
AAECC (2013) 24:237–253
DOI 10.1007/s00200-013-0191-2

ORIGINAL PAPER

List decoding of repeated codes

Fernando Hernando · Michael O’Sullivan ·
Diego Ruano

Received: 20 October 2012 / Revised: 28 February 2013 / Accepted: 25 March 2013 /
Published online: 2 July 2013
© Springer-Verlag Berlin Heidelberg 2013

Abstract Assuming that we have a soft-decision list decoding algorithm of a linear
code, a new hard-decision list decoding algorithm of its repeated code is proposed
in this article. Although repeated codes are not used for encoding data, due to their
parameters, we show that they have a good performance with this algorithm. We
compare, by computer simulations, our algorithm for the repeated code of a Reed–
Solomon code against a decoding algorithm of a Reed–Solomon code. Finally, we
estimate the decoding capability of the algorithm for Reed–Solomon codes and show
that performance is somewhat better than our estimates.

This research was partially supported by the National Science Foundation under Grant No. CCF-0916492,
by the Danish National Research Foundation and the National Science Foundation of China (Grant
No.11061130539) for the Danish-Chinese Center for Applications of Algebraic Geometry in Coding
Theory and Cryptography, by the Spanish grant No. MTM2007-64704, and by the Spanish MINECO
under grant No. MTM2012-36917-C03-03.

F. Hernando
Department of Mathematics, Universidad Jaume I, Campus Riu Sec Castellón de la Plana, 12071, Spain
e-mail: carrillf@mat.uji.es

F. Hernando
Department of Mathematical Sciences, Aalborg University, Aalborg, Denmark

M. O’Sullivan
Department of Mathematics and Statistics, San Diego State University, San Diego, CA,
92182-7720, USA
e-mail: mosullivan@mail.sdsu.edu

D. Ruano (B)
Department of Mathematical Sciences, Aalborg University,
Fr. Bajers Vej 7G, 9220 Aalborg Øst, Denmark
e-mail: diego@math.aau.dk

123

238 F. Hernando et al.

Keywords Linear codes · Matrix-product codes · Decoding algorithm ·
Minimum distance · Quasi-cyclic codes

Mathematics Subject Classification (2000) 94B05 · 94B35

1 Introduction

List decoding was introduced by Elias [4] and Wozencraft [12]. A list decoder can pro-
duce several candidate codewords near the received vector, thus relaxing the require-
ments of unique decoding and enabling the possibility of decoding beyond half of
the minimum distance. The efficient list decoding problem was unsolved for many
years until Sudan [11] provided an algorithm for low rate Reed–Solomon codes. Later
Guruswami and Sudan [5] gave a general answer for Reed–Solomon codes that has 2
steps: the interpolation step and the root finding step.

A soft-decoding algorithm works under the assumption that the output of the
channel is probabilistic information for the reliability of input data in contrast to
a hard-decision list-decoding algorithm which assumes that a word of the ambient
space is received. Koetter and Vardy [6] created a soft-decision list decoding algo-
rithm for RS codes based on the interpolation techniques of Guruswami–Sudan. This
algorithm has 3 steps. First, probabilistic information from the channel is translated
into an assignment of multiplicities to points in the plane—the points representing
received location-value pairs. The other two steps are the interpolation and root finding
steps.

In this paper we consider the repeated code of a linear code C ⊂ F
n
q , that is

C� = {(c, . . . , c) : c ∈ C} ⊂ F
�n
q , for some � ≥ 2. We present a (hard-decision) list

decoding algorithm for repeated codes, based on a soft-decision list decoding algorithm
for the constituent code, C . In our algorithm, the multiplicity step is based on the
algebraic structure of the code, rather than the information from the channel. Namely,
it is an interpolation problem for a single block taking into account the information
provided by the whole codeword. As far as the authors know, this is a novel idea in
interpolation decoding. We consider two multiplicity assignment methods in detail,
each of them gives rise to a different decoding algorithm. The first choice maximizes
the score and, therefore, the error correction capability. The second one minimizes the
sum of the multiplicities, thus it minimizes the computational time complexity.

Repeated codes do not have good parameters, but we remark that the minimum
distance of a linear code is only an estimate of unique-decoding capability, and it
is an even rougher estimate of the list-decoding performance of the code. We show
that repeated codes of Reed–Solomon codes using the algorithm in [8] and taking into
account our new set up for the multiplicities, may have similar decoding capability to a
Reed–Solomon code, with the same information ratio and length, using the algorithm
in [9]. However, significant differences in the computation time are observed since the
complexity of the first simulation depends on n instead of �n, the length of the code.
We shall compare our hard-decision list-decoding algorithm to another hard-decision
list-decoding algorithm, since it does not make sense to compare it to a soft-decoding
algorithm.

123

List decoding of repeated codes 239

Finally, we estimate the decoding capability of the algorithm for Reed–Solomon
codes. Even though the bounds assume certain properties of the error vector, they are
relatively close to experimental values in the examples.

The paper is organized as follows: In Sect. 2 we recall the soft-decision interpo-
lation problem for RS codes. In Sect. 3 we introduce our list decoding algorithm for
repeated codes. In Sect. 4, we present some simulations of the decoding algorithm
with MAGMA [2] and interpret the results. We estimate the number of errors t that
we can decode in Sections 5 and 6. Section 7 concludes the article.

