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Abstract  Let G be a finite p-solvable group. We describe the structure of the p-complements of G when
the set of p-regular conjugacy classes has exactly three class sizes. For instance, when the set of p-regular
class sizes of G is {1,p%,p®m} or {1, m,p*m} with (m,p) = 1, then we show that m = q® for some prime
g and the structure of the p-complements of G is determined.
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1. Introduction

It is known that the structure of a finite group is strongly related to its set of conjugacy
class sizes. In particular, in some papers it has been proved that certain properties of the
sizes of p-regular conjugacy classes also affect the p-structure of G. In [1], Alemany et al.
proved that if the set of conjugacy class sizes of p'-elements of a finite group G is {1,m},
then p-complements of G are nilpotent. In [3], the structure of the p-complements of a
p-solvable group G has been described for the case in which the set of p-regular conjugacy
class sizes of G is {1,m,n} for arbitrary coprime integers m,n > 1. In fact, it is shown
that G is solvable and the p-complements of G are quasi-Frobenius groups in which
the inverse image of the kernel and complement are abelian. Also, in [7], it is proved
that, if the set of conjugacy class sizes of all p'-elements of a finite p-solvable group G
is {1,m,p% mp°}, where m is a positive number not divisible by p, then m is & prime
power and, furthermore, the p-complements of G are nilpotent.
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372 Z. Akhlaghi and others

We note that studying the p-structure of a finite group G from its set of p-regular
conjugacy class sizes may be more difficult, even if one considers the p-solvability of G,
since if H is a p-complement of G and z € H, then |z | does not divide |z€| in general.
Furthermore, we are handicapped by the fact that there is no information on the elements
whose order is divisible by p.

In this paper, we study the structure of the p-complements of a p-solvable group G,
with {1,p% mp®} or {1,m,mp®} as the set of conjugacy class sizes of p'-elements of
G, where (p,m) = 1. In fact, we prove the following two theorems, which are exten-
sions for p-solvable groups of Itd’s Theorem on groups with two class sizes (see, for
example, [9, 33.6]).

Theorem A. Let G be a p-solvable group with {1,m,p®m} as the set of conjugacy
class sizes of p'-elements, where (p,mn) = 1. Then m = q® for some prime q, and any
p-complement H of G satisfies H = @) x K with Q a Sylow g-subgroup and K abelian.

Theorem B. Let G be a p-solvable group. If the set of conjugacy class sizes of
p'-elements of G is {1,p% p*m}, with (p,m) = 1, then m = ¢® for some prime ¢ and
some integer b > 0, and every p-complement H of G is either

(i) H =Q x K, with Q a Sylow g-subgroup and K abelian, or
(ii) H = QK, with Q a normal abelian Sylow g-subgroup, K abelian and QO,(G) 4G.

Notice that the solvability of G is an easy consequence of both Theorem A and The-
orem B. We also note that the methods we employ for proving Theorems A and B are
quite different. In the proof of Theorem A we use the classification of the finite 9-groups
due to Schmidt, that is, those non-abelian groups in which all centralizers of non-central
elements are abelian. In the proof of Theorem B a more detailed analysis is required.

We remark that the information obtained on the p-structure of a group G from its
set of p-regular class sizes has important applications when studying the conjugacy class
sizes of G in the ordinary case (see, for example, [5] and [6], in which the information is
used to obtain the solvability or nilpotency of certain groups) and, as a consequence, in
determining the structure of G.

Throughout this paper all groups are finite. If z is any element of a group G, we denote
by € the conjugacy class of z in G and || is called the conjugacy class size of z and
also the index of z in G. If p is a prime number and n is an integer, then we use the
notation n, for the p-part of n, i.e. n, = p, where p* divides n and p**+1 does not divide
n. We will denote the set of p'-elements of G by G, and the set of conjugacy classes of
p/-elements of G by csy (G). All further unexplained notation is standard.

2. Preliminary results

‘We will need some results on conjugacy class sizes of p-regular elements and of T-elements
for a suitable set of primes 7.

Lemma 2.1. Let G be a finite group. All the conjugacy class sizes in G, are then
p-numbers if and only if G has abelian p-complements.
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Proof. See Lemma 2 of [4]. O

Lemma 2.2. Suppose that G is a finite group and that p is not a divisor of the sizes
of p-regular conjugacy classes. Then G = P x H, where P is a Sylow p-subgroup and H
is a p-complement of G.

Proof. This is exactly Lemma 1 of [8]. o

Lemma 2.3. Let z and y be a g-element and a ¢'-element, respectively, of a group G,
such that Cg(z) C Ca(y). Then O4(G) € Ca(y).

Proof. It is enough to apply Thompson’s P x Q-Lemma [11, 8.2.8] to the action of
(z) x (y) on Oyx(G). O

Lemma 2.4. Let G be a 7w-separable group. If x € G with || a m-number, then
€ Opp (G)

Proof. See Theorem C of [2]. 0O

The following result is an extension for p-regular elements of It6’s Theorem on groups
having two class sizes.

Theorem 2.5. Let G be a finite group. If the set of p-regular conjugacy class sizes of
G is exactly {1,m}, then m = p°q®, with q a prime distinct from p and a,b > 0. Ifb =0,
then G has an abelian p-complement. If b # 0, then G = PQ x A, with P € 8yl (G),
Q € Sy1,(G) and A C Z(G). Furthermore, if a =0, then G = P x Q x A.

Proof. This is Theorem A of [2]. O

Theorem 2.6. Let G be a finite p-solvable group and let # = {p, q} with q and p two
distinct primes. Suppose that the sizes of the conjugacy classes of Gy are m-numbers.
Then G is solvable, it has abelian m-complements and every p-complement of G has a
normal Sylow g-subgroup.

Proof. This is Theorem 5 of [7]. O

The following result extends Theorem 6 of [7] with an easier proof.

