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Abstract: There is abundant evidence to suggest that mitochondrial dysfunction is a main cause of

Q1

Q2

Q3

Q4
Q5

insulin resistance and related cardiometabolic comorbidities. On the other hand, insulin resistance is
one of the main characteristics of type 2 diabetes, obesity, and metabolic syndrome. Lipid and glucose
metabolism require mitochondria to generate energy, and when O2 consumption is low due to inefficient
nutrient oxidation, there is an increase in reactive oxygen species, which can impair different types
of molecules, including DNA, lipids, proteins, and carbohydrates, thereby inducing proinflammatory
processes. Factors which contribute to mitochondrial dysfunction, such as mitochondrial biogenesis and
genetics, can also lead to insulin resistance in different insulin-target tissues, and its association with
mitochondrial dysfunction can culminate in the development of cardiovascular diseases. In this context,
therapies that improve mitochondrial function may also improve insulin resistance. This review explains
mechanisms of mitochondrial function related to the pathological effects of insulin resistance in different
tissues. The pathogenesis of cardiometabolic diseases will be explained from a mitochondrial perspective
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and the potential beneficial effects of mitochondria-targeted antioxidants as a therapy for modulating
mitochondrial function in cardiometabolic diseases, especially diabetes, will also be considered. C©
2013 Wiley Periodicals, Inc. Med. Res. Rev., 00, No. 0, 1–30, 2013

Key words: cardiometabolic disease; diabetes; insulin resistance; mitochondria; oxidative stress

1. INTRODUCTION

Cardiometabolic diseases, which include multiple pathologies such as type 2 diabetes, metabolic

Q6

syndrome, and coronary heart disease, are a growing health problem worldwide.1 For exam-
ple, diabetes is associated with numerous complications that severely affect the quality of life
and life expectancy of patients, such as macro- and microvascular impairments. Currently,
around 300 million people worldwide have diabetes, and this figure is expected to rise to 500
million over the following years. Diabetes is related to an increase in the risk of cancer and
other deleterious conditions, with all their physical and clinical consequences. The number
of people with cardiometabolic syndrome, a key precursor to metabolic diseases such as di-
abetes and subsequent cardiovascular complications, is also growing.2 Furthermore, insulin
resistance, the main characteristic of cardiometabolic syndrome, is associated with activation
of the tissue renin–angiotensin system.3 The principal metabolic action of insulin is to pro-
mote glucose uptake in skeletal muscle and to suppress glucose production in the liver, thereby
maintaining glucose homeostasis. On the other hand, insulin resistance, defined as a decreased
sensitivity to these metabolic actions, correlates with type 2 diabetes and cardiovascular diseases
(CVDs).4

Mitochondria play a key role in the metabolism by regulating energy homeostasis through
the metabolization of nutrients, producing ATP and generating heat (Fig. 1). Mitochondrial
dysfunction is characterized by an inhibition of mitochondrial O2 consumption, changes in the
mitochondrial membrane potential (��m), and a reduction in ATP levels due to an imbalance
between energy intake and expenditure.5 (Fig. 2). In fact, changes in ��m may be due to
both reduced activity in the electron transport chain (ETC) complexes and therefore reduced
pumping of protons, or increased uncoupling produced by the activity of uncoupling proteins
(UCPs) or the ADP/ATP translocator (also called adenine nucleotide translocase, ANT).

Different factors, both genetic and environmental (exercise, diet, and stress) can affect
insulin sensitivity and regulate mitochondrial function.6, 7 In addition, insulin resistance has
been associated with mitochondrial dysfunction in several tissues, including lung, spleen, liver,
heart, skeletal muscle,8–10 and even in cells, such as leukocytes in type 2 diabetes.11 Therefore,
insulin resistance due in part by mitochondrial dysfunction may be a common pathophysiologic
etiology of many widespread chronic diseases.

2. MITOCHONDRIA

Mitochondria play a key role in the life and death of cells, which make them a major tar-
get for cytoprotective pharmacological agents. Physiologically, mitochondria perform several
fundamental regulatory processes in the cell (Fig. 1). They consume approximately 92–95%
of cellular O2 in the process of oxidative phosphorylation (OXPHOS). ETC is located in
the inner membrane of the mitochondrion, and the production of ATP requires two steps:
NADH (or FADH2) oxidation and ADP phosphorylation, which produces ATP. NADH and Q7
FADH2 are generated by glycolysis and β-oxidation of fatty acids (FAs) and are oxidized to
FAD or NAD+. Electrons from FADH2 and NADH are transferred through different respi-
ratory chain complexes to O2, which generates H2O. The driving force by which F0F1-ATPase

Medicinal Research Reviews DOI 10.1002/med
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Figure 1. Mitochondrial function in health. The mitochondrial proteome consists of mtDNA and nuclear DNA-
encoded proteins. Cytosolic fatty acids and pyruvate fuel the catabolic processes in the mitochondrion (β-
oxidation and the Krebs cycle), giving rise to oxidable susbstrates (succinate, NADH) of the electron transport
chain. The respiratory chain complexes, associated with the IMM, transfer electrons from an electron donor to an
electron acceptor, thus creating a transmembrane electrochemical gradient. The electrochemical energy from
this transmembrane proton gradient is harnessed by ATP synthase (Complex V) to combine ADP and inorganic
phosphate (Pi) and produce ATP, which is transferred through the IMM by ANT. The ADP/ATP ratio is sensed
in the cytosol by AMPK, which modulates many metabolic pathways with the aim of preserving the energy of
homeostasis. The electron flow along the respiratory chain generates moderate amounts of ROS, which act
as signaling and regulatory molecules. UCPs are mitochondrial transporters located at the inner membrane
that dissipate the proton gradient, thus, displaying metabolic and thermogenic activity. AMPK, AMP-activated
protein kinase; ANT, ADP/ATP translocator or adenine nucleotide translocase; CaU, calcium uniporter; CPT1,
carnitine palmitoyltransferase 1; MOMP, mitochondrial outer membrane permeabilization; mtDNA, mitochondrial
DNA; NRF-1, nuclear respiratory factor 1; PDC, pyruvate decarboxylase; PGC1-α, peroxisome proliferator-
activated receptor gamma coactivator-1-alpha; ROS, reactive oxygen species; TCA, tricarboxilic acid cycle;
TIM, translocase of the inner membrane; TOM, translocase of the outer membrane; UCPs, uncoupling proteins;
VDAC, voltage-dependent anion channel.