2 Soft-decoding

Koetter and Vardy [6] discovered a soft-decision list decoding algorithm for RS codes
based on the interpolation techniques of Guruswami–Sudan, and later the interpolation
step was described using Gröbner bases in [1,9]. For our simulations, we use the
algorithms in [8,9] , which use the same approach, the only difference being the
multiplicity assignment. We recall in this section the soft-decoding algorithm in [8]
for Reed–Solomon codes.

Let α1, . . . , αn be n different points of the finite field Fq with q elements and let C
be the Reed–Solomon code with parameters [n, k, d] defined as

C = {(h(α1), h(α2), . . . , h(αn)) : deg(h) ≤ k − 1}.
For soft decision decoding, Koetter and Vardy [6] use reliability information provided
by the channel to assign multiplicities mi,β to each point pi,β = (αi , β) for i =
1, . . . , n and β ∈ Fq . Let M be the collection of these multiplicities,

M = {(pi,β , mi,β) : i = 1, . . . , n;β ∈ Fq}
Consider the ideal in Fq [x, y] of polynomials interpolating at the points of M with
the desired multiplicities:

IM = { f ∈ Fq [x, y] : multp(f) ≥ m f or (p, m) ∈ M}, (1)

where multp(f) denotes the multiplicity of f at p. For r = (r1, . . . , rn) ∈ F
n
q , let

hr be the interpolating polynomial at the points (αi , ri) for i = 1, . . . , n. The key
observation of Guruswami and Sudan is that for f ∈ IM and a codeword c, y − hc is
a factor of f (x, y) when

n∑

i=1

mi,ci > deg(f (x, hc)) (2)

For a given M we therefore define for each r = (r1, . . . , rn) ∈ F
n
q

score(r) =
n∑

i=1

mi,ri .

We use the (1, k − 1)-weighted degree of polynomial f = ∑
fi, j x i y j , which is

defined to be deg1,k−1(f) = max{i + j (k − 1) : fi, j �= 0}. Extend the weighted

123

240 F. Hernando et al.

degree to a monomial ordering by taking xa yb >k−1 xi y j if either deg1,k−1(xa yb) >

deg1,k−1(xi y j) or if degk−1(xa yb) = degk−1(xi y j) and b > j . We may now interpret
(2) as saying that a polynomial f (x, y) such that the score of c is larger than the
(1, k − 1)-degree of f (x, y) is divisible by y − hc. Factoring f would produce the
high scoring codeword c.

The requirement that f (x, y) pass through (αi , β) with multiplicity mi,β imposes(mi,β+1
2

)
conditions, so overall we have

N =
n∑

i=1

∑

β∈Fq

(
mi,β + 1

2

)
, (3)

conditions. There is an upper bound for the (1, k − 1)-weighted degree d of a poly-
nomial Q(x, y) given that N conditions are imposed (see e.g. [8, Proposition 3]).

Hence, we look for an interpolating polynomial of the form
∑

(i, j)∈S fi, j x i y j ,
where S ⊂ {(i, j) : i, j ≥ 0} is the subset of indices with (1, k − 1)-degree less than
d, and by choice of d, |S| > N . The minimal polynomial with respect to the >k−1
is usually called Q(x, y). One method for obtaining Q(x, y), for example [8], is to
compute a Gröbner basis of IM with respect to the (1, k − 1)-weighted degree and
pick the smallest element in it.

3 List decoding of repeated codes

Let C ⊂ F
n
q be a Reed–Solomon code with parameters [n, k, d] and generator matrix

G. We will describe the algorithm for a Reed–Solomon code, however, the algorithm
can be extended in a straightforward manner to any linear code provided with soft-
decision list-decoding algorithm.

We consider the repeated code of C ,

C� = {(c, . . . , c) : c ∈ C},

which has parameters [�n, k, �d] and generator matrix (G| · · · |G) [10, Problem 17
of Ch. 1]. We will describe a hard-decision list decoding algorithm for C� by using a
soft-decoding algorithm for C , thus we only have to define the matrix of multiplicities
from a received word.

Let c = (c1, . . . , cn) ∈ C then a typical codeword of C� is of the form

c = (c1, . . . , cn, . . . , c1, . . . , cn) ∈ F
�n
q .

One can also understand a vector of length �n as an � × n matrix. Hence, if v ∈
M(�× n, Fq) we denote by v

j
i the entry corresponding to the j th row (block) and the

i th column (position), for i = 1, . . . , n and j = 1, . . . , �. According to this notation
a word in F

�n
q may be represented as

v = (v1
1, . . . , v1

n, . . . , v�
1, . . . , v

�
n).

123

List decoding of repeated codes 241

Let c be the sent word and r = c+e the received word with error weight t = wt (e).
We have that r = (r1

1 , . . . , r1
n , . . . , r�

1 , . . . , r�
n) and c = (c1

1, . . . , c1
n, . . . , c�

1, . . . , c�
n).

Since c ∈ C�, one has that

c j
i = ck

i , for every i ∈ {1, . . . , n} and j, k ∈ {1, . . . , �}.