Theorem 2.7. Let G be a finite p-solvable group and let m# = {p,q} with g and p two
distinct primes. Suppose that the sizes of p-regular classes in G are w-numbers. Let q°
be the highest power of the prime q that divides the sizes of classes of p-regular elements
in G. Suppose that there exists some g-element x € G such that || = p%qb, where
a,b > 0. Then G has nilpotent p-complements and they have abelian Sylow subgroups
for all primes distinct from q.
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Proof. We know that G is solvable by Theorem 2.6. Let K be a w-complement of G
such that K C Cg(x). Notice that K is abelian by Theorem 2.6, and furthermore it can
be assumed to be non-central in G, otherwise the result is trivial. Let y be any element
in K and observe that K C Cg(zy) = Ca(z) N Caly) C Cg(x). Notice that the index
of zy in Cg(z) is a ¢’-number, and consequently a p-number. If we choose K Qo to be a
p-complement of Cg(zy), then it is also a p-complement of Cg(x). Note that z € KQo.
Now, let H be a p-complement of G such that KQo C H. We can then write H = KQ
with Q a Sylow g-subgroup of G that is normal in H by Theorem 2.6. Therefore, Qo C @
and

Co(zy) =QNCqlzy) =Qo and Cop(z) = QNCs(z) = Qo

Then Cq(z) = Cq(zy) C Cq(y), so we can apply Thompson’s Lemma to get Q C Caly)
for all y € K. Consequently, H = @ x K as desired. O

Theorem 2.8. Let G be a finite group and let w be a set of primes. Suppose that the
conjugacy class size of every m-element of G is a power of p for some fixed prime p .
Then G has an abelian Hall n-subgroup H and HOp(G) <G.

Proof. This is part (a) of Theorem A of [4]. O

We use the above theorem to give a simplified proof of Theorem 2.9, which is moreover
an extension of Theorem 7 of [7].

Theorem 2.9. Let G be a p-solvable group whose conjugacy class sizes of p'-elements
are {1,p™,...,p%,p%¢’,...,p°q"}, where ¢ is a prime distinct from p and ¢; > 0,
b,a; = 0 for all i. Then any p-complement H of G is either

(i) H=Q x K, with Q a Sylow g-subgroup and K abelian, or

(i) H = QK, with Q a Sylow g-subgroup, Q and K both abelian, Q<H and Q0,(3<
G.

Proof. If there exists a g-element of index ¢°p® for some i, then case (i) follows by
Theorem 2.7. Otherwise, the index of every g-element is a p-number. So, by Theorem 2.8,
G has an abelian Sylow g-subgroup @ and QO,(G) <G and thus, if H is a p-complement
of G, containing @, then Q < H. Also by Theorem 2.6 we get that G is solvable and it
has an abelian {p, ¢}-complement. So we have case (ii). O

Corollary 2.10. Let G be a p-solvable group.

a) Ifcs, (G) = {1, ¢ p®q®}, where q is a prime distinct from p, then any p-complement
p
H of G satisfies H = Q x K with Q a Sylow g-subgroup and K abelian.

(b) If csy (G) = {1,p%,p%¢"}, where q is a prime distinct from p, then every p-comple-
ment H of G, is either
(i) H =Q x K, with Q a Sylow g-subgroup and K abelian, or

(i) H = QK, with Q a normal abelian Sylow g-subgroup, K abelian and
QO,(G) 4G.
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Proof. Case (a) is an immediate consequence of Theorem 2.7 and case (b) is a con-
sequence of Theorem 2.9. O

3. Groups with three p-regular class sizes

In order to prove Theorems A and B, it is sufficient to show that when the set of p-regular
class sizes of a group G is {1,p%,p*m} or {1,m,p*m}, with (m,p) = 1, then m is a prime
power, ¢°. We shall prove this in Theorems 3.1 and 3.2. The main results then follow by
Corollary 2.10. Note that if a = 0, then G has two p-regular class sizes, so Theorems A
and B are immediate consequences of Theorem 2.5. Also note that if b = 0, then G has
abelian p-complements by Lemma 2.1.

Theorem 3.1. If G is a p-solvable group such that csy(G) = {1,m,p*m} with
(p,m) = 1, then m = ¢” for some prime q.

Proof. Take H to be a p-complement of G. We prove the theorem in the following
steps.

Step 1. For every non-central p-regular element z of G, we may assume that there
exist at least two primes ¢ and r, distinct from p, such that r and ¢ divide |Cg/(z)|/|Z(G)|.

Suppose that there exists a non-central p-regular element € G such that, for some
prime ¢ # p, |Ca(z)|y/|Z(G)|py is a g-number. On the other hand, we may assume
that there exists a non-central r-element y in G, with r distinct from p and g, since
otherwise G is the direct product of a {p, ¢}-group and a central factor, and so the result
follows. Therefore, r is a divisor of |Cg(y)|p /| Z(G)|y. Note that |Ce(z)|p = |Gl /m =
|Ce(y)]y, and so we get a contradiction.

Step 2. If z is a non-central element of H such that |z%| = m, then |z¥| = m.
Moreover, Cy(z) = TpQ,, with Q. a Sylow g-subgroup of Cy(z), where ¢ is a prime
divisor of the order of z, and T a normal abelian ¢’-subgroup of Cg(x). Furthermore,
Cu(z) is a p-complement of Ca(x).