(ATP synthase) produces ATP is the proton gradient across the membrane. A portion of the
electrons at ETC can leak, thus causing generation of reactive oxygen species (ROS), molecules
which play an important role in the development of several human diseases.12–14

Q8

Q9

There are different mechanisms by which mitochondria can produce heat, such as the
proton leak, which undermines the proton-motive force, thus generating heat instead of ATP.
This effect can be significant in different physiological and pathological situations. It has been
demonstrated that UCPs (Fig. 1) can reduce the proton gradient.15 UCPs are a family of
inner mitochondrial membrane proteins that are thought to control several aspects of mi-
tochondrial function, such as ROS generation, FA homeostasis, and regulate mitochondrial
biogenesis. UCP1 is expressed mainly in brown adipose tissue, UCP2 is ubiquitous, and UCP3
is present in skeletal muscle.16 UCP1, which counts for up to 10% of total membrane protein
content, regulates adaptive thermogenesis, whereas UCP2 and UCP3 do not play a key role in

Medicinal Research Reviews DOI 10.1002/med
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Figure 2. Mitochondrial (dys) function in disease with a focus on cardiometabolic pathologies. Mutations in
mtDNA and altered transcription of nuclear genes encoding mitochondrial proteins give rise to dysfunctional mi-
tochondrial proteome. This leads to a defect in the mitochondrial OXPHOS process, culminating in a decreased
level of ATP generation. The insufficient ATP supply can provoke necrotic cell death through a major “energetic
catastrophe.” Altered/impaired electron transport leads to augmented generation of ROS, which damages bio-
logical macromolecules including DNA (causing mtDNA mutations) and lipids (lipid peroxidation). Mitochondrial
dysfunction can also be triggered by toxic exogenous stimuli and increased input of nutrients, and is influenced
by various cytosolic signaling molecules. Impaired mitochondria present altered mitochondrial morphology and
dynamics (through modification of the activity of OPA1). Damaged mitochondria can signal for autophagy (and
the specific form, mitophagy) and induce programs of cell death, such as apoptosis (through mitochondrial
permeability transition and release of mitochondrial proapoptotic proteins such as cyt c). Mitochondrial dysfunc-
tion also involves altered calcium handling in close relation with ER stress and activation of the UPR response.
CaU, calcium uniporter; cyt c, cytochrome c; ER, endoplasmic reticulum; MOMP, mitochondrial outer membrane
permeabilization; mPT, mitochondrial permeability transition; mtDNA, mitochondrial DNA; OPA1, optic atrophy
gene 1; PKCβ, protein kinase C-beta; ROS, reactive oxygen species; UPR, unfolded protein response.

thermogenesis, as knockout mice for UCP2 and UCP3 have a normal basal proton conduc-
tance, adequate response to cold and body weight.17 In general, abundant evidence suggests
that UCPs play an important role in mitochondrial function by regulating generation of both
ROS and heat, which underscores the fact the energy balance of mitochondria is key to cellular
function. The role of UCPs in cardiometabolic diseases is still not fully clear. By hyperpo-
larizing the inner mitochondrial membrane, UCPs may protect the cell through decreasing
the production of mitochondrial ROS and regulating mitochondrial apoptosis signals. Indeed,
mice overexpressing UCP2 or UCP3 have been shown to exhibit decreased ROS production,18

higher metabolic rate, and to be protected against weight gain and insulin resistance.19 Also,
there is abundant although discrepant evidence linking the common functional promoter poly-
morphism of UCP2, −866 G > A (rs659366) and changes in the risk of type 2 diabetes, obesity,
and coronary artery disease.20, 21

The correlation between UCPs and lipid metabolism regarding cardiometabolic patholo-
gies merits special mention. It has been described that in patients with heart disease there is

Medicinal Research Reviews DOI 10.1002/med
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a high concentration of circulating free fatty acid (FFAs) and this is inversely correlated with
myocardial phosphocreatine:ATP ratio, suggesting a cardiac energy deficit.22 Several studies
have pointed out that there is a positive correlation between the content of cardiac UCPs and
the concentration of circulating FFAs, explaining the energy deficit observed in the damaged
heart.22 In addition to this, an increase in UCPs not always results in uncoupling of mito-
chondrial respiration from ATP production, as measured by postdepletion phosphocreatine
synthesis rate.23

There is also evidence that UCPs are involved in the translocation of FA anions away
from the mitochondrial matrix. When not all FAs can enter mitochondria via carnitine palmi-
toyltransferase as oxidizable fatty acyl-coenzyme A (acyl-CoA) esters, the excess can enter
the mitochondrial matrix via a flip-flop mechanism in their unesterified (nonoxidizable) form
where they become deprotonated. The resultant FA anions can neither be oxidized nor leave
the matrix due to the proton gradient and are therefore locked in the matrix where they are
harmful to mitochondria. UCPs can act as outward transporters of FAs, thereby protecting
mitochondria in conditions characterized by an oversupply of FAs.24 In line with this function,
UCP content inversely relates to oxidative capacity. Hence, concentrations of UCP are 14-fold
lower in cardiac muscle than in glycolytic muscle.25

Increased levels of fat loading in mitochondria by consumption of a high fat diet can
upregulate UCPs in cardiac muscle.26 Considering UCPs as an FA anion exporter, the positive
association between cardiac UCPs content and plasma FFA concentrations can be considered
a beneficial rather than an unfavorable-adaptive response, attempting to protect the damaged
heart from lipotoxicity. In this context, inhibition of fat oxidation, which has been proposed as
a treatment for heart disease, can result in the upregulation not downregulation of expression
of UCPs. These results point out that increased UCPs levels are beneficial for the damaged
human heart, although can be detrimental in β-cells due to less insulin secretion.

In addition, it is necessary to take into account that the nutrient oversupply, particularly
that of FAs, can induce OXPHOS uncoupling. For example, feeding animals with a high-fat
diet for several weeks is sufficient to reduce the mitochondrial rate of ATP synthesis.27 In an-
other study, it was demonstrated that high-fat diet downregulated genes coding for proteins
involved in mitochondrial biogenesis and OXPHOS in human skeletal muscle.28 In addition,
increased levels of FA exposure, as for example in obesity, leads to intracellular accumulation
of ceramides and diacylglycerol (DG), which reduces phosphatidylinositol 3-kinase (PI3K)
signaling in muscle leading to increased insulin resistance.29 Other studies have reported that
peroxisome proliferator-activated receptors (PPARs) can bind FAs, particularly polyunsatu- Q10
rated acids,30 and PPAR ligands may upregulate UCP2.31 In line with this, Bugge et al. have
demonstrated that peroxisome proliferator-activated receptor gamma (PPARγ ) can activate
both UCP2 and UCP3 expression via an enhancer located within the first intron of the UCP3
gene.32

Obesity, type 2 diabetes, and insulin resistance can produce a chronic elevation of circulating
FAs which can become cytotoxic. The increased basal leakage of electrons and uncoupling in
the mitochondria is a serious problem in these conditions because FAs can also cause oxidative
stress and alterations in the mitochondrial structure and function. Namely, FA interaction
with the membrane carriers can lead to mitochondrial membrane depolarization and result in
opening of the permeability transition pore and initiation of apoptosis.

It is very important to point out that there is a transcriptional control of UCP2, for example,
by glutamine and for this reason mRNA levels not always refer protein levels.33 Thus, it is more
worthy to assess the protein levels or perform functional measurements of UCP effects on
mitochondria.

Type 2 diabetes and age-related insulin resistance are associated with mitochondrial
dysfunction (Fig. 3),34–36 and it has been shown that physical activity is one of the central

Medicinal Research Reviews DOI 10.1002/med
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Figure 3. (Patho)physiological factors and mechanisms affecting mitochondrial function with relevance in car-
diometabolic diseases. Numerous extrinsic stimuli (oxidants, toxins) and intrinsic conditions (aging, obesity,
nDNA, and/or mtDNA mutations, altered mitochondrial biogenesis) affect mitochondrial function. Several in-
dicators associated with mitochondrial dysfunction, such as increased ROS, altered number of mitochondria,
and mitochondrial biogenesis, have been documented in cardiometabolic diseases including insulin resistance,
diabetes, hypertension, and cardiac hypertrophy. AMPK, AMP-activated protein kinase; eNOS, endothelial nitric
oxide synthase; IRS, insulin receptor substrate; mtDNA, mitochondrial DNA; NO, nitric oxide; NRF1, nuclear res-
piratory factor 1; PGC1α, peroxisome proliferator-activated receptor gamma, coactivator 1 alpha; PKC, protein
kinase C; ROS, reactive oxygen species; UPC2, uncoupling protein 2.

determinants of muscle mitochondrial function in type 2 diabetes.36 Therefore, mitochondria
are emerging as a key target in cardiometabolic disease therapy. Furthermore, it has been
hypothesized that there are several important parameters that affect mitochondrial function,
including mitochondrial biogenesis, genetic factors, and oxidative stress (leading to insulin
resistance).

