for terms related to natural 

disasters. The 133 terms, which are based on past event 

experience, were compiled in English. General disaster related 

terms are also included at this stage to provide a more 

comprehensive situational awareness for disaster managers.  

For each of the 43 languages possibly occurring in the 

investigation areas (cf. Table 1), the complete list was 

translated with the aid of the MyMemory REST API1 and 

Google Translate2. To assure real-time performance, each 

bounding box was assigned only the languages that are 

common in its geographic region plus English. For example, 

the languages for the WestSouthAmerica bounding box are 

Spanish, Portuguese and English, i.e. the German word 

Erdbeben (Eng. earthquake), would not be detected in this 

bounding box. 

 

Table 1: List of the 43 languages in which the system can 

identify terms related to natural disasters 

Arabian Spanish Japanese Dutch Tagalog 

Azerbaijanian Persian Georgian Polish Telugu 

Bulgarian French Khmer Portuguese Thai 

Bengal Hindi Korean Romanian Tamil 

Bosnian Croatian Laotian Russian Turkish 

Cebuano Hungarian Macedonian Slovak Urdu 

Czech Armenian Marathi Slovenian Vietnamese 

German Indonesian Malaysian Albanian  

Greek Italian Maltese Serbian  

 

The occurrences of the identified keywords in the retrieved 

cell are translated back to English and added up term-wise. In 

result, this yields a list of disaster-related English terms with 

their respective absolute frequency (cf. Table 2).  

For the classification of the event, a hierarchical tree 

structure (taxonomy) of natural disaster types was established. 

In this structure, the leaves represent disaster types, which are 

usually not further distinguished by non-experts in natural 

language. Each of these leaves is assigned a bag-of-words 

(BoW) that is virtually unambiguous for the specific event 

type (cf. Figure 3). Similar to the 133 general disaster terms, 

the BoWs are derived from investigations of tweets from past 

events. The union of all BoWs of the child nodes represent the 

BoW for the respective parent node, e.g. the BoW for the type 

Hydrological is the union of the BoWs of Flood and Tsunami. 

 

Table 2: Example result of a cell for the multilingual keyword 

search 

term count 

earthquake 10 

shaking 4 

quake 2 

Thunder 1 

                                                                 
1 MyMemory: http://mymemory.translated.net/doc/spec.php 
2 Google Translate: http://translate.google.com 

The system starts at the topmost level of the taxonomy and 

calculates for each node the classification score    , i.e. the 

ratio of the number of identified terms that belong to the BoW 

of the node, and the total number of tweets in the respective 

cell and minute. A threshold of at least 0.3 is set to assure the 

relevance of the identified keywords in the current Twitter 

content. Assuming 20 tweets occurred in the cell in the last 

minute and the system yielded the results depicted in Table 2, 

the ratio for Earthquake would be 0.8 ((      )   ) and 

0.05 (    ) for Meteorological (the term “thunder” is in the 

BoW of Hail/Thunder). 

Only the child node with the highest value is further 

analysed in an analogous manner. In case of two or more 

equal values as well as if all child nodes fail to reach the 

threshold, the parent node is set as type of the event. For 

example, if the system decided for Hydrological in the 

preceding level, but cannot distinguish between Flood and 

Tsunami based on the identified keywords, it will classify the 

event as Hydrological.  

 

Figure 3: Disaster taxonomy with bag-of-words for the natural 

disaster type Earthquake 

 
 

 

3.6 Spatial-thematic Clustering 

For large scale natural disasters that exceed the area of a 

single cell, the system performs a spatial clustering to 

aggregate cells that represent the same natural disaster. 

The system conducts an algorithm loosely based on the idea 

of the region growing method in image processing. Here, the 

initial seed points are the detected and classified single event 

cells in a time step. In contrast, to image processing, not all 

cells will be evaluated but only the set of seed points. Hence, 

in a 24-neighborhood around the seed points the systems 

searches for others of the same natural disaster type. The 

rather large neighbourhood tries to account for the 

inhomogeneous population distribution, which plays a major 

role in the detectability of events in a specific cell. Thus, even 

a high impact natural disaster can lead to a diffused detection 

of affected cells. Figure 4 shows an abstract, exemplary 

clustering process and the 24-neighborhood of a cell. 

The information of the cells in a cluster is fused and from 

now on interpreted as one single event. Clusters with only one 

event cell are also referred to as clusters in the following. 

 

http://dict.leo.org/ende/index_de.html#/search=in&searchLoc=0&resultOrder=basic&multiwordShowSingle=on
http://dict.leo.org/ende/index_de.html#/search=an&searchLoc=0&resultOrder=basic&multiwordShowSingle=on
http://dict.leo.org/ende/index_de.html#/search=analogous&searchLoc=0&resultOrder=basic&multiwordShowSingle=on
http://dict.leo.org/ende/index_de.html#/search=manner&searchLoc=0&resultOrder=basic&multiwordShowSingle=on
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Figure 4: Spatial clustering (abstract example); Red colour 

denotes events of the same spatial-thematic cluster 

 
 

 

3.7 Temporal Monitoring 

The temporal monitoring operates on the results yielded by 

the spatial-thematic clustering, i.e. it attempts to link the 

clusters from preceding time steps to the currently detected 

ones that refer to the same event.  

Therefore, similar to the clustering process, the systems 

scans the database for detected events that were assigned to 

the same type of natural disasters and are falling in the merged 

neighbourhood of the current cluster. In case of a successful 

search, the associated tweets of the current cluster are 

persistently stored in relation to the ID of the existing event in 

the database. 

In contrast, if the systems cannot link any existing event in 

the database to the current cluster, the cluster will be stored 

with its aggregated information and tweets as a new natural 

disaster with a unique event ID. 