Let z be a non-central element of H with || = m. So G = HCg(=z), and consequently
|H : Cx(z)| = |G : Cg(z)| = m, as desired. Also, |Ce(z) : Cu(z)| = |G : H| implies
that Cg(x) is a p-complement of Cg(x). By the minimality of the class size of z, we
can certainly assume that x is a g-element for some prime g distinct from p. Let y
be a non-central {p,q}’-element in Cg(z) (note that by Step 1 such elements exist).
Then Cg(zy) = Cg(z) N Ca(y) € Calzx), and so by the hypotheses, y has index 1 or
p® in Cg(z). Now, we apply Theorem 2.9, so Cg(z) has abelian {p, ¢}-complements,
and T,0,(Cg(z)) < Ca(z), for every {p, ¢}-complement T, of Cg(z). Since Cr(z) is
a p-complement of Cg(x), we may assume that T, C Cr(z), and, as a consequence,
Tp < Cyg(z). So we get the result.
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Step 3. H is an 9M-group.

Let z € H be a non-central element. We distinguish two possibilities for the index of
z in G.

First suppose that |z%| = m. We may assume that z is a g-element for some prime
q. By Step 2 we have C(z) = T;Qq, where Ty is the normal abelian g-complement of
Cy(z) and Q, is a Sylow g-subgroup of Cy(z). Let y € Tx be a non-central r-element
for some prime 7 # g.

Assume first that |y&| = m. Then |Cr(z)| = |Cr(y)| and Cu(y) = LyRy, where Ly
is the norma) abelian r-complement of Cy(y) and R, is a Sylow r-subgroup of Cg(y),
by Step 2. So @ C L, is the normal abelian Sylow g-subgroup of Cg(y). Therefore,
z € Qy and hence @, C Cr(z)NCx(y). Also, since T is abelian, Ty C Cu(z)NCr(y),
which implies that Cg(z) = Cu(y) = Qy % Tz, and we deduce that Cu(z) is abelian.

Now we assume that |y€| = p®m. Then by the minimality of |Ca(y)| we have Cg(y) =
P,R, x K,, where P, and R, are some Sylow p-subgroup and r-subgroup of Cg(y),
respectively, and K, is abelian. On the other hand, since Colzy) = Ce(z) NCaly) €
Cg(y), the minimality of |Cg(y)| implies that Ca(zy) = Caly) S Cg(z). So we may
assume that R, C T and, consequently, R, is abelian. Hence, Ry x K is an abelian
p-complement of Ca(y). Also Cg(y) C Ca(x), whence every p-complement of Cg (y) is
a p-complement of C(z). Now, from the fact that C(z) is a p-complement of Cg(x)
we get that Cy(z) is abelian.

Suppose that |z¢| = p®m. First we assume that there exists some non-central p-regular
element « such that Cg(z) G Ce(a). So |a®| = m. Since Cy(z) is a p'-subgroup of
Cc(a), there exists g € G such that Cg(z) C Chs(a), where Cps () is a p-complement
of Cg(). By the above argument, Cps(c) is abelian, whence Cp () is abelian too.

Suppose that there exists no non-central p'-element a such that Cg(z) & Ca(a).
Hence, we may certainly assume that ¢ is an r-element for some prime r # p. So we
can write Co(z) = PRy X Ky, where Py and R, are some Sylow p-subgroup and
r-subgroup of Cg(z) and K, is abelian. By Step 1 there exists a non-central g-element
w € K, for some prime q ¢ {p,r}. Thus, Cg(wz) = Ca(z) N Ce(w) = Cg(z) € Ce(w),
which implies that Ca(z) = Cg(w), by the hypotheses. On the other hand, we have
Co(w) = PyQu X Ly, where P, and @y, are some Sylow p-subgroup and g-subgroup of
Cg(w) and Ly, is abelian. So Ry, C Ly, is the normal abelian Sylow r-subgroup of C¢(z).
Hence, C(x) has abelian p-complements. Consequently, every p'-subgroup of Cg(z) is
abelian and, in particular, Cy(z) is abelian too.

Step 4. For every non-central element 2 € H, m is a divisor of |z |. In particular, if
H is a normal subgroup of G, then the theorem follows.

Let z € H be a non-central element. Since Cx(z) is a p’-subgroup of Cg(z), there
exists g € G such that Cy(z) C Crs(z), where Crs(z) is a p-complement of Ca(z).
On the other hand, m = |G : Ca(z)|y = |HY : Cre(z)|. Therefore, m divides |z, as
desired. If H is a normal subgroup of G, then |zf| divides |z€| for every non-central
element z € H, and by the fact that m is a divisor of |z | we get that cs(H) = {1,m};
thus, by applying Ito’s Theorem on groups with two class sizes (see [9, 33.6]), we obtain
that m is a prime power.
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Step 5. Conclusion.

As we proved in Step 3, H is an 9-group. So by applying the classification of finite
M-groups (see [13, Theorem 9.3.12]), we have the following possibilities, each of which
leads either to the fact that m is a prime power or to a contradiction.

e Assume that H = A x @, where A is abelian and @ is a g-group, for some prime
g. Let z be an element in Q \ Z(H). So |z€| is a {p, ¢}-number, whence m is a
g-power, as desired.

e Assume that H is non-abelian and has a normal abelian subgroup N of index g for
some prime g distinct from p. Notice that N ¢ Z(H), and hence, if z € N\ Z(H),
then |2€| is a {p, ¢}-number, whence m is a g-power.

e Suppose that H/Z(H) is a Frobenius group, with Frobenius kernel K/Z(H) and
Frobenius complement L/ Z(H), where K and L are abelian. It follows that cs(H) =
{L,|K/Z(H)|,|L/Z(H)|}, and so, by Step 4, m = 1, the theorem is trivially true.

o Suppose that H/Z(H) is a Frobenius group, with Frobenius kernel K/Z(H) and
Frobenius complement L/Z(H), where K is abelian and L/Z(H) is a g-group for
some prime ¢. It is easy to see that cs(H) = {1,|L/Z(H)|,|K/Z(H)||z*|: = €
L\ Z(H)}, and so, by Step 4, m is a g-power.