Therefore, r j
i = rk

i if and only if e j
i = ek

i . Hence if the received word has the same
value in several positions it is likely that the error value in these positions is zero.
Namely, the more positions where the values agree the more likely that these positions
are error free. Moreover, the bigger the base field Fq the more likely the previous
assumption is right. Based on this fact we will define the multiplicities mi,β at the
point pi,β = (αi , β) for the soft-decoding algorithm of C .

For a received word r, we define two different assignment of multiplicities. For
i = 1, . . . , n and β ∈ Fq :

(1) mi,β = |{ j ∈ {1, . . . , �} : r j
i = β}|, or

(2) mi,β = 1 if |{ j ∈ {1, . . . , �} : r j
i = β}| ≥ b, where b ∈ {1, . . . , �}. We will

consider b = ��/2� + 1 and b = ��/2� for our simulations in Sect. 4.

Example 1 Let r = (0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 2, 2) ∈ F
�n
3 a received word

with � = 5 and n = 3, i.e. using matrix notation

r =

⎛

⎜⎜⎜⎜⎝

0 0 0
0 0 0
0 0 1
0 1 1
0 2 2

⎞

⎟⎟⎟⎟⎠
.

We consider the multiplicities assignment for this word, the non-zero multiplicities
are:

m1,0 = 5, m2,0 = 3, m2,1 = 1, m2,2 = 1, m3,0 = 2, m3,1 = 2, m3,2 = 1 for
multiplicity assignment (1).

m1,0 = 1, m2,0 = 1 for multiplicity assignment (2) with b = 3.
m1,0 = 1, m2,0 = 1, m3,0 = 1, m3,1 = 1 for multiplicity assignment (2) with

b = 2.

For decoding, we will consider the soft-decision algorithm for C (for instance [8])
with these multiplicities. Trivially, we have that the computational complexity of this
algorithm for C� equals the computational complexity of the soft-decoding algorithm
for C with multiplicity assignments corresponding to the choice (1) or (2).

For instance, for the first multiplicity assignment it is O(R
1
2 n2m5) using [8], where

R = k/n is the rate of a block and m = max{m j,β : j = 1, . . . , n and β ∈ Fq}. Thus,

for the second multiplicity assignment, the complexity is O(R
1
2 n2) using [8]. Notice

that for decoding a repetition code with parameters [n�, k, �d], we perform a list
decoding of a Reed–Solomon code of length n, whilst a list decoding of a [n�, k] Reed–

Solomon code has complexity O((k/�n)
1
2 (�n)2m5) using [9]. That is, our method is

123

242 F. Hernando et al.

about �3/2 times faster than decoding a Reed–Solomon code with the same parameters.
One may consider other heuristics for multiplicity assignment between (1) and (2),
that is, 0 ≤ mi,β ≤ |{ j ∈ {1, . . . , �} : r j

i = β}|. We have considered these two
multiplicity assignments since they represent extremes between (1) maximizing the
score and (2) minimizing the time complexity.

3.1 Multiplicity assignment (1)

For a word in C�, we consider its score using the first multiplicity assignment.

Lemma 1 Let c = (c, . . . , c) be a sent codeword and let r = c + e be a received
word with wt (e) = t . Then

score(c) =
n∑

i=1

mi,ci = �n − t.

Proof Note that for i = 1, . . . , n, one has that mi,ci = � − wt (e1
i , . . . , el

i). Summing
over the n positions gives the result. 	

As the lemma shows, the score of the received word is a simple function of the
number of errors t . In Sect. 6 we investigate the interplay between the number of
conditions imposed, Eq. (3), and the score, we derive bounds for successful decoding
of t errors, and we compare the bounds with the simulation results presented in Sect. 4.

3.2 Multiplicity assignment (2)

Using the second multiplicity assignment, the score of a received word might be
lower than the one obtained using the first multiplicity assignment. Therefore, the
error correction capability is smaller. However, the computational complexity is lower
since max{m j,β : j = 1, . . . , n and β ∈ Fq} is equal to 1. Note that if mi,β = 0 for
every β ∈ Fq then we are considering an erasure at position i ∈ {1 . . . , n}.

We consider b = ��/2� + 1 because if b ≥ ��/2� + 1, then, for i ∈ {1, . . . , n},
mi,β = 0 for all β ∈ Fq but for, at most, one. Hence, we will have either an erasure (we
interpolate with multiplicity zero at that position) or we interpolate with multiplicity
one. With this choice for b the algorithm is very fast.

Remark 1 Let us compare our algorithm with some approaches in the bibliography.
A decoding algorithm for a repeated code C� can be obtained decoding every block
r j of the received word r for j = 1, . . . , � until the decoded block c′

j verifies that
(c′

j , . . . , c′
j) is at distance �(�d − 1)/2� of the received word. This is the approach of

[7] for quasi-cyclic codes, that is when C is cyclic. One could also consider C� as a
convolutional code [3]. However, all these approaches will have bad performance due
to the poor parameters of the repeated codes.

123

List decoding of repeated codes 243

4 Computer experiments

We have compared the performance of our algorithm for the repetition code of a [n, k]
Reed–Solomon code over Fpv to the list-decoding algorithm [9] for a [n�, k] Reed–
Solomon code over Fpu where u is chosen so that pu > n�. The information rate of the
two codes is the same, although the [n�, k] Reed–Solomon code uses larger symbol
size. For each code we tested a range of values for t to determine the point where
correction performance declined. We also compared the time required for decoding.
In the repeated code case, we tested the algorithm described in the previous section
for both multiplicity assignments. For the Reed–Solomon code over the larger field
we used multiplicity 1 because for higher multiplicity, the algorithm is very slow.

