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Abstract 

 

The use of nanoparticles has become of great interest in different industrial applications. The 

spray drying of nanofluids forms nanostructured grains preserving the nanoparticle 

properties. In this work, individual droplets of silica nanofluids were dried in an acoustic 

levitator. Tests were carried out under different experimental conditions to study the 

influence of the variables on the drying process. The drying curves were experimentally 

obtained and REA model was used to obtain the theoretical curves and the correlations for 

the activation energy. The critical moisture content theoretically obtained was used to predict 

the grain diameter.  
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1 Introduction 

In industry, spray drying is an essential unit operation for the production of granular 

powders with specific characteristics, granule size and moisture content, regardless of the 

dryer capacity and the product heat sensitivity. Spray drying is the transformation of a given 

feedstock from a fluid state into a dried particulate structure by spraying the feed into a hot 

drying medium. This causes the evaporation of the droplet solvent, leading to formation of 

particulates [1]. This process is used in the manufacture of many industrial products such as 

ceramics, food products, detergents and pharmaceuticals. 

The drying behavior of a liquid-solid suspension droplet can be divided into two 

stages [1-3], whose kinetics are shown in Figure 1. In the first stage, the droplet containing 

large amount of liquid content enters the hot medium, undergoes sensible heating up to wet 

bulb temperature and then evaporation from the droplet surface starts (AB section) resulting 

in the droplet shrinking. The moisture migrates from the inner part of the droplet, rapidly 

enough to maintain surface saturation. As a consequence, the droplet surface is fully wetted 

and the liquid evaporates at the droplet surface. This stage is also known as the constant rate 

drying stage, since the change of droplet moisture per unit time remains steady (BC section). 

The diameter, d, decreases following the d2-relation, and the maximum drying rate value is 

achieved. At the critical moisture content (point C), the entire droplet surface cannot longer 

be maintained saturated by moisture migration and the second drying period begins. In this 

period, called falling rate period, a shell is formed on the droplet surface and the evaporation 

occurs through the pores of that shell, with the vapor diffusing out to the surface (CE 

section). The drying rate decreases as the thickness of the shell increases. Two sub-sections 

can appear in this period depending on the material that is being dried (CD and DE sections). 

The drying process ends when the granule achieves the equilibrium moisture content with the 

surrounding medium.  
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In the drying process of a small droplet containing nanoparticles, just after the shell 

formation at the end of the first drying period, the liquid forms concave menisci between 

particles that produce attractive capillary forces between the shell particles, promoting the 

acceleration of that shell towards the droplet centre. Due to the liquid menisci on the outer 

shell surface, the shell undergoes compressive stress and shrinks leading the shell to 

submerge into the liquid [4, 5]. That liquid covers again the droplet surface and evaporates 

freely until its level is reduced to create menisci between particles. These menisci lead the 

shell to shrink again. As a result, a transition period between first and second drying stages 

appears. The process of evaporation in the transition period comprises series of surface 

evaporation and shell shrinking processes. When the shell strength becomes greater than the 

capillary forces, due to its thickness, the shell shrinking stops and the second drying period 

begins. 

The main objective of the researchers in this field is to know the effect of the 

variables that influence the drying process on the final properties to be able to control it and 

therefore to produce granules of desired characteristics suitable for each application. In this 

way, the main parameters affecting the drying can be classified in operational conditions: 

inlet air temperature, relative humidity of the air, atomizing suspension feed rate and spray 

size distribution; and feed characteristics: initial solid mass load, primary particle size, 

viscosity, flocculation state and surface tension.  

Drying models predicting the drying kinetics of single droplets can be used to relate 

the final powder properties (such as the final grain diameter, mean porosity, compacity, 

morphology, microstructure, etc.), with the spray dryer design and process parameters. 

Moreover, in recent years, the spray drying process has become a frequent subject for 

computational fluid dynamics (CFD) modeling [6, 7]. However, it is important to be able to 

correctly model the drying kinetics of the suspended droplets in order to predict the 
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performance of a spray dryer. If the drying model is inaccurate, the following predictions will 

also be inaccurate. All the information obtained from the drying of single droplets can be 

introduced in the CFD model to conduct simulations of industrial scale spray dryers. These 

simulations can be used to study and control the behavior of the spray dryers and the drying 

process to improve the process efficiency and the quality of the final product. 