e Assume that H/Z(H) & Sy, and V/Z(H) is the Klein 4-group, where V is non-
abelian. Then for every z € H \ Z(H) we have that Cy(z)/Z(H) is a maximal
cyclic subgroup of H/Z(H) (see [13, p. 521]). One can then easily obtain cs(H) =
{1,6,8,12}, whence m = 2 by Step 4.

o Let H/Z(H) = PSL(2,¢") for some prime g. Note that Z(H) = Z(G)y. By
Lemma 2.4, if ¢ is a p-regular element in G such that |z¢| = m, then z € Oy (G).
Therefore, Oy (G)/Z(H) is a non-trivial normal subgroup of PSL(2,¢"), so H =
O,/ (G) is a normal subgroup of G, and the result follows by Step 4.

e Finally, assume that H/Z(H) = PGL(2,¢") for some prime ¢. Note that Z(H) =
Z(G)y . Since Oy (G) can be assumed to be a proper non-central subgroup of H,
we deduce that O, (G)/Z(H) = PSL(2, ¢"). Therefore, any class size of PSL(2, ¢")
divides a p-regular class size of G and, consequently, their least common multiple,
which is |PSL(2,¢")|, divides m. Let = € H \ Z(G), such that |z€| = m; we
then have |z | = m. Since |PSL(2,¢")| = |Op(G)|/|Z(H)| divides m, there exists
an integer ¢ such that |0y (G) : Z(H)|t = m = |H : Cx(z)|. This implies that
|Cr(z) : Z(H)|t = |H : Op(G)| = 2, and so t = 1. Therefore, |H/Z(H)| =
|H/Ow ()| |0 (G)/Z(H)| = 2m. Let y be a non-central element in H. There
exists g € G such that Cy(y) C Crs(y), where Cps(y) is a p-complement of
Cs(y), so m = |G : Ca(y)ly = |HI : Che(y)|- Taking into account that Z(H) C
Cu(y) € Crs(y) C HY and 2m = |HY9/Z(H))|, it follows that Cr(y) = Crs(y),
som = [HY : Cg(y)| = |H : Cr(y)| for every y € H\ Z(H). By Ito’s Theorem
on groups with two class sizes, m is a prime power, which contradicts the fact that
|PSL(2, ¢")| divides m. O
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Theorem 3.2. Let G be a p-solvable group and suppose that csp (G) = {1,p%, p*m}
with (p,m) = 1. Then m = g° for some prime gq.

Proof. We will proceed by minimal counterexanple to prove that m is a prime power.
Let G be a group of minimal order satisfying the hypotheses and such that m is not a
prime power. Notice that if w is a p’-element of index p*, then by minimality of its index,
w certainly can be assumed to be a g-element for some prime g # p. For the rest of the
proof, we will fix the prime ¢ and a g-element w of index p®. Let H be a p-complement
of G such that H C Cg(w).

Step 1. If y € H is a ¢'-element, then |yf| =1 or m. As a consequence, H = QR x A,
where Q and R are Sylow ¢- and r-subgroups of H, respectively, and A is abelian, and
m = ¢*r¢ with b, ¢ > 0 for some prime r # p, g.

Let y be any ¢-element of H. Then Cg(wy) = Ca(w) N Caly) C Cg(w), so by the
hypotheses y may have index 1 or m in Cg(w). Now, since Cg(w) = H Ce(wy) and
Cru(wy) = Cr(y), it follows that |H : Cu(y)| = |Ca(w) : Ca(wy)| =1 or m. If every
¢'-element of H has index 1 in H, then H has a central g-complement. Therefore, every
element of H is centralized by a {p, ¢}-complement of G, so its index is a {p, ¢}-number
and m would be a power of ¢, a contradiction. Therefore, both numbers, 1 and m, appear
as indexes of ¢/-elements in H, so we can apply Theorem 2.5. Since we have assumed
that m is not a prime power, this completes the step.

Step 2. If z is an s-element for any prime s # ¢,p and y is a g-clement such that both
z and y have index p®, then Cg(z) = Cg(y)? for some g € G.

Let H; be a p-complement of G contained in Cg(y). It is clear that there exists some
g € G such that HY C Cg(z). Then y9 € Cg(z) and, clearly, |Cg(z) : Ca(y9z)| must
be equal to 1 or m. As m is a p’ number, we can take Py to be a Sylow p-subgroup of
Cg(z) such that P, C Cg(y9z). In particular, we have P, C Cg(y?). By considering
the orders, P, is a Sylow p-subgroup of Cg(y?) and thus Cg(y?) = H{ P, = Cg(z), as
desired.

Step 3. Every s-element of G has index 1 or p*m in G for any prime s # p,q. Also, for
every s-element x, we have Cg(z) = Py Sy X Ty, where Py, and S, are a Sylow p-subgroup
and a Sylow s-subgroup of Cg(z), respectively, and T} is abelian.

Suppose that p is a non-central s-element such that | ©C! = p®. Then by the last step
we have Cg(w) = Cg(p)? for some g € G.

Let z € H be an element of prime power order. If (o(z),q) = 1, then, by Step 1, we
conclude that the index of z in H is 1 or m. Let z be a g-element, Since z € Ca(w) =
Cq(p)?, we conclude that Ca(zp9) = Cg(z) N Ca(p?) C Cg(p?): Therefore, |Ca(p9) :
Ca(zp?)| = 1 or m, and as a consequence Cg(p?) = HCg(zp%). Now it is easy to see
that |2¥| = |H : Cx(z)| = |Ca(p?) : Cg(zp)| = 1 or m.