We have implemented in MAGMA the decoding algorithm described in Sect. 3:
given the codeword c = (0, . . . , 0) in a [n, k, d] Reed–Solomon code we consider
the repeated codeword (c, . . . , c) ∈ C�. In particular we choose n = 63, � = 5 and
several values for k. We consider t errors in t uniformly distributed random positions
among the �n positions, so it is possible that more than one error may occur in position
i . We apply the algorithm in [8] with the prescribed multiplicities described using the
multiplicity assignment (1) and (2) with b = ��/2� + 1 = 3 and b = ��/2� = 2. We
ran the procedure 10,000 times each for different values of t . We declare success if the
sent codeword is in the output list. For multiplicity assignment (2) the list has always
size one since we are doing linear interpolation, and for multiplicity assignment (1)
all the experiments produce size one as well.

1. Consider as block code the RS code with parameters [63, 14, 50] over F26 . The
repeated code with � = 5 has parameters [315, 14, 250]. Our simulations in
Tables 1 and 2 show that we can uniquely decode about 226 errors using mul-
tiplicity assignment (1), 183 errors using multiplicity assignment (2) with b = 3
and 218 errors using multiplicity assignment (2) with b = 2. However, the algo-

Table 1 List decoding [315, 14, 250] repeated code over F26 with constituent [63, 14, 50] RS code,
multiplicity assignment (1)

t 224 225 226 227 228 229 230

Number of success
10,000 1 1 1 .9999 .9996 .9992 .9989

Time 1435.190 1424.100 1428.570 1324.950 1329.510 1322.360 1322.220

Table 2 List decoding [315, 14, 250] repeated code over F26 with constituent [63, 14, 50] RS code,
multiplicity assignment (2)

t 182 183 184 185 217 218 219

Number of success
10,000 , b = 3 1 1 9999 .9997 − − −

Time, b = 3 118.710 116.330 115.590 114.55 − − −
Number of success

10,000 , b = 2 1 1 1 1 1 1 .9997

Time, b = 2 339.940 336.990 332.980 328.040 223.760 234.300 233.560

123

244 F. Hernando et al.

Table 3 List decoding [315, 14, 302] RS code over F29 , multiplicity 1

t 229 230 231

Number of success
10,000 1 1 .3662

Time 250473 252184 258162

Table 4 List decoding [315, 40, 120] repeated code over F26 with constituent [63, 40, 24] RS code, mul-
tiplicity assignment (1)

t 153 154 155 156 157 158

Number of success
10,000 1 .9999 .9999 .9998 .9999 .9999

Time 1453.680 1454.820 1458.830 1455.610 1454.390 1450.540

Table 5 List decoding [315, 40, 120] repeated code over F26 with constituent [63, 40, 24] RS code, mul-
tiplicity assignment (2)

t 110 111 112 113 111 149 150 151

Number of success
10,000 , b = 3 1 .9999 1 1 .9997 − − −

Time, b = 3 327.160 322.680 318.270 315.290 309.640 − − −
Number of success

10,000 , b = 2 1 1 1 1 1 1 1 .9999

Time, b = 2 559.470 557.950 554.180 553.580 553.720 462.040 455.150 452.330

rithm using multiplicity assignment (2) with b = 3 is about 12 times (resp 6 times
with b = 2) faster than the algorithm using multiplicity assignment (1).
We compare the previous algorithms with list decoding of the RS code over F29

with parameters [315, 14, 302]. Using multiplicity one we can decode about the
same number of errors as with multiplicity assignment (1) but it is 176 times
slower than the one with multiplicity assignment (1) and 1,077 times slower than
the simulation with multiplicity assignment (2) and b = 2, see Table 3.

2. Consider as block code the RS code with parameters [63, 40, 24] over F26 . The
repeated code with � = 5 has parameters [315, 40, 120]. Our simulations in
Tables 4 and 5 show that we can uniquely decode about 153 errors using mul-
tiplicity assignment (1), 110 errors using multiplicity assignment (2) with b = 3
(resp 150 errors with b = 2), but the algorithm using multiplicity assignment (2)
is about 4.4 times faster with b = 3 (and 3.2 times faster with b = 2) than the
algorithm using multiplicity assignment (1).
We compare the previous algorithms with list decoding of the RS code over F29

with parameters [315, 40, 276]. With multiplicity one we can decode more errors
(177, see Table 6) than with multiplicity assignment (1) but it is 116 times slower
than the one with multiplicity assignment (1) and it is 372 times slower than the
one with multiplicity assignment (2) and b = 2.

