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Abstract

The face load factor is a common coefficient used in gear design standards that takes into account the
uneven distribution of load across the face width of the gears caused by the mesh misalignment. In
this paper, a finite element model that includes the gears and the corresponding shafts is proposed.
The results obtained from the application of finite element analysis to this model are compared
with those obtained from application of the ISO Standard 6336 coefficient-based method (Method
C). The influence of the length of gear shafts, the face width of the gears, the relative position of the
gears over their shafts, the ratio between the pitch radii of the gears and the radii of their shafts,
and the relation between the mesh misalignment and the face load factor, have been investigated.
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1. Introduction

Spur gear drives are the most common way to transmit power between parallel shafts. In order
to predict the load capacity of spur gear drives, several methods can be found in the literature.
Among these methods, the most common applied ones use influence factors. Many handbooks and
standards provide design guides for gears through application of such influence factors, being well
known the ISO Standard 6336 [1, 2, 3] and the AGMA Standard 2001-D04 [4].

The influence factors defined in gear standards have been the subject of extensive analysis
regarding their calculation or their repercussion on the load capacity [5, 6, 7]. One of these factors
is the face load factor, that is named as KHβ by the ISO Standard. The face load factor is defined
as the ratio between the peak load intensity and the mean load intensity across the face width of
the gears. This factor takes into account the effects of non-uniform load distribution over the face
width caused by the mesh misalignment in the plane of action. This misalignment can be caused
by elastic deformations of gears, shafts, and bearings as well as for manufacture and assembly
deviations, bearing clearances or dynamic effects.

Due to its complexity, some authors have written guides to calculate the face load factor [8, 9].
Atanasovska [10] proposed a finite element model to calculate the face load factor, and studied
several causes that produce variations in the load capacity of a gear, like mesh stiffness [11], the
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addendum coefficient [12], or the nominal transmitted load [13]. Others have contributed investi-
gating how the load is distributed over the gear face width [14, 15], and have studied numerically,
analytically, or empirically, the elastic deformations of the gear teeth [16, 17] and the effect of
manufacturing and assembly deviations [18, 19]. There are fewer authors that have studied the
elastic deformations of the shafts that support the gears [20, 21], and how their mechanical behavior
affects to the gear load capacity.

Many of the authors mentioned above use bi-dimensional finite element models [11, 13, 16]
whereas few of them use more advanced three-dimensional finite element models [10, 18, 19]. Gen-
erally, these works are focused in the modeling of the gears and the gear tooth surfaces, but they
seldom include shafts or shaft supports.

The main goals of this work are the following:

(1) Proposal of a finite element model that includes the modeling of gears and shafts for the
determination of the face load factor by application of finite element analysis.

(2) Comparison of the face load factor obtained through the finite element analysis by using
the proposed finite element model with that obtained by application of the ISO Standard
coefficient-based method (Method C).

(3) Investigation of the influence of the relative position of gears along their shafts, the face width
of the gears, the ratio between the pitch radii of gears and the radii of their respective shafts,
and the length of the shafts.

2. Description of the finite element model

The proposed physical model is obtained from a conventional spur gear drive composed of one
pinion, one wheel, and two supporting shafts (Figure 1). The shafts are perfectly aligned and are
supported at their ends by bearings where bending is allowed. The gears are rigidly connected to
their respective shafts and the active parts of the tooth surfaces are based on involute profiles. A
torque T is applied to one of the ends of the pinion shaft whereas the motion on the wheel shaft is
restricted by blocking the rotation on one of their ends.

The generation of the finite element model starts from the physical model shown in Figure 1
and is accomplished as follows:

(1) The gear teeth are meshed using the method described in [22]. Figure 2 shows the finite
element mesh of one gear tooth. A rigid surface is considered around the rim of the gear
tooth. Such a rigid surface will be rigidly connected to a reference node on the gear shaft.
The motions defined on each reference node are transmitted directly to the corresponding
rigid surface since the reference node and the rigid surface constitutes a rigid body [22].

(2) Reference nodes M1 and M2 are defined on the pinion and wheel shafts (Figure 3) for the
transmission of motion from the pinion shaft to the pinion tooth and from the wheel tooth to
the wheel shaft through the respective rigid surfaces. A model based on one pair of gear teeth
has been considered in order to achieve the highest refinement of the finite element mesh.