Now we shall prove that m is a prime power, which is a contradiction. By Step 1
we have that H is solvable, which means that there must exist some prime ¢ such that
Z(H), < O4(H). If every r-element of H is central in H for every prime r dividing |H|
distinct from g, then m is certainly a g-power. So, let = be a non-central r-element of
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H for such a prime r. We take @ to be a Sylow g-subgroup of Cg(z). Let us consider
the action of @ x (z) on Qo = Oy(H). We claim that Cg,(Q) C Cg,(x). In fact, if
z € Cg,(Q) is non-central in H, then (@, z) < Cu(z) < H. However, by the above
paragraph, |Cu(2)|ly = |Cu(z)|y = |Q], so, in particular, z € @ N Qg C Cg,(x) as
claimed. We apply Thompson’s P x @-Lemma to get z € Cy(O4(H)), and thus show
that every Sylow r-subgroup of H lies in Cy(O4(H)) for every r # g¢. This means
that |H : Cy(Og4(H))| is a g-number. However, if we take w € Oq(H) \ Z(H), then
Cu(04(H)) C Cy(w) and, consequently, m is a g-number too, as desired.

Now let  be a non-central s-element, in which case we have |z%| = p?m. If y is an
{s,p}-element in Cg(x), then Cu(yz) = Ce(y) N Calz) = Calz) € Ce(y), which
implies that Cg(z) = PpSy x Ty, where P, and S, are some Sylow p-subgroup and
s-subgroup of Ca(x), respectively, and T}, is abelian.

Step 4. Every non-central {r,p}’-element has class size p*. As a consequence, G is a
{p, ¢, r}-group.

First we claim that every g-element has class size 1 or p°.

Suppose that « is a g-element of index p*m. Take a p-complement H; of G such that
Cp, (@) is a p-complement of Cg(a). Note that @ € Hy. By using Step 3, there exists
a non-central r-element 8 € G such that |3%| = p*m. Hence, |Ca(a)| = |Ce{B)| and
|Cr, (@) /(Z(G) N Hy)|r = |Ca(B)/Z(G)|» > 1. So we conclude that there exists a non-
central r-element v € Cpy, (), whence |7C| = p*m. Moreover, Ca(ay) = Cg(a)NCa(v),
and by the maximality of the index of o and v, we conclude that Cg(a) = Cgly) =
Cg(ory).

Now consider the action of (&) x () on O4(H,) and O.(H;) and, by Lemma 2.3, we
deduce that Og(H1) x O,(H1) C Co(a) = Cq(v). In particular, v € Cg, (F(H1)) C
F'(Hy), since, by Step 1, Hj is a solvable group that can be described as H; = Q1R X A4,
where (1 and R; are some Sylow ¢- and r-subgroups of Hi, respectively, and A; is
abelian. Therefore, v € O,.(H;).

Now we shall show that Ry C Cg(«), which provides a contradiction, since o has
index p%m, which is divisible by r.

Let 7 € Ry be a non-central r-element. Then, by Step 3, Ca(n) = P,R, x Ty, where
P, and R, are some Sylow p-subgroup and r-subgroup of Cg(n), respectively, and T,
is abelian. So Cw, () C (R, x T;;)® for some z € Cg(n). Since |Hy : Cu, ()] = m =
|G : Ca(n)|p, by Step 1 we deduce that |Cw, ()| = |Ce(n)lpy. Therefore, Cr, (n) =
(Rp x T;;)*. By changing the notation we may assume that Cg, (1) = R, x T;,. Now we
consider the action of R, x T;, on Or(H:) by conjugation. We claim that Co_(z,)(Ry) ©
Co,m)(Ty).

If z is a non-central element in Co, (,)(Ry), then (R,,z) C Cg(2) and, since
[Ca(2)lr = |Cam)]- = |R,|, we deduce that z € R, and hence z € Co_(z,)(T3). So
it follows that Co, (m,)(Ry) € Co,.(a1,)(Ty). Now, by using Thompson’s P x @-Lemma,
we have T, C Cy, (O-(H1)) € CH, (), which implies that a € T,y = T, where T, is the
{r, p}-complement of Cg(v), and so a € Cg(n) and hence Ry C Ca(a), as we claimed.

Now let g be any {r,p}'-element of G, which can be assumed to belong to H. Then
we have g = g4z, where g, is the ¢g-part of g and z is an element in A. Since z € Cg(gq)
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and g, has index p® in G, we deduce that there exists ¢ € @ such that z € H® C Cg(gy)-
So z € A’ and, by the fact that A’ is central in Hf, we have H* C Cg(z). Then
H* C Ca(z) N Calgy) = Calg), which implies that [¢%] =1 or p®.

Therefore, by Step 3 and the above argument, we get that every s-element of G is
central for every s & {p,q,r}. Hence, the {p,q, r}-complement of G is central, and so by
minimal counterexample we conclude that G is a {p, g, r }-group.

Step 5. Let P, be a Sylow p-subgroup of Cg(w). Then any p'-element of G centralizes
some conjugate of Py.

Let h be any p/-element of G, which can be assumed to belong to H C Ce{w).
We factorize h = h.h, with h, € R and hy € Q. As we proved in Step 3, h, has
index 1 or p®m. Assume first that h, has index p®m. Since h, € H C Cg(w), we
conclude that Cg(wh,) = Ca(h.) = Cg(h), which implies that Cg(h) C Cg(w). But
|Ca(w) : Cg(h)] is m and we obtain that Cg(h) contains some Sylow p-subgroup of
Cc(w), and consequently h centralizes some conjugate of P,,. Therefore, we may assume
that h, is central in G, whence h can be assumed to be a g-element. Thus, by applying
Step 4, h has index p®. Since by Step 3 any r-element of G has index 1 or p®m, we
can choose an r-element ¢ € Cg(h) of index pm. By minimality of the order of the
centralizer of ¢ in G, we have Cg(th) = Cg(t), so Ca(t) € Cg(h). On the other hand,
¢ lies in some p-complement HY C Cg(w9) and similarly Cg(t) C Ce(w?). Moreover,
|Co(w?) : Ca(t)| is necessarily m, so some conjugate of F, must lie in Cg(t) and,
therefore, also in Cg (k) and this case is finished.