3. Consider as block code the RS code with parameters [63, 54, 10] over F26 . The
repeated code, with � = 5, has parameters [315, 54, 50]. Our simulations in

123

List decoding of repeated codes 245

Table 6 List decoding [315, 40, 276] RS code over F29 , multiplicity 1

t 175 176 177 178

Number of success
10,000 1 1 1 .2912

Time 161480 169346 169805 151520

Table 7 List decoding [315, 54, 50] repeated code over F26 with constituent [63, 54, 10] RS code, multi-
plicity assignment (1)

t 93 94 95 96 97 98 99

Number of success
10,000 1 1 .9999 .9999 1 .9999 .9997

Time 1379.150 1372.370 1381.790 1388.470 1398.770 1405.480 1418.600

Table 8 List decoding [315, 54, 50] repeated code over F26 with constituent [63, 54, 10] RS code, multi-
plicity assignment (2)

t 60 61 62 64 88 89 90

Number of success
10,000 , b = 3 1 1 1 .9997 − − −

Time, b = 3 539.10 540.940 530.780 527.040 − − −
Number of success

10,000 , b = 2 1 1 1 1 1 1 .9999

Time, b = 2 614.080 618.220 613.190 611.620 607.170 605.460 596.280

Table 9 List decoding [315, 54, 262] RS code over F29 , multiplicity 1

t 150 155 156 157

Number of success
10,000 1 1 1 .2657

Time 115934 124500 125797 129186

Tables 7 and 8 show that we can uniquely decode about 94 errors using multi-
plicity assignment (1) and 62 errors using multiplicity assignment (2) with b = 3
(resp 89 with b = 2). However, the algorithm using multiplicity assignment (2)
with b = 3 is about 2.5 times faster (2.2 times faster with b = 2) than the algorithm
using multiplicity assignment (1).
We compare the previous algorithms with list decoding of the RS code over F29

with parameters [315, 54, 262]. Using multiplicity one, we can decode more errors,
about 156, than with multiplicity assignment (1) but it is 89 times slower than
the one with multiplicity assignment (1) and it is 207 times slower than with
multiplicity assignment method (2) and b = 2, see Table 9.

4. Finally, we consider an example over a field with characteristic 3. Consider as
block code the RS code with parameters [26, 14, 13] over F33 . The repeated code
with � = 5 has parameters [130, 14, 65]. Our simulations in Tables 10 and 11
show that we can uniquely decode 65 errors using multiplicity assignment (1) and
46 errors using multiplicity assignment (2) with b = 3 (resp 53 with b = 2).

123

246 F. Hernando et al.

Table 10 List decoding [130, 14, 65] repeated code over F33 with constituent [26, 14, 13] RS code, mul-
tiplicity assignment (1)

t 62 63 64 65 66

Number of success
10,000 1 1 1 1 .9998

Time 254.390 254.590 255.620 254.980 256.400

Table 11 List decoding [130, 14, 65] repeated code over F33 with constituent [26, 14, 13] RS code, mul-
tiplicity assignment (2)

t 46 47 48 49 52 53 54

Number of success
10,000 , b = 3 1 .9999 1 .9999 − − −

Time, b = 3 55.360 49.280 51.850 45.150 − − −
Number of success

10,000 , b = 2 − − − − 1 1 .9999

Time, b = 2 − − − − 97.230 96.940 96.540

Table 12 List decoding [130, 14, 117] RS code over F35 , multiplicity 1

t 75 76 77 78

Number of success
10,000 1 1 1 0.2769

Time 10055 10244 10320 10193

However, the algorithm using multiplicity assignment (2) with b = 3 is about 4.7
times faster (2, 7 times faster with b = 2) than the algorithm using multiplicity
assignment (1).
We compare the previous algorithms with list decoding of the RS code over F35

with parameters [130, 14, 117]. Using multiplicity one, we can decode more errors
(77 errors, see table 12) than with multiplicity assignment (1) but it is 40 times
slower than the one with multiplicity assignment (1) and it is 106 times slower
than with multiplicity assignment (2) and b = 2, see Table 12.

We consider a list decoding algorithm with multiplicity 1 for the RS codes due to
the fact that the times obtained in Tables 3, 6, 9, 12 show that higher multiplicity would
be impracticable. These experiments clearly show advantages to using a repeated code
and our method for decoding as compared to using a low rate Reed–Solomon code.
The decoding complexity is much lower and the correction capability is quite similar—
even better in the very low rate example—for the repeated code. Although the repeated
code does not have good parameters, it is because a rare few codewords are “close”
to the sent codeword. However, these have little affect on the decoding performance.

5 Bounds for the correction capability using multiplicity assignment (2)

We consider the decoding capability of this algorithm for the repetition code of a
Reed–Solomon code with b = ��/2� + 1 and b = ��/2�. The decoding capability

123

List decoding of repeated codes 247

of the soft-decoding algorithm for Reed–Solomon codes can be found in [8, Section
IV]. However, the bounds are obtained in terms of the interpolation multiplicities and
we cannot infer a bound in terms of the weight of the error vector. In order to obtain
such a bound, we should assume that the error vector verifies an additional condition
for performing our analysis.

Theorem 1 The algorithm introduced in Sect. 3 using the second multiplicity assign-
ment for a Reed–Solomon repetition code [n�, k, �(n − k + 1)] can decode at least
the following number of errors if the error vector e verifies the following assumption:
for every i ∈ {1, . . . , n} and β ∈ Fq \{0},

#{e j
i = β : j = 1, . . . , �} ≤ b − 1.

– For b = ��/2� + 1 and � odd,

(n − k)

(⌊
�

2

⌋
+ 1

)
+

⌊
�

2

⌋
errors.

– For b = ��/2� + 1 and � even,

(n − k)

⌊
�

2

⌋
+

⌊
�

2

⌋
− 1 errors.