A. Mitochondrial Biogenesis

Skeletal muscle of insulin-resistant, obese, or type 2 diabetic humans is characterized by
impairment of mitochondrial function and fewer and smaller mitochondria.37–39 Indeed,

Medicinal Research Reviews DOI 10.1002/med
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mitochondrial oxidative capacity is fully correlated with the number and size of mitochondria.6

A decreased OXPHOS is related with reduced expression of mitochondrial proteins encoded
by both the nuclear (e.g., succinate dehydrogenase and pyruvate dehydrogenase) and the
mitochondrial (e.g., cytochrome c oxidase subunit II) genome (Fig. 2).37 In this sense,
nuclear respiratory factors (NRFs) and PPARγ play a crucial role in cellular homeostasis.40

Peroxisome proliferator-activated receptor gamma, coactivator 1 alpha (PGC1-α) is pivotal in
transactivating genes essential for homeostasis maintenance41 and modulates two fundamental
enzymes, namely, sirtuin 1 (SIRT1) and AMP-activated protein kinase (AMPK). During
energy depletion, in which there is an increase in the AMP:ATP ratio, PGC1-α activates
AMPK.42 Moreover, during caloric restriction or exercise there is an increase in NADH
content, which upregulates SIRT expression and as a consequence PGC-1α.43

Nitric oxide (NO) is a homeostatic molecule that modulates mitochondrial O2 consumption
by inhibiting mitochondrial complex IV, which also regulates mitochondrial biogenesis.44, 45 A
number of in vivo and in vitro studies have shown that nitrite activates AMPK to stimulate mi-
tochondrial biogenesis independently of soluble guanylate cyclase, thus, providing evidence that
nitrite is a versatile regulator of mitochondrial function, and that nitrite-mediated biogenesis
plays a protective role in vascular injury.46

The overexpression of PGC-1α increases both the transcription of genes related to glucose
uptake and transport, and β-oxidation.47 PGC-1α also enhances OXPHOS and promotes the
generation of type 1 muscle fiber.48 Furthermore, it is involved in the pathogenesis of insulin
resistance, and has been related with diabetes when its levels are reduced.49

PGC-1α transcriptionally regulates UCP, thus playing a role in thermogenesis in different
tissues, including adipose tissue.50 When ATP demand is high, such as during exercise, cold
exposure, and fasting, the expression of PGC-1α is increased51, 52 (Fig. 3). PGC-1α is an
activator of PPARγ and PPARα and of several transcription factors, including NRF-1.40, 53

This factor regulates the expression of different genes that are important for mitochondrial
gene expression, such as ETC genes and mitochondrial transcription factor A (TFAM), and
for replication of the mitochondrial genome.53 Expression of PGC-1 and NRF-1 is reported to
be undermined in diabetic and insulin-resistant human subjects, respectively.54 Furthermore,
PGC-1 expression decreases with age55 and the fact that insulin-resistant human patients have
small and fewer mitochondria in their skeletal muscle seems to be due to decreased expression
of PGC-1α and PGC-1β.56

AMP-activated protein kinase (AMPK) is a major regulator of mitochondrial biogenesis,57

which has led to its exploitation for the development of pharmacological agents, such as ac-
tivators of AMPK [5-amino-1-β-D-ribofuranosyl-imidazole-4-carboxamide, AICAR], which
promote mitochondrial biogenesis through NRFs and PGC-1α.58 AMPK is stimulated by
exercise, leading to activation of PGC-1α by direct phosphorylation of key residues and, con-
sequently, stimulating mitochondrial biogenesis.59, 60

Several DNA microarray reports have demonstrated that expression of PGC-1α with its
role in mitochondrial biogenesis is responsible for certain metabolic disorders (e.g., insulin
resistance and type 2 diabetes)53, 57, 61 (Fig. 3) in that a reduced number of mitochondria leads
to insufficient mitochondrial function. Other studies have revealed that mitochondrial O2 con-
sumption is lower in obese and type 2 diabetes subjects than in lean active adults.38 It has
also been demonstrated that mRNA expression of TFAM, NRFs, PGC-1α, and PGC-1β is
similar in insulin-resistant offspring of type 2 diabetes parents and controls, though mito-
chondrial function is significantly decreased in the former.37 These findings suggest that mi-
tochondrial dysfunction involves other components apart from an undermined mitochondrial
biogenesis.

Medicinal Research Reviews DOI 10.1002/med
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B. Genetic Factors

Mitochondrial proteins are encoded by mitochondrial and nuclear genes. The capacity of mito-
chondria is determined by their number, state, and size, and by the expression level of OXPHOS
subunits.6 In this regard, it is of relevance that 13 protein subunits of the mitochondrial ETC
are encoded by mitochondrial genes.

The fact that the mitochondrial genome is proximal to sources of ROS gives strength to the
idea of its high susceptibility to mutagenesis.35 Mitochondrial respiratory chain deficiencies are
associated with mutations of mitochondrial DNA (mtDNA), and such inherited dysfunction
of the mitochondrial OXPHOS system is the hallmark of many mitochondrial diseases.62, 63

Several nuclear and mtDNA mutations have been identified as the cause of defects and isolated
disorders of individual OXPHOS enzymes, including mitochondrial ATP synthase in patients
with cardiovascular-metabolic diseases.64 The diseases attributed to familial mtDNA muta-
tions are less common than those related to nuclear DNA defects. This may be a result of
mitochondria containing several copies of their genome, as the continuous fusion of mitochon-
dria means that modified genes mix with normal genes, which is a process that characterizes
many human diseases. Wilson et al.65 associated a simple thymidine-to-cytidine mutation in
the mitochondrial tRNAILE gene with different pathologies, including hypercholesterolemia
and hypertension, while Cardaioli et al.66 demonstrated that the mitochondrial 8306 T>C
MTTK mutation induces sporadic myopathy, myoclonus, leukoencephalopathy, neurosensory
deafness, hypertrophic cardiomyopathy, and insulin resistance (Fig. 3). Cardiomyopathy, neu-
rological disorders, and liver dysfunction have been found in patients with defects in acyl-CoA
dehydrogenase.67 Another mtDNA mutation, that of A3243G, which encodes tRNA (Leu-
UUR), has been shown to impair insulin secretion68 (Fig. 3). In addition, Hirschey et al.69

reported that SIRT3 deficiency and mitochondrial protein hyperacetylation accelerate the de-
velopment of metabolic syndrome.