(3) Beam elements with the same circular section are considered along the pinion and the wheel
shafts. As shown in [23], the three-dimensional finite element model of the shafts using eight-
node hexahedral “brick” elements can be replaced by a one dimensional finite element model
of the shafts using beam elements, yielding the same results.
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Figure 1: Physical model of a spur gear drive.
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Figure 2: Finite element mesh for one gear tooth.
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Figure 3: Finite element model of the gear drive.

(4) At the stiffened portions of the pinion and wheel shafts, the radii of the circular sections of
the beam elements are increased up to the pitch radii of the gears.

(5) A torque T is applied at node A1 whereas rotation is blocked at node A2.

3. Determination of the face load factor by finite element analysis

The determination of the face load factor by finite element analysis, KHβ−FEM , is accomplished
as follows:

(1) At each node inside the contact area, the computed pressure pi multiplied by the height of
the element hi provides the nodal load intensity (F/b)i as

(F/b)i = pi · hi (1)

(2) The loads intensities (F/b)i for all the nodes with the same coordinate z are added up to
obtain the load intensity (F/b) as a function of z

(F/b)(z) =
∑

(F/b)i (2)

where subindex i corresponds to those nodes with the same coordinate z.

(3) A piecewise linear function of the load intensity (F/b)(z) is obtained along the face width as
it is shown in Figure 4.
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Figure 4: For the determination of the face load factor by finite element analysis.

(4) The mean load intensity (F/b)m is obtained as the integral of function (F/b)(z) divided by the
face width b. The integral of the function (F/b)(z) is solved numerically by the quadrature
formula of the closed Newton-Cotes type corresponding to the trapezoidal rule [24]. Figure 4
shows the mean load intensity.

(5) The maximum value of the function (F/b)(z) is identified as the maximum load intensity
(F/b)max.

(6) Finally, the face load factor is obtained as

KHβ−FEM =
(F/b)max

(F/b)m
(3)

4. Application of the ISO Standard coefficient-based method

Standard ISO 6336 [1] will be considered here for the determination of the face load factor
in the physical model represented in Figure 1. The ISO Method C is a coefficient-based method
widely applied in industry and will be used here in order to compare the obtained results from
those determined by application of the finite element method. The face load factor obtained by
the Method C is called KHβ−C .

The face load factor KHβ−C is calculated from the mean load intensity across the face width
(Fm/b), the mesh stiffness cγβ , and an effective total mesh misalignment Fβy. Depending on whether
the bearing contact is spread over (i) the whole face width or (ii) partially on the tooth surface,
the factor KHβ−C is determined as [1]

(i)

KHβ−C = 1 +
Fβycγβ

2(Fm/b)
(4)

(ii)

KHβ−C =

√

2Fβycγβ

(Fm/b)
(5)
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The most significant parameter in the determination of KHβ−C is Fβy, than can be determined
as [1]

Fβy = Fβx · χβ (6)

where Fβx is the initial equivalent misalignment before running-in and χβ is a running-in factor.
Fβx represents the absolute value of the sum of deformations, displacements and manufacturing
deviations of pinion and wheel, measured in the plane of action.

Since KHβ−C is being calculated for the physical model represented in Figure 1, where perfect
involute tooth surfaces are considered, a factor χβ = 1 is taken.

The factor Fβx is defined as [1]

Fβx = 1.33 · fsh · fsh2 · fma · fca · fbe (7)

where

- fsh counts for the deformations of the pinion and the pinion shaft.

- fsh2 counts for the deformations of the wheel and the wheel shaft.

- fma counts for the manufacturing deviations of pinion and wheel.

- fca counts for the deformations of the gear case.

- fbe counts for the displacements of the bearings.

In this study, fma = 0, fca = 0, and fbe = 0, since only the influence of pinion deformations,
wheel deformations, pinion shaft deformations, and wheel shaft deformations, on the face load
factor, are investigated.