The drying models available can be classified in three different categories [3, 8-10]: 

1. Models that solve simultaneously the continuity, momentum, energy, and species 

conservation differential equations using the diffusion equations and coefficients [4, 5, 

11-19]. The solution of these set of equations is complicated by the presence of a moving 

domain boundary because of the shrinking droplet radius in the first drying stage and the 

receding interface between the dry crust and wet core regions of the wet particle in the 

second drying stage. The numerical solution of such models is a complex problem and 

demands significant computer resources and time. In addition, these models usually 

require knowledge of many coefficients like thermal and mass diffusivities, particle 

porosity, critical moisture content, etc., under different moisture and temperature 

conditions. 

2. Models based on a semi-empirical approach that utilizes the concept of characteristic 

drying curve (CDC) [9, 13, 20-22]. In this model the first drying stage is simplified by 

analogy with the evaporation of a small pure liquid droplet. For the falling rate period, the 

drying rate in a CDC model is determined by the drying rate at the end of the first drying 

stage multiplied by a function depending on critical, equilibrium, and current moisture 

content values. The model is simple and does not require high mathematical efforts. 

However, it is necessary to know a priori the critical moisture content that depends on the 

drying conditions. The model is suitable for materials in which the first dying period does 
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not exist or is very short. In this case the critical humidity can be replaced by the initial 

moisture content. 

3. Drying models based on reaction engineering approach (REA) [8-10, 16, 22-26]. The 

main theory of the model considers the drying as an activation process in which an energy 

barrier has to be overcome for moisture removal to occur. In the mathematical expression 

of the model, the vapor concentration gradient is considered the driving force for the 

drying. The water removal process is represented by an activation energy which value is 

zero when the solid is fully covered by water, and increases as the moisture content 

decreases, due to the difficult of water removal for low contents. Authors have found this 

model promising due to its simplicity and high accuracy at different drying conditions.  

However, the model applicability is limited by the range of materials whose drying 

behavior has already been experimentally studied (skim milk, whole milk, lactose, 

proteins, sucrose, maltodextrin…). The reason is that the model uses a correlation for the 

activation energy that depends on the material and drying conditions, and has to be 

determined experimentally. 

All the previously mentioned models have to be checked with experimental data 

obtained from the drying process of single droplets. In all the previous works mentioned 

above the experimental data were obtained drying single droplets by means of the glass 

filament method. This method has the disadvantage that the droplet is in contact with the 

filament and it is not completely isolated. In the last decade acoustic levitators has been 

extensively used to study the drying behavior of pure liquids, multi-component liquids and 

liquid–solid suspension droplets [2, 27-37]. The use of levitators has allowed measuring the 

droplet shape, the evaporation rates in both drying periods and the humidity curves. Levitator 

tubes (acoustic, optical, electrodynamic and aerodynamic types) exhibit some advantages 

over conventional methods, since there is no mechanical contact with the droplet. The 



7 
 

experimental complexity of the ultrasonic levitators is less than the aerodynamic ones and 

allows working with almost any liquid over a wide range of diameters of droplets (from 0.1 

mm to several mm). In contrast to the other levitation techniques, acoustic levitation has the 

advantage of not requiring any specific physical properties (e.g. a certain electric charge or 

refractive index) of the sample. Moreover, acoustic levitation provides stable sample position, 

easy access to the sample and low costs for supply and operation [38].  

In this work single droplets of silica-water nanofluids were dried in an acoustic 

levitator under different experimental conditions of initial solid mass load, YS, pH value, salt 

concentration, [NaCl], air temperature, T, and initial droplet volume, V0. The ANOVA 

method was used to analyze the effect of the input variables on the first period transfer rate. 

The drying curves (X=f(t)) were experimentally obtained for each conducted test and the 

REA model was used to model the experimental data. To do this, correlations for the 

activation energy were obtained for this system at different drying conditions. Moreover, the 

parameters obtained for each measured test were found to depend on the solid content and the 

drying temperature and were fitted to a multiparametric equation. These correlations enlarge 

the existing database which only contains activation energies for materials used in the food 

industry.  