Step 6 (OP(G) = G). Suppose that OP(G) < G. Let p be a p-regular element of
07(G) such that |p®| = p*. We have

|G| _lor(G)] 1G] _ICs(p)l

[07(G)| ICor(c)(p)] ~ |Cc(p)| |Cory(p)]’

Let P, be a Sylow p-subgroup of Cg(p). The fact that |Ce(p) : Cor(c) (p)] is a p-number
implies that

6l 1oP@) ¢l IRl _ 16l |PO"(O)
[0°(G)] 10°(G) N Ca(p)] ~ ICa(IIP,NOP(G)]  ICalp)l [0P(G)]
and thus
0°@)_ _ alB07@)] _
[Corc)(p) €] ’
where k 2 0.

By Step 5 there exists g € G such that P§ C Cg(p). Since |Calp)lp = |Ce(w)p, that
is, P, is G-conjugate to P, we deduce that p* is constant in the above equation for any
element p of index p°.

Now, let p be a p-regular element of OP(G) with 16| = p?m. So we can write p = prpq,
where p, and p, are the r-part and g-part of p, respectively. By Step 4, p, cannot be
central. Thus it is easy to see that Cg(p) = Cg(p:). Hence, we may assume that p is an
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r-element. There exists g € G such that p € Ce(w?) and hence Ce(p) € Ca(w?). Then
|Ca(w?) : Calp)| = m. As (m,p) = 1, we have Ce(w?) = Cg(p)Cor ) (w?) and

|OP(G) : Cor()(p)] = |OP(G) : Cor(a)(w?)||Core)(w?) : Cor(c)(p)]
= p*|Ce(w?) : Ca(p)|

= pFm.

Therefore, the set of p-regular class sizes of OP(G) is {1,p",p*m}. If k # 0, then by
minimal counterexample m is a prime power, which is a contradiction. Thus, k¥ = 0 and
{1,m} are the p-regular conjugacy class sizes of OP(G). This forces m to be a {p,q}-
number by Theorem 2.5, which is a contradiction by Step 1.

Step 7. There exists N a proper normal subgroup of G such that the index |G : N|
is a p'-number and Z(G) C Oppy (G) C N.

First we show that Opy(G) < G. Otherwise, G has a normal Sylow p-subgroup P.
Then G = PH, and it is easy to see that Cg(h) = Cp(h)Cu(h) for all h € H. This
implies that

|G : Cg(h)| = |P: Cp(h)||H : Cu(h)l,

which is 1, p* or p®m. Therefore, |H : Cg(h)| is 1 or m for every h € H. By Ité’s
Theorem on groups with two class sizes [9, Theorem 33.6], m is a prime power, which is
a contradiction. Hence, Opy (G) < G.

Take N to be the maximal proper subgroup in the upper pp’-series of G and note that
the index |G : N| is a p'-number, since O (G) < G by Step 6. Moreover, it is obvious
that Z(G) C Opp (G) S N < G.

Step 8. If Q is a Sylow g-subgroup of H, then QO,(G) 4G, Q < H and Q is abelian.
Moreover, R = R/Z(G), has exponent r, where R is a Sylow r-subgroup of G.

As we proved in Step 4, every g-element of G has class size 1 or p®. So, by using
Theorem 2.9, G has an abelian Sylow g-subgroup @, and QO,(G) < G. Also, by using
the fact that Q C H, it easily follows that Q < H, as required.

Now we shall show that R = R/Z(Q), has exponent r. Let z € H \ QZ(G),. Then
we factorize z = x,%4, where z, and z, are the r-part and g-part of z, respectively.
Note that 3. ¢ Z(G),. So Cg(z) C Cg(z,), and if we also take into account that z,
has index p*m in G, we conclude that Cg(z) = Cg(z,). Therefore, Cy(z) = Cr(z,),
whence |z¥| = m, by using Step 1. Now we apply Isaacs’s Theorem on groups having a
normal subgroup such that the class sizes of the elements not in the normal subgroup are
equal (see [10]). So we conclude that H/(QZ(G),), which is isomorphic to R, is cyclic,
or has exponent r. However, Z(R) = Z(G), and R cannot be abelian by Lemma 2.1, so
we conclude that R has exponent r.

Step 9. If 5 is a non-central r-element of G, then Cq(n) = P x (M) Z(G), x @y, where
P, and @, are the Sylow p-subgroup and g-subgroup of Cg(n), respectively.

We may assume that H is a p-complement of G, such that Cx(n) is a p-complement
of Cg(n). So by Step 3, Cu(n) = R, x Qn for some Sylow r-subgroup R, and Sylow
g-subgroup @, of Cg(n). Hence by the fact that Q@ < H, R, acts on (). Since @ is abelian
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and this action is coprime, it follows that @ = [Q, Ry] x Cq(Ry) (see, for example,
[9, Theorem 14.5]). On the other hand, we consider the action of B, = Ry/Z(G),
on [Q, Ry), and we claim that this action has no fixed points. Otherwise, there exist
z € [Q,Ry] and y € R, such that 29 = z. Therefore, z¥ = z, and as a consequence
z € Cgly) = PyRy x Qy, where P, and R, are some Sylow p-subgroup and Sylow
r-subgroup of Cg(y), respectively, and @y is abelian, by Step 3. Since z is a g-element,
it is obvious that z € @,. On the other hand, from the fact that y € Ry, we conclude
that Qy C Ca(y), and so @y = Qy, by considering the order equality. Thus z € @y, and
consequently z € Cg(R,). Hence, z € [Q, Ry] N Cq(Ry) = 1, and our claim is proved.
So it is well known that R,, is cyclic or is a generalized quaternion group. By considering
Step 8, R, is cyclic of order r, and therefore R, = (M) Z(G)r, so the result follows by the
obtained fact in Step 3, that is, Ca(n) = PRy X Qy, where Py is a Sylow p-subgroup of
Ca(n).