Factor fsh is defined in [1] as

fsh = 0.023 ·
Fm

b

[∣

∣

∣

∣

∣

1.0 + K
′

·
l · s

d2
1

·

(

d1

dsh1

)4

− 0.3

∣

∣

∣

∣

∣

+ 0.3

]

(

b

d1

)2

(8)

where l is the length of the shaft (L in Figure 1), s =
∣

∣

L
2
− zg

∣

∣ (see Figure 1), d1 is the pitch radius

of the pinion, dsh1 is the pinion shaft radius, and K
′

is a factor that takes into account the location
of the gears over the shafts in relation to the torque input.

Factor fsh2 is defined in a similar way

fsh2 = 0.023 ·
Fm

b

[
∣

∣

∣

∣

∣

1.0 + K
′

·
l · s

d2
2

·

(

d2

dsh2

)4

− 0.3

∣

∣

∣
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+ 0.3

]

(

b

d2

)2

(9)

where d2 is the pitch radius of the wheel, and dsh2 is the wheel shaft radius. In this study,
dsh2 = dsh1 = dsh (see Table 1).

5. Numerical examples

Table 1 shows the design data of the spur gear drive represented in Figure 1. Four design
parameters are considered as variables:

- the face width b (4 values),
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Table 1: Design data of the spur gear drive represented in Figure 1.

Parameter Variable Values

Module m 4 mm

Pressure angle α 25◦

Number of teeth of the pinion z1 17

Number of teeth of the gear z2 34

Face width b 20 mm, 40 mm, 60 mm, 80 mm

Profile shift coefficient of pinion and gear x1, x2 0

Addendum haP 4 mm

Dedendum hfP 5 mm

Length of the shaft L 100 mm, 150 mm, 200 mm, 300 mm

Shaft diameters dsh 25 mm, 30 mm, 35 mm

0.2L, 0.25L, 0.3L, 0.4L, 0.45L, 0.5L
Position of the gears over the shafts zg 0.55L, 0.6L, 0.7L, 0.75L, 0.8L

Young’s Modulus E 210000 MPa

Poisson’s ratio ν 0.3

Torque T 120 Nm

Angular position of gears θ1, θ2 Gears contacting at the pitch line

- the length of the shafts L (4 values),

- the shaft diameters dsh (3 values), and

- the location of the gears over the shafts zg (11 values).

Considering the combinations of values showed in Table 1 and gear mounting restrictions over
the shaft, due to bearing location and gear face widths, a total of 486 cases of design have been
finally investigated. The eleven values of zg cover the applicable range suggested by ISO Standard
6336 [1]. The gears have been considered contacting at the pitch line in all cases of design since
the face load factor is determined in the Standard ISO 6336 through the nominal tangential load,
which is calculated from the nominal torque in the transverse plane at the reference cylinder.

The finite element model considered in this study has 86038 elements with 96650 nodes (see the
mesh on the pinion tooth shown in Figure 2). Pinion and wheel teeth are meshed with eight-node
hexahedral “brick” elements elements of type C3D8I [25]. Pinion and wheel shafts are meshed with
beam elements of type B31 [25]. The beam elements have a uniform length around 1 mm and a
constant diameter dsh. However, for those beam elements located on the stiffened portion of the
pinion and the wheel shafts, the pitch diameters of the gears are considered instead. The material
for gears and shafts is steel (see properties in Table 1). A torque T = 120 Nm is applied to the
pinion shaft. This torque provides a mean tangential load Fm = 3529.412 N.

Figure 5 shows the bearing contact on the pinion tooth surface for different locations of the
gears over the shafts. It is shown that the bearing contact, due to shaft deformations, is shifted
towards the tooth edge as the gears are located closer to the bearings.

5.1. Face load factor KHβ−FEM vs. mesh misalignment

A relation between the face load factor and the mesh misalignment is expected. Two types of
errors of alignment are considered:
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(a) z = 0.4Lg

y
x

z

(c) z = 0.6Lg

(b) z = 0.5Lg

(d) z = 0.7Lg

Figure 5: Bearing contact on the pinion tooth surface in the case of b = 40 mm., L = 150 mm., dsh = 25 mm. when:
(a) zg = 0.4L, (b) zg = 0.5L, (c) zg = 0.6L, and (d) zg = 0.7L.

• The center distance error.

• The angular misalignment, that is obtained as

φ = arctan[tan(φY Z) · cos(φXZ)] (10)

where φY Z is the angular error in the plane Y Z and φXZ is the angular error in the plane XZ
(see Figure 1). Such values are computed after the finite element analysis has been carried
out, considering the displacements and rotations of the reference nodes.