Moreover, type 2 diabetes, loss of weight, and reduced insulin secretion have been asso-
ciated with the presence of polymorphisms in the promoter of UCP2.20, 21 It has also been
demonstrated that nuclear genes that encode mitochondrial proteins play an important role
in insulin resistance.70 Thus, the pathogenesis of cardiometabolic syndrome and CVD, which
occurs through functional impairment of mitochondria, is highly influenced by human genetic
factors inherited through nuclear and/or mitochondrial genes. In addition, it is important
to mention that the level of mitochondrial uncoupling is also an important determinant of
mitochondria capacity.

C. Oxidative Stress

Mitochondria are the main source of ROS (Fig. 2), and these molecules are a fundamen-
tal factors in the development of diabetic complications.62, 63, 71 Therefore, the use of specific
compounds to eradicate mitochondrial ROS has become important to ameliorate complica-
tions related with diabetes.72 For example, lipoic acid (LA) reduces inflammation and insulin
resistance and improves mitochondrial function, thus, preventing CVD in humans.72

There are two main sites of electron leakage in the ETC: complex I and III.62, 63, 73, 74 Excess
production of ROS has an important effect on mitochondrial ��m in diabetes, condition in
which a high amount of substrates is supplied as a consequence of elevated levels of glucose.
Specifically, it has been hypothesized that ETC dysfunction and its complications contribute to
many diabetes-related pathologies, including nephropathy, neuropathy, and retinopathy, while
deleterious genetic mutations involving a reduction in the activity of complex I lead to high rates
of mitochondrial ROS production and mitochondrial impairment.75 This evidence highlights
mitochondrial impairment as a research priority for the future. Indeed, mitochondria-targeted

Medicinal Research Reviews DOI 10.1002/med
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antioxidant therapy is already showing great promise in this respect. In fact, there are many
enzymes in the mitochondria that are susceptible to damage by ROS, with complex I being the
most vulnerable.

Mitochondrial dysfunction at complex I, together with an increment in ROS produc-
tion, a reduction of ��m, and an impairment of antioxidant defenses11 have been described
in diabetic patients. In other pathologies in which insulin resistance occurs, such as poly-
cystic ovary syndrome (PCOS), impairment of mitochondrial complex I, and an increase in
leukocyte-endothelium interactions have also been reported,76, 77 while diabetic nephropathy
is very common among patients with mitochondrial dysfunction.78 This damage eventually
impairs the mitochondrial handling of calcium, alters ��m, and diminishes ATP production.
In this sense, it has been described that CoQ10 can prevent the mitochondrial morphology
and function, proteinuria and glomerular hyperfiltration in db/db mice, highlighting the role
of mitochondria in the pathogenesis of diabetic nephropathy.79

In a recent article, it has been also described that the increase in human leuko-
cyte/endothelial cell interactions and mitochondrial dysfunction in type 2 diabetic patients
correlate with the development of silent myocardial ischemia.80

Idebenone is a safe and efficient mitochondrial antioxidant that protects mitochondria
from oxidative damage in Friedreich’s ataxia patients.81 Interestingly, idebenone also reduces
cardiomyopathy in the same subjects, unlike traditional antioxidants, such as α-tocopherol or
vitamin E.81, 82 MitoQ, another mitochondria-targeted antioxidant, is selectively uptaken by mi-
tochondria due to a covalent attachment to the lipophilic triphenylphosphonium (TPP+) cation,
thus, accumulating 1000-fold in mitochondria.62, 63, 83 The efficacy of these mitochondria-
targeted antioxidants in the treatment of cardiometabolic diseases and diabetes remains to
be determined, but their targeted specificity for mitochondria is reason enough to study their
potential as agents of diabetes and CVD therapy.

3. INSULIN RESISTANCE AND MITOCHONDRIAL DYSFUNCTION

Glucose homeostasis is mediated by insulin in a controlled relation with glucose uptake and
gluconeogenesis rate. In addition, there are other less well-known roles of insulin associated
with renal, cardiovascular, and neural functions, which may explain why insulin resistance is a
risk factor for hypertension, CVD, neuropathy, retinopathy, and nephropathy.84

Insulin resistance is defined by a diminished capacity of tissues or cells to respond to the
levels of insulin. Many conditions can contribute to this phenomenon, such as obesity, stress,
environmental factors, or altered lipid and glucose metabolism.85 Indeed, the cellular and
molecular mechanisms of insulin resistance are important to understanding the pathogenesis
of several diseases with which it is associated.

Excess energy intake, lipodystrophy, or oxidative stress can increase circulating FFAs,
which leads to accumulation of FFAs, triglycerides, and DG in different tissues, including
skeletal muscle, liver, heart, and β-cells. In addition, the accumulation of lipids and a high-fat
diet in mammals reduce insulin-stimulated glucose disposal.86 Considered together, these data
suggest that alterations in lipid metabolism leading to impairment of insulin signaling are key
to the development of insulin resistance.87, 88 Moreover, the effects of impairment of insulin
signaling can have a bearing on insulin-stimulated glucose metabolism in skeletal muscle and
other tissues, such as heart, vasculature, liver, and adipose tissue.89, 90

Insulin signaling constitutes a highly complex network composed of multiple pathways and
signaling from heterologous receptors.91 It is initiated when insulin binds to insulin receptors
(IRs),92 which causes an autophosphorylation of IR tyrosine residues and elevated tyrosine
kinase activity of the receptor. Thus, the receptor can phosphorylate insulin receptor substrate
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(IRS) family members and can activate PI3K, leading to the generation of phosphatidylinositol
3,4,5-triphosphate. Activation of PI3K stimulates several downstream serine kinases, including
protein kinase B (Akt), protein kinase C (PKC), phosphoinositide dependent kinase-1, and
other kinases, all of which eventually modulate the biological and pleiotropic metabolic actions
of insulin. Multiple mechanisms have been proposed for insulin resistance:92 (i) degradation of
IRS proteins;93 (ii) elevated activity of phosphatases;94 (iii) increased serine phosphorylation of
IRS proteins;95 and (iv) decreased activation of IR downstream signaling molecules including
Akt and PKC.96

A decrease in tyrosine phosphorylation of IRS has been demonstrated in human subjects
and in different insulin-resistant animal models.97, 98 Phosphorylation of IRS proteins at specific
serine residues can inhibit the interaction of said proteins with IR, leading to a decrease
in tyrosine phosphorylation of IRS and undermining of the activation of PI3K.94 Increased
proinflammatory signaling is other important mechanism of insulin resistance. In fact, FFAs can
stimulate Toll-like receptors inducing proinflammatory signaling, which can activate IκB kinase
(IKKβ) and c-Jun N-terminal kinase (JNK), stimulating the production of proinflammatory
cytokines, such as tumor necrosis factor-α (TNF-α), interleukin-1β, and interleukin-6.99, 100

Studies with anti-inflammatory drugs or gene silencing of IKKβ or JNK have shown an
improvement of insulin sensitivity, with significant reductions in serine phosphorylation of IRS
proteins.101, 102

Another important mechanism of insulin resistance based on activation of serine kinases
is the endoplasmic reticulum (ER) stress. ER stress can activate JNK, thereby increasing
serine phosphorylation of IRS proteins. In this sense, the use of chemical chaperones, such as
4-phenyl butyric acid (PBA) and taurine-conjugated ursodeoxycholic acids (TUDCAs), has
therapeutic effects by improving insulin sensitivity and reducing ER stress.103 Such treatment
has been shown to reduce hepatic JNK activity, IRS-1 serine phosphorylation, and fatty liver in
animals.103 Therefore, ER stress appears to act both indirectly, by inducing lipid accumulation,
and directly as a negative modulator of the insulin signaling pathway. For these reasons, ER
stress is considered a key factor in the development of insulin resistance.104