– For b = ��/2� and � odd,

(n − k)

(⌊
�

2

⌋
+ 2

)
+

(⌊
�

2

⌋
+ 1

)
errors.

– For b = ��/2� and � even,

(n − k)

(⌊
�

2

⌋
+ 1

)
+

⌊
�

2

⌋
errors.

Proof Notice that the constituent code is a MDS code. Under the assumption that
#{e j

i = β : j = 1, . . . , �} ≤ b − 1 for every i ∈ {1, . . . , n} and β ∈ Fq \ {0}
we guarantee that we only have erasures (we have no errors) and we assign to them
multiplicity zero. An erasure MDS code can correctly decode a received word if k
symbols are non-corrupted, in our setting, this means that we have assigned multiplicity
one. The point (αi , r j

i) is assigned multiplicity one if and only if b blocks have the
same value in the i th position. Therefore (n−k) positions can be corrupted in ��/2�+1
blocks and we still can decode it correctly if b = ��/2� + 1 and � is odd, ��/2� if
b = ��/2� + 1 and � is even, (��/2� + 2) if b = ��/2� and � is odd, (��/2� + 1) if
b = ��/2� and � is even.

In the other k positions there could be at most ��/2� errors to guarantee success,
i.e. to obtain an erasure in such position, if b = ��/2� + 1 and � is odd, ��/2� − 1 if

123

248 F. Hernando et al.

b = ��/2� + 1 and � is even, ��/2� + 1 if b = ��/2� and � is odd, ��/2� if b = ��/2�
and � is even.

Summing up all these values we get the above bound. 	

Remark 2 Let us compute these bounds for the examples in previous section.

– For the [63, 14, 50] RS code and � = 5 and b = 3 Theorem 1 tell us that we
can decode 149 errors while if b = 2 we can decode 199 errors. If we check the
computer experiments in Table 2 we can successfully decode 183 errors for b = 3
and 218 errors for b = 2 respectively.

– For the [63, 40, 50] RS code and � = 5 and b = 3 Theorem 1 tell us that we can
decode 71 errors while if b = 2 we can decode 95 errors. If we check the computer
experiments in Table 5 we can successfully decode 113 errors for b = 3 and 150
errors for b = 2 respectively.

– For the [63, 54, 50] RS code and � = 5 and b = 3 Theorem 1 tell us that we can
decode 29 errors while if b = 2 we can decode 39 errors. If we check the computer
experiments in Table 8 we can successfully decode 61 errors for b = 3 and 89
errors for b = 2 respectively.

– For the [26, 14, 13] RS code and � = 5 and b = 3 Theorem 1 tell us that we can
decode 38 errors while if b = 2 we can decode 51 errors. If we check the computer
experiments in Table 11 we can successfully decode 53 errors for b = 2 and 46
errors for b = 3 respectively.

Therefore, we claim that we can use our bounds as a conservative estimate of the real
decoding capacity, especially for low rate codes, independently of the assumptions.

Note that our assumption in Theorem 1 for the error vector e will hold with a high
probability if the field is not too small: the higher the base field is, the more unlikely is

that two error positions e j
i and e j ′

i are equal, for i = 1, . . . , n. We compute now when
this algorithm can decode more errors than a [n�, k, n� − k + 1] Reed–Solomon code
with a unique decoding algorithm. Notice that we perform list decoding of a Reed–
Solomon code over Fq and we compare it with a unique decoding of a [n�, k, n�−k+1]
MDS code over Fq (if it exists) or over a higher field.

– If b = ��/2� + 1 and � is odd, i.e., � = 2�′ + 1 where �′ = ��/2�.

(n − k)

(⌊
�

2

⌋
+ 1

)
+

⌊
�

2

⌋
≥

⌊
n� − k + 1

2

⌋
≥ n� − k + 1

2

We compare the leftmost and rightmost sides of the formula. We have that

2(n − k)(�′ + 1) + 2�′ ≥ 2n�′ + n − k + 1

2n�′ + 2n − 2k(�′ + 1) + 2�′ ≥ 2n�′ + n − k + 1

n + 2�′ − 1 ≥ k(2�′ + 1)

k ≤ n + 2�′ − 1

�

For example if n = 63, � = 5, �′ = 2 then for k ≤ 13 we can correctly decode at
least up to the half of the minimum distance of the corresponding Reed–Solomon

123

List decoding of repeated codes 249

code. According to our computations for k = 14 we can indeed decode about 187
errors but a Reed–Solomon code can correct 150 errors.

Analogously, we have that:

– If b = ��/2� + 1 and � is even, i.e., � = 2�′ where �′ = ��/2�, then

k ≤ 2�′ − 3

2�′ − 1
< 1.

Therefore, we can conclude that one should not consider � even for b ≥ ��/2�+1.
– If b = ��/2� and � is odd, i.e., � = 2�′ + 1 where �′ = ��/2�, then

k ≤ 3n + 2�′ + 1

2�′ + 3

For example if n = 63, � = 5, �′ = 2 then for k ≤ 27 we can correctly decode at
least up to the half of the minimum distance of the corresponding Reed–Solomon
code. According to our computations for k = 14 we can indeed decode about 219
errors but a Reed–Solomon code can correct 150 errors.