2 Experimental set-up and measurement techniques 

The experimental set-up is composed of three systems (Figure 2 a) [32]: 

─ An acoustic levitator consisting of an ultrasonic 58 kHz horn and a concave reflector 

(tec5 AG Sensorik und Systemtechnik). The levitator was modified in order to work 

at high temperature conditions up to 150ºC. Two separated metallic chambers can be 

found in the levitator tube (Figure 2 b). The section identified as “cold chamber” 

contains the ultrasonic transducer of the levitator. The temperature is controlled by 
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forced convection using cold air flow. The second section is identified as “hot 

chamber”, and contains the lower part of the levitator, the reflector and the multiphase 

droplet. The temperature of this chamber is controlled by an electric heater at the wall 

and an air stream that enters the levitator tube through an array of holes located in the 

reflector.   

─ An optical system consisting of a white light source with a diffuser and a CMOS 

camera with a macro lens. The CMOS camera (UI-1220M, IDS-Imaging 

Development Systems GMBH) (752x480 pixels, 87 frames per second) and the back-

light illumination system are used to measure the droplet cross-sectional area and the 

vertical position of the droplet during the drying process.  

─ A gas conditioning system (not shown in the figure) controls the temperature, flow 

rate and relative humidity of the air inside the levitator tube. The air conditioning 

system (CEM System W-202A, Bronkhorst High-Tech B.V) is composed of an air-

drying cartridge, a two-mass flow controllers and a mixer/evaporation unit. This 

system allows temperatures up to 200ºC and a humidity up to a dew point of T=80ºC. 

The flow rate of the air stream was set to 0.5 l/min and it was used to ensure constant 

drying conditions around the droplet and to ventilate the acoustically induced vortex 

system around the droplet from liquid vapor. 

The experimental set-up allows the selection and control of the input parameters and 

also the recording of the drying process of the droplet within the levitator tube. The images 

were processed with Matlab, so that the equivalent diameter and the position of the droplet 

during the drying process could be obtained. This information was used to calculate the mass 

transfer rate of the two drying periods and the moisture content at each time of the process.  

In order to calculate the mass transfer rates, equations 1 to 3 were derived from the 

work by Kastner et al. [30]. The instantaneous mass transfer rate for the first drying period 
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(mL,1) is calculated by the decrease of the droplet volume. This mass transfer rate is defined 

as, 

21
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where ρL is the liquid density, d is the droplet diameter and the sub-indexes 1 and 2 denote 

two consecutive instants during the drying process. 

The mass transfer rate of the second drying period (mL,2) is calculated using the position 

of the droplet inside the acoustic field. If this position is assumed to be dependent on the 

droplet density, the mass transfer rate during this period can be calculated as, 
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where y21 and y22 are the droplet positions at the beginning and the end of the second drying 

period respectively, y(t) is the instantaneous position of the droplet, and M21 is the liquid 

mass content in the droplet at the end of the first drying period previous to the shell 

formation. It is calculated as the difference between the initial water content and the total 

evaporated water at this moment, 
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where d0 is the initial droplet diameter, df  represents the droplet diameter at the end of the 

first drying period or final grain diameter, YS the initial solid mass load in the suspension and 

ρSus  is the density of the suspension, which in turn can be evaluated as,  
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where ρS is the density of the solid particles in the suspension. 
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 With the initial water content and the liquid evaporation rates, the quantity of water 

present in the droplet/grain at each moment, can be easily calculated. The dry basis moisture, 

X,  is defined as the ratio between the water and solid contents: 

S

L

M
tMX )(

=              (5) 

where ML is the mass of water and MS is the mass of solid present in the droplet, which 

remains constant during all the drying process: 

SSusS YdM ρπ 3
06

=             (6) 