Step 10. R = R/Z(G), has order r2, and consequently it is elementary abelian.

Let N be the normal subgroup introduced in Step 7 and let M be a maximal normal
subgroup containing N. Recall that |G : N| is a p'-number. We shall show that |G/M| =
r. Tn Step 8 we proved that QO,(G) < G. So it is easy to conclude that QOp(G) C
O0,(G) C N. As a consequence, |G : N | is an r-number. Therefore, |G : M| is an
r-number, and since G/M is simple, it follows that |G/M|=r.

In the following we shall show that m, = r, and so, by using Step 9, it is obvious that
|R| = 72, whence R is abelian and, as a consequence of Step 8, elementary, as desired.

Let z be a non-central p-regular element of M. Then

Gl _|M] IG| [Cel=)|

IM[[Cu(z)|  [Ca(@)| [Cu (=)’
Let us consider a Sylow r-subgroup R, of Cg(x); the above equality then becomes
Gl M| IGl  |Rs] _ _1Gl |RM]

IM[[Cu(@)] ~ [Ce@)| [R N M|~ Cc(w)] |M]

and we have the following equality:

M| _ |Gl [RM]
ICu ()] |Ca(z)| |G
First suppose that |z¢| = p®. Therefore, R, is a Sylow r-subgroup of G, whence

G = R, M. So the above equation implies that || = || = p°.

Now suppose that [2€| = p®m. We factorize & = 2,4, where z, and z, are the r-part
and g-part of z, respectively. By Step 4, 2, is a non-central element. Then Cg(z) =
Ca(z,) N Calz,) € Ca(z,), and by the fact that z, has class/size p*m by Step 3,
it follows that Cg(z) = Cg(%,). Also, by Step 9, the Sylow r-subgroup of Cg(z,) is
R;, = (z,)Z(G),, which is a 'subgroup of M, since z, € M. On the other hand, the
equality Cg(z) = Cg(z,) implies that R, is the Sylow r-subgroup of Cg(z), that is,
R;. So RyM = M and, consequently, |zM| = pm/r.

Thus csp (M) = {1,p%p*m/r}, and by minimal counterexample it follows that m/r
must be a prime power, whence m, = r, and this completes the step.
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Step 11. Ng(P,) = C¢(F;)P,, where P, is the Sylow p-subgroup of Ca(x) for every
non-central r-element z of G.

In the following, we will show that Ng(Py) = Cg(Py)P,, where P, is a Sylow
p-subgroup of Cg(w). Then by using the fact that there exists some ¢ € G such that
P, = P}, for every r-element x of G, which is a consequence of Step 5, our claim will be
proved.

First we show that G = |J,eq(Ca(Puw)Pu)® UN, where N is the subgroup that is
mentioned in Step 7. Let g be a non-central element of G and write g = gpgp. If g €
Z(G) C N, then, since g, € N, it follows that g € N, as required. If |g§| = p®, then
by applying Lemma 2.4 we get gy € IV, and similarly we conclude that g € N. So we
may assume that ]gﬁ | = p*m and write gy = gq9r, Where g, and g, are the g-part
and r-part of g, respectively. Therefore, g, ¢ Z(G), by Step 4, and since Cg(gy) =
Ca(gq) NCea(gr) C Calgr), we conclude that Cg(gy) = Ca(gr). By using Step 5, there
exists h € G such that P! C Cg(g,) = Ca(gy), whence gy € Cg(Py)". On the other
hand, g, € Ca(g,), and by the fact that P! is the only Sylow p-subgroup of Cg(gr) by
Step 9, we conclude that g, € PP. Thus we have g € (Cg(Py)Py)", as required.

The above equality implies that

IG| < |G : No(Ca(Puw)Pu)(ICa(Py)Puw| — 1) + [N,

and as a consequence
1< JCa(P)P| =1 |V
INc(Co(Pu)Puw)l |Gl

We set lNg(Cg(Pw)Pw)| =n.If Ca(Py)Py < Ng(Cg(Pw)Pw), then

1<

N

+

3|

y

N =

which is a contradiction. Therefore, Ng(Cg{Py)Pyw) = Ce(Puw)Pw, and so it is easy to
obtain Ng(Py) = Cg(Py)Py, as desired.

Step 12. Let R be a Sylow r-subgroup of H. Then there exists a Sylow p-subgroup
P, of Cg(w) such that R C Cg(P,).

Let # € R be a non-central r-element. Since R C Cg(w), we obtain Cg(wz) =
Ce(w) N Cg(z), so we conclude that Ca(z) € Cg(w). Therefore, there exists a Sylow
p-subgroup of Cg(w), say P,, such that P, € Syl,(Ca(z)).

Now let o € R be a non-central element. Since R/Z(G), is abelian, we have [z, 0] €
Z(@G). It follows that z® = zz for some element z € Z(G). Therefore, Cq(z)* = Cg(x)
and so @ € Ng(Cq(z)) and we deduce that & € Ng(Py,). Therefore, by using the
previous step we get @ € Cg(Pyw)Puw. By the fact that Cg(P,) is a normal subgroup
of Ng(Py) = Cg(Py)P, whose index is a p-number, we conclude that it contains all
p'-elements of Ng(P,). In particular, @ € Cg(P,), and so R C Cg(P,,), as required.
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Step 13. G is r-nilpotent. B
Set G = G/Z(G),. Also, in the following we use T' = T/Z(G),. Take R to be a Sylow
r-subgroup of G. We shall show that