– If b = ��/2� and � is even, i.e., � = 2�′ where �′ = ��/2�, then

k ≤ 2n + 2�′ − 1

2�′ + 1
.

For example if n = 63, � = 4, �′ = 2 then for k ≤ 25 we can correctly decode at
least up to the half of the minimum distance of the corresponding Reed–Solomon
code.

6 Bounds for the correction capability using multiplicity assignment (1)

As mentioned in Sect. 2, the interpolation problem consists in finding a bivariate
polynomial, Q(x, y), passing through the points pi,β with multiplicity mi,β , where
the multiplicities are described in Sect. 3. Therefore, we compute a Gröbner basis
of the ideal IM , defined in (1), with respect to the (1, k − 1)-weighted degree and
consider the smallest element in this basis. Succesful decoding is ensured when for
some integer d the following two conditions are satisfied:

(i) The number of monomials of (1, k −1) degree at most d is larger than the number
of conditions imposed.

(ii) The score of the sent codeword c is larger than d.

The first item ensures the existence of a polynomial f ∈ IM of weighted degree at
most d and the second ensures that y − hc is a factor of f .

In the rest of this section we analyze when both conditions are simultaneously
satisfied in the context of quasi-cyclic codes with multiplicity assignment (2). Let r
be the received word, let t be the number of errors, and for each i = 1, . . . , n let τi be
the number of errors in position i . Thus,

∑n
i=1 τi = t .

123

250 F. Hernando et al.

Let us start with condition (ii). By Lemma 1 the score of r is �n − t . Let a, b be the
unique integers satisfying 0 ≤ b < k − 1 and

�n − t − 1 = a(k − 1) + b

Now consider condition (i). For a ≥ 0 and 0 ≤ b ≤ k − 2 let Pa,b be the set of
monomials with (1, k − 1)-weighted degree lower than or equal to a(k − 1) + b. The
number of monomials in Pa,b is

(k − 1) + 2(k − 1)+· · ·+a(k − 1) + (a + 1)(b + 1) = a(a + 1)

2
(k − 1) + (a + 1)(b + 1).

(4)

Thus, comparing (4) with (3) we get the following condition:

(k − 1)
a(a + 1)

2
+ (b + 1)(a + 1) ≥

n∑

i=1

∑

β∈Fq

(
mi,β + 1

2

)
+ 1 (5)

where M is the multiplicity matrix derived from r according to multiplicity assignment
(2). In order to analyze the multiplicity matrix we will make a simplifying assumption:
If two errors occur at position i and blocks j, k then r j

i �= rk
i . That is,

e j
i �= ek

i . (6)

If the base field is large and � is small, this assumption is realistic.
Under the above assumption, for position i there are � − τi blocks that have the

correct value and τi that are incorrect, but unequal to one another. The number of
conditions imposed by the correct blocks is is

(
�−τi

2

)
, while the incorrect blocks impose

one condition each, for a total of τi . Thus the total number of conditions imposed is

n∑

i=1

((
� − τi

2

)
+ τi

)
=

n∑

i=1

((� − τi)(� − τi + 1)

2
+ τi

)

=
n∑

i=1

((�)(� + 1)

2
− τi (� − 1) + τi (τi − 1)

2

)

= n
(�)(� + 1)

2
− t (� − 1) +

n∑

i=1

τi (τi − 1)

2

Notice that the final sum A = ∑n
i=1

τi (τi − 1)

2
is the only one that depends on

the distribution of the errors. We now consider three cases. The term A is minimized
when the τi are distributed as evenly possible. Let t = nq1 + s1 with 0 ≤ s1 < n and
assume that s1 positions have q1 + 1 errors while n − s1 positions have q1 errors. The
final term is then

123

List decoding of repeated codes 251

Amin = s1
(q1 + 1)q1

2
+ (n − s1)

(q1 − 1)q1

2
= n

q1(q1 − 1)

2
+ s1q1

The final term A is maximized when the errors are consolidated into as few positions
as possible. Let t = �q2 + s2 with 0 ≤ s2 < � and assume that q2 positions have �

errors and that one position has s2 errors. The final term is then

Amax = q2
�(� − 1)

2
+ s2(s2 − 1)

2

Finally we consider the expected value of the final term A, subject to the t error
positions being randomly chosen from {(i, j) : i ∈ {1, . . . , n}, j ∈ {1, . . . , �}}. The
probability of any particular τ1, . . . , τn occurring is

∏n
i=1

(
�
τi

)

(n�
t

) .

Let x stand for indeterminates x1, . . . , xn and let 1 be an n-tuple with 1 in each entry.
Let |τ | = ∑n

i=1 τi . Consider the generating function

B(x, s) =
n∏

i=1

(1 + sxi)
� (7)

The term in st in B(x, s) is

∑

|τ |=t

n∏

i=1

(
�

τi

)
(sxi)

τi = st
∑

|τ |=t

n∏

i=1

(
�

τi

)
(xi)

τi

Taking the second derivatives of B(x, s) with respect to the xi one finds that the term

in st in
∑n

i=1
∂2 B

∂x2
i

(x, s) is

st
∑

|τ |=t

(n∏

i=1

(
�

τi

)) n∑

i=1

τi (τi − 1)(xi)
τi −2

Evaluating at x = 1 we get the term in st in
∑n

i=1
∂2 B

∂x2
i

(1, s) is

st
∑

|τ |=t

(n∏

i=1

(
�

τi

)) n∑

i=1

τi (τi − 1)