3 Suspensions and experimental matrix  

All the experiments were carried out with silica-water nanofluids. In this work, 

commercial fumed silica provided by Degussa was used. The silica chosen was Aerosil 200, 

which consists of amorphous hydrophilic silica nanoparticles with primary units of 12 nm 

and density of 2200 kg/m3 according to the manufacturer. Nanofluids with different particle 

concentrations were prepared by adding distilled water to the defined amounts of 

nanoparticles. In this method, known as the two-step method, the nanoparticles are purchased 

in dry powder and then dispersed in the liquid medium. The dispersion was made using an 

ultrasonic probe (UP400s from Hielscher Company) that has been checked to be the most 

effective dispersion system [39]. Initially, the mixture of nanoparticles with the water was 

submitted to a sonication treatment for 3 minutes. Afterwards, the pH of the nanofluid was 

modified by adding HCl or NaOH solutions (0.01 w/w). Finally, to ensure a correct 

dispersion of all the components, the nanofluids were submitted to a second sonication 

treatment during 2 minutes. For this material the isoelectric point (IEP) was experimentally 

determined from the zeta potential curves and a pH=2 value was obtained.  
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In order to gather the process experimental data and the drying kinetics at different 

experimental conditions a Design of Experiments (DoE) was planned. In this case, a matrix 

based in a fractional factorial design, 2k-1, was performed. Five variables including solid mass 

load (0.02 w/w < Y
S 

< 0.20 w/w), pH of nanofluids (2 < pH < 10), salt concentration             

(0 M < [NaCl] < 0.05 M), ambient air temperature (80ºC < T < 120ºC) and initial droplet 

volume (0.3 μl < V
0 

< 0.8 μl) were chosen to study their effect on the drying kinetics. A total 

number of 16 tests were carried out for the five input variables. Moreover, drying tests at YS 

= 0.10 were carried out to obtain correlations for the required parameters in the activation 

energy equation. The experimental correlation obtained was used to predict the drying curve 

of droplets dried at T = 100ºC and to check its applicability.  Each test was repeated from six 

to eight times in order to evaluate the reproducibility of the experimental set-up and to obtain 

a mean value for the drying kinetics. 

4 Results and discussion 

4.1 Drying behavior 

 For each of the measured experiments, the evolution of the squared-diameter and the 

position of the droplet were measured. From these curves the existence of the different drying 

periods as well as the buckling phenomenon can be analyzed. All the experimental tests 

present a first drying period, at constant rate, followed by a second drying period. The 

transition period, in which the shell shrinks and the buckling takes place, depends on the pH 

value and the interparticle forces present in the nanofluid. Figure 3 shows the obtained curves 

for two different drying conditions in which the vertical lines indicate the limits among the 

first drying period, the transition period and the second drying period. The shape of the 

droplet at different times is also shown. During the first drying period, particles move 

towards the inner part of the droplet to minimize its surface energy [40]. The surface energy 
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of the liquid-vapour interface is lower than that of the solid-vapour one and so the particles 

move, thus allowing the droplet surface to be completely wetted and the liquid to evaporate at 

the droplet surface. The droplet shrinks progressively while preserving the spherical shape. 

The onset of buckling takes place when the surface can not be kept saturated by moisture 

migration and particles collapse forming an elastic shell. The liquid that forms concave 

menisci between particles produce attractive capillary forces between them, promoting the 

acceleration of the shell towards the droplet centre. As result, the shell undergoes 

compressive stress and shrinks leading the shell to submerge into the liquid. The liquid is 

freely removed once again and the droplet diameter decreases continuously. It can be seen 

that a longer and more important transition period appears at the conditions of Figure 3 a). In 

this case the nanofluid is electrostatically stabilized (pH = 10) and the repulsion forces are 

important. When the first drying period ends and the shell is formed, the capillary forces that 

maintain the particles together have to overcome the electrostatic ones and the buckling 

process and the transition period are enhanced. The final shape of the grain is more irregular 

in this case as can be observed in Figure 3a). However, in Figure 3 b) (pH = 2, IEP) when the 

shell is formed, capillary and Van der Waals attractive forces lead the particles to aggregate 

and the droplet shrinks isotropically being the buckling process less significant. In this case 

the final grain is more spherical. The shrinkage of the shell ends when its strength becomes 

higher than the capillary forces. At this point starts the second drying period in which the 

grain diameter remains constant while the shell thickness increases due to the continuous 

incorporation of particles to the shell. Further removal of water takes place through the pores 

of the shell, increasing the difficulty of water diffusion as the shell thickness increases. This 

is the reason because the mass transfer rate decreases continuously and the drying process 

becomes slower in this stage. 
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 Regarding the position of the droplet, levitation of a single droplet occurs because the 

acoustic force is counteracting the gravity force, allowing a fixed position of the droplet 

within the levitator tube during its drying process. Both the volume and the density of the 

droplet have an effect on the vertical position relative to the adjacent pressure node. 