Figures 6(a) and 6(c) show the relation between the angular misalignment in the plane of action
of the gears and the face load factor KHβ−FEM for some cases of design. A relation between the
angular misalignment and the face load factor can be observed. In fact, when a maximum in the
angular misalignment variation is reached, a maximum in the face load factor variation is obtained.
These maximum values are obtained because of the existence of two opposed effects as the gears
are locater closer to one of the bearings:

(1) The angular deformation of the shaft increases from the middle of the shaft to one of the
ends.

(2) The angular deformation of the shaft decreases since the total force is closer to one of the
ends.

Figures 6(b) and 6(d) show the relation between the center distance error between the gears
and the face load factor KHβ−FEM for the same cases of design. No relation between the center
distance error and the face load factor was found.
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Figure 6: Comparison for some cases of design of the face load factor KHβ−F EM with: (a) and (c) the angular
misalignment and, (b) and (d), the center distance error.

5.2. Face load factors KHβ−FEM and KHβ−C vs. shaft diameter

Figure 7 shows the variations of the face load factors KHβ−FEM and KHβ−C with the shaft
diameter, dsh, for some cases of design.

Mesh stiffness cγβ has been calculated according to the ISO Standard coefficient-based method [1].
Its value is 15.52 N

mm·µm
for b = 20 mm, 15.04 N

mm·µm
for b = 40 mm, 13.60 N

mm·µm
for b = 60 mm,

and 12.65 N
mm·µm

for b = 80 mm.

Parameter K
′

shown in Eqs. (8) and (9) is taken as K
′

= 0.48 or K
′

= −0.48 depending on
the location of the gears over the shafts respect to the input torque. Stiffening is assumed for the
cases of design investigated [1].

Figures 7(a), 7(b), and 7(c) show a decrement of the face load factor as the shaft diameter
increases in case of zg 6= 0.5L. This is due to an increment in the stiffness of the transmission that

9



25 30 35
0

5

10

15

dsh (mm)

F
ac

e
L
oa

d
F
ac

to
r

(a) zg = 0.2L, L = 300 mm

25 30 35
0

5

10

15

dsh (mm)

F
ac

e
L
oa

d
F
ac

to
r

(b) zg = 0.3L, L = 300 mm

25 30 35
0

5

10

15

dsh (mm)

F
ac

e
L
oa

d
F
ac

to
r

(c) zg = 0.4L, L = 300 mm

25 30 35
0

0.5

1

1.5

2

dsh (mm)

F
ac

e
L
oa

d
F
ac

to
r

(d) zg = 0.5L, L = 300 mm

KHβ−FEM -b20 KHβ−FEM -b40 KHβ−FEM -b60 KHβ−FEM -b80
KHβ−C-b20 KHβ−C -b40 KHβ−C-b60 KHβ−C -b80

Figure 7: Variation of KHβ−F EM and KHβ−C with several values of dsh for some cases of design.

makes the shaft deflections to be reduced. However, Figure 7(d) shows that the face load factor
remains constant in case of zg = 0.5L.

5.3. Face load factors KHβ−FEM and KHβ−C vs. face width of the gears

Figure 8 shows the variations of the face load factors KHβ−FEM and KHβ−C with the face
width, b, for some cases of design.

A non-linear increment of KHβ−FEM and a linear increment of KHβ−C are observed in Fig-
ures 8(a), 8(b), and 8(c). Just in the case of zg = 0.5L (Figure 8(d)), factor KHβ−FEM remains
constant while factor KHβ−C increases with the face width.

The comparison between the values of KHβ−FEM and KHβ−C yields that KHβ−C is smaller
than KHβ−FEM when the face width is low. However, the values of KHβ−C are larger than those
values of KHβ−FEM when the face width is high.
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Figure 8: Variation of KHβ−F EM and KHβ−C with several values of b for some cases of design.

For some cases of design, the values of KHβ−FEM and KHβ−C coincide with each other.

5.4. Face load factors KHβ−FEM and KHβ−C vs. length of the shafts

Figure 9 shows the variations of the face load factors KHβ−FEM and KHβ−C with the length
of the shafts, L, for some cases of design.