G=|J Cs(RMUN,
he@
where N is the normal subgroup mentioned in Step 7. ~
Let ¢ = gpgy be an element of G. If gy € Z(G), then § € N. So assume that
g € Z(@). I lgfjl = p®, then by Lemma 2.4 we have gp € O,y (G) S N,sog€N.
Thus we assume that Iggl = p®m with g, = gqgr, Where g4 and g, are the g-part and
r-part of g, respectively. So g € Z(G), and we deduce that Colygy) = Cg(_g_r) C Calgq)-
There then exists k € G such that g. € R* C Cg(g,), whence gy € C&(R"). Moreover,
gr € Ca(RP), since R is abelian. We conclude that gy € Cs(R™). On the other hand,
there exists a Sylow p-subgroup P, of Cg(w) such that R C Cc(Py), by Step 12. So
gr € R" C Cg(Py)", which implies that P! is the Sylow p-subgroup of Cg(gr), and by
Step 9 we have g, € Cg(R"), and hence g, € Cs(RM).Sog e Cs(R"), as desired. Thus,
we have proved that )
&= Ca(R"UN.
heG
This implies that _
|G| < |G: Na(Ca(R)I(ICa(R)| - 1) + NI,

and hence _ B
L eI W
= INg(Ce(R)] 1G]
We set | Ng(Ca(R))| = n. If we assume that Cg(R) < Ngz(Cg(R)), then we obtain the
following contradiction:
P
T2 no 2

Therefore, Ng(Ca(R)) = Cg(R) and consequently Ng(R) = Cg(R). Now, by using
Burnside’s Theorem (see, for example, [12, 10.1.8]), we get that G is r-nilpotent. So G
is r-nilpotent too, as required.

Step 14. Final contradiction.

Let R be a Sylow r-subgroup of H. By Step 12 there exists a Sylow p-subgroup P, of
Cg(w) such that R C Cg(P,), whence R C Ng(Py). On the other hand, by Step 13,
G has a normal r-complement K, and so it is obvious that K N.Ng (Py) is normal in
Ng(P,). Hence, R acts coprimely on K N Ng(P,,). By coprime action properties, there
exists an R-invariant Sylow p-subgroup of Ng(Py), say Fi. Note that P, is a normal
subgroup of Ng(P,,) and so P, is contained in P;. Hence, P, C Py C P for some Sylow
p-subgroup P of G, and consequently P, = N, p(Py).

Note that Np(P,)/ Py is non-trivial. Otherwise IV, p(Py) = Py, and P, would there-
fore be a Sylow p-subgroup of G, which is impossible because |wG| =p* and a > 0. We
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claim that R = R/Z(G), acts fixed-point-freely on

o~

NP(Pw) = NP(Pw)/Pun

and so, by a well-known result, R is either cyclic (which is impossible) or a generalized
quaternion group, which contradicts Step 10.

Suppose that 3 =% for some z € N, p{P,) and some t € R. We can assume that z
belongs to Cp(P,,) since, using Step 11, we have Np(P,,) = Cp(Py)Py. Then [z,%] € Py.
In particular, [z, t] centralizes z and ¢. Moreover, as  is a p-element and ¢ is an r-element,
we have 1 = [z,°®)] = [z°®) #] = [z, t]°*). However, [z, ] is a p-element, and this implies
that [z,f] = 1, that is, z € C(t). By the fact that ¢ € R € Cg(Py), we deduce that P,
is the only Sylow p-subgroup of Cg(t), and so z € P, that is, & = 1, and the action is
fixed-point-free, as desired.

O
Examples. In the following we give some examples of the cases of Theorems A and B.

e Let G = Z5 1 Qg be the semidirect product of the group Zs = () acted on by the
quaternion group Qs = (y,z: y* =1, y? = 2%, y* = y~!) such that z¥ = =" and
2% = z. Then it is easy to see that the set of 5-regular conjugacy class sizes of G is
equal to {1,2,10}. This provides an example of a group described in Theorem A.

e Let G = (Z7 x Qg) x Zs, and further let Z7 = (z), Qs = (,z: y* =1, o* =
22, y* = y~1) and Z3 = (w), where ¥ = 22, y* = 2° and 2* = 2z3y. One can
easily check that the set of the conjugacy class sizes of 3-regular elements of G is
{1,3,6}, which is an example of case (i) of Theorem B.

o The group I'(8), whose set of 7-regular class sizes is exactly {1,7,28} (see, for
example, [9, p. 147]), provides an example of case (ii) of Theorem B.
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Abstract  C*-algebras form a 2-category with *-homomorphisms or correspondences as morphisms and
unitary intertwiners as 2-morphisms. We use this structure to define weak actions of 2-categories, weakly
equivariant maps between weak actions and modifications between weakly equivariant maps. In the group
case, we identify the resulting notions with known ones, including Busby—Smith twisted actions and the
equivalence of such actions, covariant, representations and saturated Fell bundles. For 2-groups, weak
actions combine twists in the sense of Green, and Busby and Smith.

The Packer-Raeburn Stabilization Trick implies that all Busby-Smith twisted group actions of locally
compact groups are Morita equivalent to classical group actions. We generalize this to actions of strict
2-groupoids.

Keywords: Green twisted action; Busby—Smith twisted action; Fell bundle; 2-category;
Morita equivalence; Packer-Raeburn Stabilization Trick
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1. Introduction

An automorphism of a C*-algebra A is called inner if it is of the form Ad,: a — uau®
for some unitary multiplier u of A. Inner automorphisms act trivially on K-theory and all
other interesting invariants for C*-algebras; more precisely, they act trivially on a functor
F if the corner embedding F'(A) — F(Mz(A)) is invertible for all A. If two automorphisms
a1 and ag of a C*-algebra A differ by an inner automorphism, g = Ad,, 0 o3, then their
crossed product C*-algebras are isomorphic.

While these statements suggest that we may simply ignore inner automorphisms, this
is false for representations of more general groups. For instance, any automorphism of the
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