One of the most plausible hypotheses concerning insulin resistance is that of mitochondrial
dysfunction and consequent increases in ROS, which act as secondary messengers by activating
the serine kinases that phosphorylate IRS proteins37 (Fig. 3). Furthermore, ROS can stimulate
inflammatory signaling through activation of IKKβ, which can phosphorylate IRS-1.105 In this
sense, mitochondrial function and insulin sensitivity have been demonstrated to improve by
using antioxidants or following an increase in the expression of UCP2–UCP3 and a decrease in
ROS levels. The increase of DG, FA metabolites, and long-chain fatty acyl-CoA can produce
mitochondrial dysfunction.106 In this sense, DG, an allosteric activator of PKCs, can increase
serine phosphorylation of IRS proteins, inducing insulin resistance.107 In fact, PKCθ -deficient
mice are protected against fat-induced insulin resistance.108 This suggests that the activation of
PKCs as a result of mitochondrial dysfunction is another cause of insulin resistance.

Different studies of human biopsies, both in vivo and ex vivo, have highlighted the as-
sociation of insulin resistance with impairment of mitochondrial function, including lower
levels of mitochondrial oxidative enzymes, a decreased mitochondrial number, and abnormal
mitochondrial morphology.109, 110 In this sense, an increase in levels of plasma FFAs or lipids
can induce insulin resistance in human liver and muscle.111 In diabetes, the accumulation of
intramyocellular lipids leads to reducing mitochondrial oxidative capacity, which correlates
negatively with insulin sensitivity.112

Obesity leads to an increase of triglycerides in adipose tissue, and consequently can alter
glucose metabolism and insulin resistance in different nonadipose tissues. Conversely, it has been
shown that lipodystrophy induces type 2 diabetes and insulin resistance in human subjects.113

Adipocytes can release adipokines, including leptin, adiponectin, resistin, and TNF-α, which

Medicinal Research Reviews DOI 10.1002/med
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can modulate different metabolic pathways.114, 115 In adipocytes from type 2 diabetic patients
with obesity, the number of mitochondria and the expression of genes involved in mitochon-
drial biogenesis are significantly decreased.116 In this way, insulin-resistant metabolic tissue is
characterized by a reduced mitochondrial gene expression in adipocytes, a lower number and
abnormal morphology of mitochondria, and abnormal OXPHOS.

Endothelial dysfunction and insulin resistance are very common in CVD, such as coronary
artery disease, heart failure, hypertension, silent myocardial ischemia, and stroke.117 In fact,
high blood pressure is reported in over two-thirds of patients with type 2 diabetes, and its
appearance coincides with hyperglycemia.118 Increased levels of FFAs can contribute to insulin
resistance by reducing mitochondrial oxidative capacity, ATP synthesis, and cardiac efficiency
in insulin-resistant ob/ob and obese mice.119 In addition, intramyocardial lipid accumulation
can induce lipotoxic injury and cardiac dysfunction in different mouse models of obesity.120, 121

The impairment of endothelium-dependent vasodilation and glucose intolerance can be related
to intramyocardial lipid accumulation, and this effect can precede type 2 diabetes and heart
failure.122

The heart, one of the tissues with the greatest caloric needs and most robust oxidation of
FAs, contains low levels of endogenous antioxidants, which makes it particularly susceptible
to oxidative stress and subsequent functional and structural abnormalities.123 An association
has been demonstrated between alterations of mitochondrial morphology/function and mi-
tochondrial oxidative state in the myocardium of Zucker obese rats with insulin resistance.124

Transmission electron microscopic analysis of myocardial tissue has revealed increased numbers
of morphologically abnormal mitochondria in several insulin-resistant rat models.125 Similarly,
an increase in the number of mitochondria has been recorded in hypertrophied rat hearts dis-
playing oxidative stress,126 perhaps as a consequence of the energy requirements and of ROS
production. In contrast, other studies have demonstrated that the number of mitochondria and
their DNA content are reduced in animal models of pathological hypertrophy and patients.127

In summary, the role of mitochondria in the heart is essential, and cardiac mitochondrial dys-
function seems to contribute to CVD, including cardiomyopathy, coronary heart disease, heart
failure, hypertension, and silent myocardial ischemia.

An interaction between endothelial dysfunction and insulin resistance has been
proposed,128 though the details are still unclear. Endothelial cells are glycolitic cells.129 More-
over, mitochondria in the endothelium can play a relevant role as sensors for local O2 concentra-
tion and in signaling as regulators of intracellular [Ca2+].130 In addition, it has been proposed
that mitochondrial dysfunction and subsequent ROS production are the key factors in the
development of macrovascular and microvascular damage.8 Different studies have shown that
it is possible to prevent the endothelial dysfunction associated with hyperglycemia by blocking
the excess of mitochondrial ROS generation.131, 132

In addition, endothelial nitric oxide synthase (eNOS) in vessels can play an important role
in vasodilation, mitochondrial biogenesis, and insulin-stimulated NO production.133 Indeed,
eNOS knockout mice are characterized by dyslipidemia, hypertension, and insulin resistance.134

Thus, insulin resistance impairs NO synthesis and the mitochondrial dysfunction associated
with it compromises several cardiac functions, which in turn leads to heart failure, coronary
artery disease, and silent myocardial ischemia (Fig. 3).

Type 2 diabetes can appear in insulin-resistant patients when β-cells cannot sense glucose
properly and fail to produce and secrete enough insulin to maintain normal levels of glucose.
Mitochondrial function increases the ATP:ADP ratio and can modulate the inhibition of the
potassium channel (KATP), which leads to secretion of insulin. In addition, mitochondrial
function is related with β-cell function through the ATP:ADP ratio.135 Han et al. have shown
that taurine can enhance the glucose sensitivity of UCP2 overexpressing β-cells probably by
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enhancing mitochondrial Ca2+ influx through the Ca2+ transporter, which enhances mito-
chondrial function and increases the ATP/ADP ratio as a result.136 In addition, it has been
demonstrated that insulin secretion is impaired in β-cells which are deficient in some mito-
chondrial genes, and that when this situation is reversed, β-cells recover their capacity to
secrete insulin.137 Knockout of Tfam, a nuclear DNA-encoded mitochondrial protein, results
in impaired insulin secretion, reduced β-cell mass, severe mtDNA depletion, and develop-
ment of diabetes.138 The results of these studies support the hypothesis that mitochondrial Q11
function is important for β-cell function and contributes to the pathogenesis of type 2 dia-
betes by modulating insulin secretion and insulin action. Thus, lipid-induced mitochondrial
dysfunction can impair insulin signaling due to the generation of ROS. For all these reasons,
mitochondria should be considered a key target in therapy for insulin resistance and related
diseases.