123

252 F. Hernando et al.

Table 13 Bounds for the correction capability using multiplicity assignment (1)

Code Max Exp Min Range

[63, 14]F26
203 223 227 226–230

[63, 40]F26
89 130 142 153–158

[63, 54]F26 38 69 81 94–99

[26, 14]F33 49 64 69 65–66

Thus the expected value of the final term A is the coefficient of st in (2
(n�

t

)
)−1 ∑n

i=1
∂2 B

∂x2
i

(1, s)

Computing from (7) we have

n∑

i=1

∂2 B

∂x2
i

(x, s) = s2
n∑

i=1

�(� − 1)(1 + sxi)
�−2

n∏

j=1
j �=i

(1 + sx j)
�

n∑

i=1

∂2 B

∂x2
i

(1, s) = s2
n∑

i=1

�(� − 1)(1 + s)n�−2

= s2n�(� − 1)(1 + s)n�−2

The coefficient of st in (2
(n�

t

)
)−1 ∑n

i=1
∂2 B

∂x2
i

(1, s) is therefore

Aexp = n�(� − 1)
(n� − 2)!

(t − 2)!(n� − t)!
(n� − t)!t !

2(n�)! = t (t − 1)(� − 1)

2(n� − 1)

In the following table for each code considered in Sect. 4 we show the maximum
value t for which the algorithm is able to decode in three cases: for the worst scenario,
for the expected scenario, and for the best scenario (i.e. using Amax, Aexp, Amin).
We also list the range where experiments showed that decoding capability began to
decline. It is interesting to see that the experimental results are somewhat better, even
better than the best scenario (using Amin), particularly at higher rate. In the simulations,
the number of monomials less than the leading term of the minimal Q(x, y) that was
computed is noticeably smaller than the number of conditions imposed. In other words,
the conditions imposed by interpolation are not independent. We have no explanation
for this phenomenon, but it appears to be the key to the performance beyond our
estimates (Table 13).

7 Conclusion

An efficient list-decoding algorithm for repeated codes, in particular for repeated
Reed–Solomon codes is presented. The theoretical and experimental results show that

123

List decoding of repeated codes 253

decoding repeated codes with this algorithm yields surprisingly good error correction
performance, nearly comparable to that of a Reed–Solomon codes over a larger field.
Furthermore, the computational burden of the repeated code is much lower because
of the smaller field size.

References

1. Alekhnovich, M.: Linear Diophantine equations over polynomials and soft decoding of Reed–Solomon
codes. IEEE Trans. Inf. Theory 51(7), 2257–2265 (2005)

2. Bosma, W., Cannon, J., Playoust, C.: The magma algebra system. I. The user language. J. Symb.
Comput. 24(3–4), 235–265 (1997)

3. Dumer I.I.: Concatenated codes and their multilevel generalizations. In: Pless, V. Huffman W. C. (eds.)
Handbook of Coding Theory, vol. I, II, pp. 1911–1988. North-Holland, Amsterdam (1998)

4. Elias, P.: List decoding for noisy channels. Research Laboratory of Electronics, Massachusetts Institute
of Technology, Cambridge, Mass., Rep. No. 335 (1957)

5. Guruswami, V., Sudan, M.: Improved decoding of Reed–Solomon and algebraic-geometry codes. IEEE
Trans. Inf. Theory 45(6), 1757–1767 (1999)

6. Koetter, R., Vardy, A.: Algebraic soft-decision decoding of Reed–Solomon codes. IEEE Trans. Inf.
Theory 49(11), 2809–2825 (2003)

7. Lally, K.: Quasicyclic codes—some practical issues. In: Proceedings. 2002 IEEE International Sym-
posium on Information Theory (2002)

8. Lee, K., O’Sullivan, M.E.: An interpolation algorithm using Groebner bases for soft-decision decoding
of Reed–Solomon codes. In: Proceedings. 2006 IEEE International Symposium on Information Theory,
vol. 7, pp. 2032–2036 (2006)

9. Lee, K., O’Sullivan, M.E.: List decoding of Reed–Solomon codes from a Gröbner basis perspective.
J. Symb. Comput. 43(9), 645–658 (2008)

10. MacWilliams, F.J., Sloane, N.J.A.: The theory of error-correcting codes, vol. 16. North-Holland
Publishing Co., North-Holland Mathematical Library, Amsterdam (1977)

11. Sudan, M.: Decoding of Reed–Solomon codes beyond the error-correction bound. J. Complexity. 13(1),
180–193 (1997)

12. Wozencraft, J.M.: List decoding. In: Quarterly Progress Report, pp. 90–95. Research Laboratory of
Electronics, MIT, Cambridge, MA (1958)

123

	List decoding of repeated codes
	Abstract
	1 Introduction
	2 Soft-decoding
	3 List decoding of repeated codes
	3.1 Multiplicity assignment (1)
	3.2 Multiplicity assignment (2)

	4 Computer experiments
	5 Bounds for the correction capability using multiplicity assignment (2)
	6 Bounds for the correction capability using multiplicity assignment (1)
	7 Conclusion
	References