 

 

3.8 Notification and Visualisation 

After the detection of such a new natural disaster, the system 

sends an automatic e-mail alert to a given address. The 

message contains the most important information of the event, 

such as date, time, geographic place and coordinates, the type 

of the natural disaster with its    , the identified disaster 

keywords and their occurrences as well as the statistical 

values of the frequency analysis. These include the statistical 

probability   that the test decided correctly in favour of the 

alternative hypothesis, the number of tweets in the cluster and 

its corresponding mean and standard deviation for the minute 

of the day. Figure 5 shows the e-mail alert for an earthquake 

of magnitude 3.1 near Los Angeles. 

The place is determined through an implemented call to the 

reverse geocoding service of OpenStreetMap (OSM). The 

geographical coordinates used as input parameters for the 

service are the longitude and latitude of the centroid of all 

tweets in the cluster. 

At the end of the notification e-mail, a link to a node.js 

based web service is provided. By clicking on the link, a 

browser tab opens and visualises all tweets that were assigned 

to the specific disaster on a map. The basic map data also 

comes from OSM and is implemented with leaflet.js, an open-

source JavaScript library for interactive maps.  

The web service communicates with the database to retrieve 

the corresponding tweets based on the unique event ID of the 

natural disaster depicted in Figure 5. The user can view the 

tweet information by clicking on the tweet markers. The 

screenshot in Figure 6 depicts the web service response for the 

earthquake in Figure 5. 

Figure 5: E-mail alert with main information of the detected 

natural disaster 

 
 

Figure 6: Screenshot of the JavaScript based web service to 

visualize the event's tweets 

 
Map data © OpenStreetMap contributors, CC-BY-SA, 

Imagery © CloudMade 

 

 

4 Experimental Results 

Since 01/01/2014 the system automatically detected and 

analysed a total of 186 natural disasters of varying impact and 

different types. Table 3 shows the distribution on the different 

disaster types in absolute numbers and percentage. Due to the 

lack of a universal definition what constitutes a disaster, an 

evaluation based on a confusion matrix would not yield 

meaningful results. Therefore, absolute detection rates are not 

provided. However, since the actual aim of the system is to 

analyse natural disasters with impact on people, there is no 

information loss. 

Depending on the disaster type’s temporal characteristic the 

e-mail alert was sent within 40 seconds to 44 minutes from 

the beginning of the event. As expected, earthquakes are best 

suited for a detection in real-time (mostly below 2 minutes), 

because they have an exact starting time and occur 

unexpectedly. The 4.5 earthquake in Fontana, California on 

15/01/2014 at 9:35:19 UTC caused an e-mail alert only 49 

seconds later. The event had a statistical probability   of 

http://www.openstreetmap.org/
http://creativecommons.org/licenses/by-sa/2.0/
http://cloudmade.com/
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96.8% and a classification score     of 0.64. The system 

stored a total of 1791 tweets that are directly linked to the 

event containing mentions of “earthquake” (708), “quake” 

(66), “shaking” (42), etc. The last cluster detection that could 

be assigned to the event occurred at 10:35 UTC. 

 

Table 3: Absolute number and percentage of automatically 

detected and analysed disaster types since 01/01/2014 

type number percentage 

Earthquake 78 41.9% 

Hail/Thunder 43 23.1% 

Natural disaster 18 9.7% 

Meteorological 16 8.6% 

Tornado 13 7.0% 

Volcanic eruption 5 2.7% 

Flood 5 2.7% 

Tsunami 4 2.2% 

Blizzard 2 1.1% 

Drought/Heat wave 1 0.5% 

Cyclonic storm 1 0.5% 

Hydrological 0 0% 

 

Volcanic eruptions have similar characteristics. However, 

they are rarely located very close to populated places and 

therefore their effects usually take longer to be noticed by the 

public. For example, the eruption of the Mt Kelud with its 

massive emission of ash in Java, Indonesia on 13/02/2014 at 

15:50 UTC, was detected at 16:34 UTC. 

Other disaster types such as Flood or Hail/Thunder have no 

discrete starting but evolve with time. Nonetheless, the system 

automatically analysed several such events. For example, the 

flooding caused by heavy rains, in parts of Jakarta, Indonesia 

on 29/01/2014 in the morning, was detected at 4:45 local time 

(        and         ) and provided 288 tweets with 

on-site information (mentions: “flood(s)/ing” 84, “inundation” 

28, etc.). The severe thunderstorm that hit New York City, 

USA in the evening of 13. February 2014 was detected at 

20:45 local time and 786 tweets could be assigned to the event 

(        and         ) with mentions of “thunder” 

(221), “lightning” (86), etc. 

 

 

5 Outlook 

The application, introduced in this paper, detects various 

natural disaster events such as earthquakes, floods or volcanic 

eruptions (cf. Section 4). The characteristics of the events, e.g. 

earthquakes and floods, are fundamentally different. On the 

one hand there is an abrupt punctual event and on the other 

hand there is a continuous and areal event, but both types are 

detected and analysed by the prototype. For a comprehensive 

and reliable evaluation, the approach has to be tested with 

every possible event type from the taxonomy (cf. Fig. 3). 

Additionally, the authors will expand the detectable event 

types on man-made disasters such as industrial accidents, 

building collapse or smog. Therefore, the hierarchical 

structure of the taxonomy has to be extended and the 

appropriate BoWs need to be compiled.  

 

In a next step, the application will be incorporated into a 

framework for exploring all disaster related information from 

tweets. The long-term aim is to interpret the tweet’s textual 

content in real time based on machine learning techniques to 

extract and classify relevant information. This information 

will help to improve the situational awareness for crisis 

management. 
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