4. STRATEGIES FOR MITOCHONDRIAL PHARMACOLOGY WITH SPECIAL FOCUS
ON ANTIOXIDANTS

The delivery of drugs to specific subcellular compartments improves the therapeutic efficacy
of the compounds and avoids the detrimental consequences of their accumulation in off-target
subcellular territories. Mitochondrial drug targeting, a process of selective drug delivery to these
organelles, is a complex action that depends on the presence (or more often lack) of specific
transporters on the mitochondrial membrane. As it is particularly difficult to diffuse through the
inner membrane, mitochondria-targeted molecules need to be encapsulated inside a carrier, a
process which needs to guarantee the preservation and the control of the drug’s pharmacological
activity once the active molecule is inside the mitochondrion. Current strategies for delivering
drugs to the mitochondria fall into two categories: active and passive targeting.139 In the former
case, specific interactions are provoked at mitochondrial sites, including antigen–antibody and
ligand–receptor association, and in the latter, the physicochemical properties (electric charge,
hydrophilicity, size, and mass) of the carrier are compatible with those of the mitochondrial
compartment, thus, converting mitochondria into a specific pharmacological target. Small
molecules have been successfully targeted to mitochondria in vivo in several ways; namely,
through conjugation to lipophilic cations,140 enclosure inside liposomes,139 and incorporation
into mitochondria-targeted peptides141 (Fig. 4). To date, the molecules used in these targeting
approaches involve coenzymes and substrates of the ETC, such as cytochrome c; succinate
vitamin B1, B2; and proapoptotic proteins, such as the Bax/Bcl2 family and p53, as well as
relevant antioxidants.139

Mitochondrial ��m is used by lipophilic cations for their selective accumulation within the
mitochondrial matrix (Fig. 4).142 This process is expressed by the Nernst equation, by which
uptake increases tenfold for every 60 mV of plasma membrane potential, leading to uptake
within mitochondria in vivo.143, 144 The use of lipophilic cations to deliver pharmacological
agents to the cell interior was first demonstrated with the lipophilic cation rhodamine 123 in a
complex with the anticancer compound cisplatin.145 TPP+ and its methylated form TPMP+ are
the most widely used lipophilic cations for mitochondrial accumulation of antioxidants.140 An
alternative spin trap with a lower molecular weight and bearing an N-arylpyridinium ion146 has
been employed with seemingly positive results, though its efficacy requires further confirmation.
The TPP moiety, driven by the plasma membrane potential allows rapid cellular uptake of
bioactive molecules, followed by specific mitochondrial matrix accumulation. A high number
of antioxidants have been successfully targeted to mitochondria through their conjugation
to TPP, including ubiquinone;147, 148vitamin E;149 resveratrol;150 ebselen;151 LA;152 nitroxides,
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Figure 4. Mitochondrial delivery systems. A Lipophilic cations, such as TPP specifically enter mitochondria in
a ��m-dependent fashion. TPP has been conjugated with several antioxidants exemplified by vitamin E (mitoE)
and coenzyme Q (MitoQ). B Szeto-Schiller peptides are cationic agents that localize mainly to the IMM (80%).
Their antioxidant properties lie in the presence of tyrosine and dimethyltyrosine residues. C XJB-5–131 is targeted
to the mitochondrion through its oligopeptidic fragment of the membrane-active antibiotic gramicidin S. A stable
nitroxide radical portion of this compound renders it antioxidant. D Antioxidant liposomes carry lipid- or water-
soluble cargo of antioxidants. A special type of liposome-based carrier is MITO-Porter, a mitochondria-targeted
envelope-type nanodevice that delivers its cargo to the target compartment through fusion. Dmt, dimethyltyro-
sine; GSH, glutathione; IMM, inner mitochondrial membrane; NAC, N-acetyl cysteine; OMM, outer mitochondrial
membrane; TEMPOL, 4-hidroxy-2,2,6,6-tetramethylpiperidine-1-oxy radical; TPP, triphenylphosphonium.

such as TEMPOL,153 plastoquinone,154 and nitrones (Fig. 4).155 Lipophilic cations show great
potential with respect to the accurate delivery of antioxidants to mitochondria; however, they
have the following disadvantages: (i) their capacity (only electrically neutral and low molecular
weight molecules can be successfully transferred); (ii) their sublocalization (these chemicals tend
to localize to the mitochondrial matrix and the matrix-facing surface of the inner membrane,
disabling the targeting of many important processes that take place on the outer surface of the
inner membrane, the outer membrane, or the intermembrane space); and (iii) their toxicity (at
high concentrations they can depolarize ��m and compromise cell viability).

MitoQ, which consists of a ubiquinone moiety linked to a TPP by a ten-carbon alkyl
chain, is the most studied and widely used mitochondrial antioxidant.140 Within mitochondria,
MitoQ is adsorbed to the matrix-facing surface of the inner mitochondrial membrane (IMM),
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where it can be recycled by complex II of the ETC into the active ubiquinol form.149, 156 This
highly effective antioxidant reacts with ROS, such as peroxynitrite (ONOO−), and also inhibits
its formation149 and mitochondrial lipid peroxidation.156, 157 In addition, the ubiquinone form
is known to react directly with other ROS, such as superoxide.158 MitoQ has been shown
to have a beneficial role in several in vitro settings of mitochondrial oxidative stress. More
importantly, its benefits have been reported in animal models of cardiometabolic pathologies,
such as ischemia/reperfusion, sepsis, and diabetes (Table I), and in humans.159 Of note, it has
been demonstrated that intravenous and oral administration of MitoQ leads to a rapid uptake
from blood into cells.143 A growing number of studies confirms that antioxidants are capable
of modulating mitochondrial survival/cell-death pathways, including apoptosis, mitophagy,
mitoptosis, and necrosis. In this regard, mitochondria-targeted antioxidants merit a special
attention. It has been demonstrated that MitoQ inhibits the mitochondrial fission induced
in HeLa cells and fibroblasts by mitochondrial respiratory chain inhibitors (piericidin and
myxothiazol), which points to the beneficial potential of MitoQ in novel mitochondrial contexts,
such as mitochondrial dynamics.160

Although the therapeutic efficacy of mitochondria-targeted antioxidants in diabetes or
CVD needs to be confirmed, several in vivo and in vitro studies have demonstrated their use-
ful effects (Table I). In one study, mitochondria-targeted antioxidants were employed in β-cells
such as RINm5F and HIT-T15 under conditions of glucolipotoxic and glucotoxic stress typical
of type 2 diabetes.161 Results in β-cells under oxidative stress conditions showed an increase in
the levels of mitochondrial antioxidant enzymes (such as MnSOD), the expression of mitochon-
drial ETC complex subunits and lipogenic enzymes (such as ATP-binding cassette transporter
A1 [ABCA1]), FA synthase (FAS), and acetyl-CoA carboxylase (ACC), as well as induction of
apoptosis, intracellular lipid droplet accumulation, presence of oxidative stress and ER stress,
mitochondrial membrane depolarization, expression of sterol regulatory element binding pro-
tein 1c (SREBP1c), and NF-κB, together with a decrease in citrate synthase activity, ATP Q15
concentration, and insulin release. These changes were related with mitochondrial oxidative
stress and were prevented by the mitochondria-targeted antioxidants MitoQ or Mito Tempol,
which protected β-cells, thereby improving insulin secretion and the survival of said cells. The
protective effects of complications associated with diabetes, such as diabetic nephropathy and
retinopathy. Li et al. described a beneficial effect of peptide SS31, a mitochondria-targeted
antioxidant, on hyperglycemia-induced damage in human retinal endothelial cells (HRECs).162

They reported that exposure to SS31 decreased mitochondrial ROS production, diminished
the release of cytochrome c from the mitochondrion to the cytosol, stabilized ��m, decreased
the expression of caspase-3, and enhanced the expression of Trx-2 in HRECs. Mitochondria-
targeted antioxidants have demonstrated their potential therapeutic effect in models of tolerance
to nitroglycerine (GTN) in cardiometabolic diseases. In different studies of nitrate tolerance,
the effects of GTN on mitochondrial O2 consumption and ALDH-2 activity were shown to be
prevented by MitoQ.163, 164

There is also in vivo evidence for the beneficial effects of MitoQ in cardiometabolic patholo-
gies. Chacko et al. demonstrated that, when administered orally over a 12-week period, MitoQ
improved glomerular and tubular function in an animal model of diabetes type 1, Ins2(+/−)
(AkitaJ) mice.165 MitoQ did not significantly change creatinine levels, but reduced urinary albu-
min to levels similar to those exhibited by nondiabetic animals. In addition, MitoQ prevented
the increased nuclear accumulation of the pro-fibrotic transcription factors phospho-Smad2/3
and β-catenin.