A non-linear increment of KHβ−FEM and an almost linear increment of KHβ−C for all the cases
of design shown in Figure 9 are observed. In the case of zg = 0.5L (not shown in Figure 9) the
factors KHβ−FEM and KHβ−C remain constant with a lower value of KHβ−FEM than the value of
KHβ−C .
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Figure 9: Variation of KHβ−F EM and KHβ−C with several values of L for some cases of design.

5.5. Face load factors KHβ−FEM and KHβ−C vs. the relative position of the gears over the shafts

Figure 10 shows the variations of the face load factors KHβ−FEM and KHβ−C with the relative
position of the gears over the shafts, zg, for some cases of design.

Increments of the factors KHβ−FEM and KHβ−C are observed in Figure 10 as the gears location
moves away from the middle of the bearing span. A maximum in the variation of the factor
KHβ−FEM is observed when the gears location is at the midway between the supports and the
middle of the bearing span (zg = 0.25L and zg = 0.75L). Such a maximum is not reached for the
factor KHβ−C . These results for the factor KHβ−FEM are in accordance with the variation of the
angular misalignment shown in Figures 6(a) and 6(d).

Figure 10 shows as well that symmetrical results respect to the gears location at the middle of
the bearing span (zg = 0.5L) are obtained for both face load factors.
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Figure 10: Variation of KHβ−F EM and KHβ−C with several values of zg for some cases of design.

5.6. Relative difference between KHβ−C and KHβ−FEM vs. the ratio b/L

The relative difference between KHβ−C and KHβ−FEM has been evaluated in the 486 cases of
design as

ǫrel =
KHβ−C − KHβ−FEM

KHβ−FEM

· 100 (11)

Figure 11 shows the obtained values of ǫrel in the case of four representative values of the ratio
zg/L. The variation of ǫrel with the ratio b/L has been investigated for each representative value of
zg/L. A linear regression between ǫrel and b/L has been obtained and shows an increasing tendency
with the ratio b/L with some dispersion.

It is possible to obtain an envelope curve to the minimum values of ǫrel and an envelope curve to
the maximum values of ǫrel for each representative value of zg/L . Figure 12(a) shows the envelope
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Figure 11: Linear regressions between ǫrel and the ratio b/L for four representative values of zg/L.

curve to the minimum values of ǫrel for the case of zg/L = 0.4. Figure 12(b) shows the envelope
curve to the maximum values of ǫrel for the same case.

All the information about the maximum and minimum values of ǫrel have been summarized in
the graphs of Figure 13 for all the cases of design that have been investigated. Figure 13(a) shows
the minimum values of ǫrel while Figure 13(b) shows the maximum values of ǫrel for each pair of
values (zg/L, b/L).

The shaded zone shown in Figure 13(a) represents the combinations of values (zg/L, b/L) where
the minimum values of ǫrel are negative. The shaded zone shown in Figure 13(b) represents the
combinations of values (zg/L, b/L) where the maximum values of ǫrel are negative. Those shaded
zones may be of special attention for the gear designer since the factor KHβ−C is lower than the
factor KHβ−FEM .
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Figure 12: Envelope curves to the (a) minimum values and (b) maximum values of ǫrel in the case of zg/L = 0.4L.

6. Conclusions

The performed research work allows the following conclusions to be drawn:

(1) A finite element model that includes gears and shafts and a method for the determination of
the face load factor by finite element analysis have been proposed.

(2) The results of the face load factor obtained by finite element analysis, KHβ−FEM , have been
compared with those results obtained by application of the ISO Standard coefficient-based
method (Method C), KHβ−C .

(3) A comprehensive study that includes 486 cases of design has been accomplished, including
variations of the location of the gears over the shafts, the face width of the gears, and the
diameter and length of the shafts.

(4) A correlation between the face load factor KHβ−FEM and the angular misalignment in the
plane of action has been observed, providing a relative maximum of KHβ−FEM when the
location of the gears over the shafts is changed. Such a maximum is not observed in the
variation of KHβ−C with the location of the gears over the shafts.

(5) A mapping of the maximum and minimum values of the relative difference between KHβ−C

and KHβ−FEM , considering as variables the location of the gears over the shafts and the ratio
of the face width over the shaft length, has been obtained, providing valuable information for
gear designers.
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