The beneficial effects of MitoQ have been reported in animal models of metabolic syn-
drome and atherosclerosis (fat-fed ApoE−/− and ATM+/−/ApoE−/− mice, which are haploin-
sufficient for ataxia telangiectasia mutated protein kinase, ATM). This antioxidant prevented
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Table I. Mitochondria-Targeted Antioxidants which Have Shown Protective Effects in In Vivo (Animal)
and/or In Vitro (Cell) Models of Cardiometabolic Pathologies Q12

Q13

Q14

Compound Cardiometabolic condition Referencesa

MitoQ Cardiac I/R injury [1,2]
Endothelial nitroglycerin tolerance [3]
Hypertension with cardiac hypertrophy [4]
Kidney damage in type 1 diabetes [5]
Oxidative damage of beta cells [6]
Atherosclerosis and the metabolic syndrome [7]
Obesity [8]
Coronary artery disease with diabetes [9]

SS31 Cardiac I/R injury [10]
Hypertensive cardiomyopathy [11]
Insulin resistance [12]
Diabetic retinopathy [13]

MitoTEMPO Hypertension [14]
Oxidative damage of beta cells [6]

SkQ1 Cardiac I/R injury [15]

aReferences:
1. Adlam VJ, Harrison JC, Porteous CM, James AM, Smith RA, Murphy MP, Sammut IA. Tar-
geting an antioxidant to mitochondria decreases cardiac ischemia-reperfusion injury. FASEB J
2005;19(9):1088–1095.
2. Neuzil J, Widén C, Gellert N, Swettenham E, Zobalova R, Dong LF, Wang XF, Lidebjer C, Dalen H,
Headrick JP, Witting PK. Mitochondria transmit apoptosis signalling in cardiomyocyte-like cells and
isolated hearts exposed to experimental ischemia-reperfusion injury. Redox Rep 2007;12(3):148–
162.
3. Esplugues JV, Rocha M, Nuñez C, Bosca I, Ibiza S, Herance JR, Ortega A, Serrador JM,
D’Ocon P, Victor VM. Complex I dysfunction and tolerance to nitroglycerin: an approach based
on mitochondrial-targeted antioxidants. Circ Res 2006;99(10):1067–1075.
4. Graham D, Huynh NN, Hamilton CA, Beattie E, Smith RA, Cochemé HM, Murphy MP, Dominiczak
AF. Mitochondria-targeted antioxidant MitoQ10 improves endothelial function and attenuates cardiac
hypertrophy. Hypertension 2009 Aug;54(2):322–328.
5. Chacko BK, Reily C, Srivastava A, Johnson MS, Ye Y, Ulasova E, Agarwal A, Zinn KR, Murphy MP,
Kalyanaraman B, Darley-Usmar V. Prevention of diabetic nephropathy in Ins2(+/)−(AkitaJ) mice by
the mitochondria-targeted therapy MitoQ. Biochem J 2010;432(1):9–19.
6. Lim S, Rashid MA, Jang M, Kim Y, Won H, Lee J, Woo JT, Kim YS, Murphy MP, Ali L, Ha J, Kim SS.
Mitochondria-targeted antioxidants protect pancreatic �-cells against oxidative stress and improve
insulin secretion in glucotoxicity and glucolipotoxicity. Cell Physiol Biochem 2011;28(5):873–886.
7. Mercer JR, Yu E, Figg N, Cheng KK, Prime TA, Griffin JL, Masoodi M, Vidal-Puig A, Murphy
MP, Bennett MR. The mitochondria-targeted antioxidant MitoQ decreases features of the metabolic
syndrome in ATM+/-/ApoE-/- mice. Free Radic Biol Med. 2012 Mar 1;52(5):841–849.
8. Pung YF, Rocic P, Murphy MP, Smith RA, Hafemeister J, Ohanyan V, Guarini G, Yin L, Chilian WM.
Resolution of mitochondrial oxidative stress rescues coronary collateral growth in Zucker obese fatty
rats. Arterioscler Thromb Vasc Biol. 2012 Feb;32(2):325–334.
9. Mackenzie RM, Salt IP, Miller WH, Logan A, Ibrahim HA, Degasperi A, Dymott JA, Hamilton
CA, Murphy MP, Delles C, Dominiczak AF. Mitochondrial reactive oxygen species enhance AMPK
activation in the endothelium of patients with coronary artery disease and diabetes. Clin Sci (Lond)
2012.
10. Zhao K, Zhao GM, Wu D, Soong Y, Birk AV, Schiller PW, Szeto HH. Cell-permeable peptide
antioxidants targeted to inner mitochondrial membrane inhibit mitochondrial swelling, oxidative cell
death, and reperfusion injury. Biol Chem. 2004;279(33):34682–34690.
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Table I. Continued

11. Dai DF, Chen T, Szeto H, Nieves-Cintrón M, Kutyavin V, Santana LF, Rabinovitch PS. Mito-
chondrial targeted antioxidant peptide ameliorates hypertensive cardiomyopathy. J Am Coll Cardiol
2011;58(1):73–82.
12. Anderson EJ, Lustig ME, Boyle KE, Woodlief TL, Kane DA, Lin CT, Price JW 3rd, Kang L,
Rabinovitch PS, Szeto HH, Houmard JA, Cortright RN, Wasserman DH, Neufer PD. Mitochondrial
H2O2 emission and cellular redox state link excess fat intake to insulin resistance in both rodents
and humans. J Clin Invest 2009;119(3):573–581.
13. Li J, Chen X, Xiao W, Ma W, Li T, Huang J, Liu X, Liang X, Tang S, Luo Y. Mitochondria-targeted
antioxidant peptide SS31 attenuates high glucose-induced injury on human retinal endothelial cells.
Biochem Biophys Res Commun 2011;404(1):349–356.
14. Dikalova AE, Bikineyeva AT, Budzyn K, Nazarewicz RR, McCann L, Lewis W, Harrison DG, Dikalov
SI. Therapeutic targeting of mitochondrial superoxide in hypertension. Circ Res 2010;107(1):106–
116.
15. Lakomkin VL, Kapel’ko VI. Protective effect of mitochondrial antioxidant SkQl at cardiac ischemia
and reperfusion. Kardiologiia 2009;49(10):55–60.

hypercholesterolemia, the increase in adiposity, and hypertriglyceridemia related to metabolic
syndrome, when administered orally for 14 weeks. It also reduced hepatic steatosis, hyper-
glycemia, and lipid and DNA oxidative damage (8-oxo-G) in different organs. Furthermore, a
lower macrophage content and diminished cell proliferation were observed within the plaques
of fat-fed ATM+/−/ApoE−/− and ATM+/+/ApoE−/− mice after administration of MitoQ,
although the overall atherosclerotic plaque area was not modified.166

Another recently published study has demonstrated a beneficial role of mitochondria-
targeted antioxidants in obesity-related comorbidities. Zucker obese fatty (ZOF) rats have high
levels of ROS in smooth muscle cells and the aortic endothelium and display increased UCP2
and antioxidant enzyme activity in comparison with Zucker control rats. MitoQ significantly
reduced lipid peroxides in ZOF rats to levels similar to those seen in lean rats and improved
the metabolic profiles. This beneficial effect restored coronary collateral growth in response to
repetitive ischemia to the level of the control animals.167

Liposomal carriers are constituted by phosphatidylcholine, phosphatidylglycerol, and
cholesterol, which can inclose small molecular weight antioxidants, antioxidants enzymes, or a
combination of various agents with antioxidant activities.168 It appears that antioxidants, such Q15
as the liposomally encapsulated N-acetylcysteine169, quercetin, and Siliphos (a complex formed
by silybin and phospholipids), have therapeutic effects (Fig. 4). Siliphos has been shown to be
hepatoprotective in a rat model of steatosis170 and to ameliorate liver enzyme levels in NAFLD Q16
patients171 by enhancing mitochondrial function and through an insulin-sensitizing action.

MITO-Porter is a liposome-based nanocarrier that delivers cargo to mitochondria through
a membrane fusion mechanism (Fig. 4) based on the multifunctional envelope-type nanodevice
(MEND), which consists of a condensed plasmidic DNA core and a lipid envelope that mim-
ics envelope-type viruses.172 This mechanism seems to be capable of transporting functional
nucleic acids, proteins, and small bioactive molecules.173 These delivery systems are useful as
they can transport encapsulated molecules of varying physicochemical characteristics or size.
Mitochondrial delivery using MITO-Porter takes place in three steps: (i) delivery of the carrier
from the extracellular space to the cytosol; (ii) intracellular trafficking of the carrier, includ-
ing mitochondrial targeting; and (iii) mitochondrial delivery via membrane fusion. Also, a
conjugate nanocarrier that targets mitochondria and contains a mitochondria-targeting signal
peptide (MTS) and MITO-Porter has been developed very recently.174
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Szeto-Schiller (SS)-peptides175 and mitochondria-penetrating peptides (MPPs)176 are
peptide-based targeting ways of delivering antioxidants to mitochondria. SS-peptides are an-
tioxidant compounds with three positive charges in homeostatic pH conditions. In vitro cell
studies have shown their rapid uptake through the cellular membrane in a concentration-
dependent way by which they accumulate 1000-fold in mitochondria where they bind to the
IMM through a mechanism that is not completely described.177, 178 It is important to mention
that the particular mitochondrial uptake of these compounds does not take place in response
to ��m;177, 179 this is advantageous, as mitochondrial membrane polarization is not disturbed
and that the process is not self-limiting. SS-peptides have been shown to exert a protective effect
against oxidative stress in cellular models of disease, including insulin resistance, and in isolated
mitochondria (Table I), with SS-31 demonstrating to be the most beneficial.175, 180, 181 In terms
of the increase of MPPs in the mitochondrial matrix, hydrophobicity and electric charge seem
to be of great relevance,182 although the mechanisms by which MPPs are transported through
the phospholipid bilayer and the role of ��m are unclear.

Novel mitochondria-targeted molecules and their therapeutic potential have recently been
described. XJB-5–131 is an electron and ROS scavenger containing the Leu-D-Phe-Pro-Val-Orn
fragment of gramicidin S, a membrane-active cyclopeptide antibiotic.183 (Fig. 4). Due to the Q17
high affinity of this type of antibiotics for bacterial membranes, which resemble mitochondrial
membranes, XJB-5–131 can be targeted successfully to the mitochondrion. This compound has
been shown to be beneficial in acute tissue ischemia, such as that produced in rat enterocytes
exposed to lethal hemorrhagic shock.184

Another approach to targeting bioactive molecules to the mitochondrial matrix is plat-
form technology using biodegradable polymers.185 This method involves a rationally designed
mitochondria-targeted polymeric nanoparticle (NP) system and the combination of a targeted
poly(D,L-lactic-co-glycolic acid)-block (PLGA-b)-poly(ethylene glycol) (PEG)- TPP polymer
(PLGA-b-PEG-TPP) with either nontargeted PLGA-b-PEG-OH or PLGA-COOH. In partic-
ular, the construct PLGA-b-PEG-TPP NP shows great promise as a component of therapy for
mitochondrial dysfunction-related metabolic diseases, such as obesity.

A. Summary and Perspectives

Oxidative stress is clearly related to the pathogenesis of cardiometabolic diseases, while the
pathophysiological importance of different molecules requires further study. In general, the
data obtained with antioxidant strategies employed to limit the pathophysiological effects of in-
sulin resistance are scarce and inconsistent. Mitochondria play a critical role in cardiometabolic
diseases, such as metabolic syndrome and diabetes. The level of mitochondrial ATP is crucial in
regulating insulin release; mitochondrial ROS, which otherwise exerts a vital role as secondary
messengers, impair this process. Mitochondrial function is a key factor in insulin sensitivity in
tissues, such as muscle, liver, and adipose tissue. In this review, we have focused on the mecha-
nisms of the mitochondrial dysfunction related with the pathophysiology of insulin resistance
and type 2 diabetes in different tissues, and have considered the process of cardiometabolic
diseases from a mitochondrial perspective. We have discussed the potential beneficial effects
of mitochondria-targeted antioxidants as a tool for modulating mitochondrial function in car-
diometabolic diseases, and particularly in diabetes. The future of mitochondrial pharmacology
will depend on the development of mitochondria-targeted antioxidants and new and accurate
methods of assessing all aspects of mitochondrial function in patients. To conclude, we believe
that mitochondrial pharmacology has great potential as an emerging therapeutic element to be
used in many aspects of medicine.
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144. Rodriguez-Cuenca S, Cochemé HM, Logan A, Abakumova I, Prime TA, Rose C, Vidal-Puig
A, Smith AC, Rubinsztein DC, Fearnley IM, Jones BA, Pope S, Heales SJ, Lam BY, Neogi SG,
McFarlane I, James AM, Smith RA, Murphy MP. Consequences of long-term oral administration of

Medicinal Research Reviews DOI 10.1002/med



med21285 wiley3g-med April 23, 2013 17:33

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

U
N

CORRECTED
PROOF

26 � ROCHA ET AL.

the mitochondria-targeted antioxidant MitoQ to wild-type mice. Free Radic Biol Med 2010;48:161–
172.

145. Teicher BA, Holden SA, Cathcart KN. Efficacy of Pt(Rh-123)2 as a radiosensitizer with fractionated
X rays. Int J Radiat Oncol Biol Phys 1987;13:1217–1224.

146. Robertson L, Hartley RC. Synthesis of N-arylpyridinium salts bearing a nitrone spin trap as potential
mitochondria-targeted antioxidants. Tetrahedron 2009;65:5284–5292.
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