However, it has been observed that the density change affects the droplet position more 

strongly that the change in volume [30]. During the first drying period and shrinking periods, 

the decrease of the squared droplet diameter is almost linear and the decrease of volume 

together with the loss of mass leads to an almost constant density that results in a stable 

droplet position inside the resonator. During the second drying period the droplet diameter is 

constant; however the droplet position inside the resonator varies. The variation of the droplet 

position is due to the change in the droplet density and mass. The volume remains constant, 

but the mass of the liquid, and therefore the mass of the grain, decreases because of 

evaporation. 

 After the drying process, dried grains were analyzed by SEM (Scattering Electron 

Microscopy). Images of the internal and external structure were taken. In Figure 3 

micrographs are shown. All the drying conditions analyzed in this work produced hollow 

grains with shell formation. The degree of hollowness depends on the ability of the particles 

to rearrange and to diffuse inside the droplet during the first drying period [41-44]. The 

diffusivity of the particles depends mainly on the viscosity of the suspension which depends 

on the particle size. In this case, nanoparticles result in high viscosity suspensions and low 

diffusion coefficients compared to microparticle suspensions at the same solid content. If the 

particles can not diffuse easily, the collapse of the particles and the shell formation take place 

earlier in the drying process. As a result the final grain diameter is bigger and grains are 

hollower. 



14 
 

In all the experimental test cases in which the nanoparticles were dispersed in a salt 

solution in presence of NaCl, images show that salt crystals only appear at the grain surface, 

never in the inner part. In the drying process of droplets, during the second drying period, the 

position of the evaporation front depends on the operational conditions. As a consequence the 

diffusion of water through the pores of the shell can take place in liquid or in vapor phase. 

Inside the levitator, the acoustic stream provides a slower drying than in a spray drier and 

therefore under the experimental conditions analyzed in this work, the evaporation front is on 

the grain surface. That means that the liquid has enough time to diffuse through the particles 

and evaporates at the surface where the crystallization of the salt takes place. Size and shape 

of the crystals depends on the temperature and drying conditions. In Figure 4 images of the 

internal structure and the surface of several grains obtained under different experimental 

conditions in presence of NaCl are shown, so that the crystallization at the grain surface can 

be observed. 

4.2 Mass transfer coefficients 

 Before modeling the drying behavior of droplets, the mass transfer coefficients, hm, 

must be determined. In the drying of droplets acoustically levitated the acoustic field results 

in an acoustic stream that provides a drying mechanism stronger than the natural convection 

and dominates the process [45]. As a consequence, the available correlation provided by 

Ranz and Marshall in 1952 [46, 47] for the Sherwood number cannot be used: 

3/12/1Re6.02 ScSh +=           (7) 

where Re is the Reynolds number and Sc is the Schmidt number. 

Yarin et al., (1999) [34] developed a correlation for the Sherwood number that takes 

into account the acoustic boundary layer surrounding a levitated droplet. However, in this 

correlation the parameters that characterized the acoustic stream must be known or estimated: 
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sound pressure level, effective pressure amplitude of the incident acoustic field and angular 

frequency of the incident sound wave. Moreover, there is a parameter in the equation that 

changes as the droplet evaporates and must be re-calculated continuously.  

In this work, the mass transfer coefficients were experimentally estimated in an easy 

way, so the values obtained can be applied directly to the drying of suspension droplets under 

the same experimental conditions. As can be seen, this coefficient depends on the Reynolds 

and Schmidt numbers which in turns depend on the temperature and droplet volume. 

Therefore, for each combination of air temperature and droplet volume, the mass transfer 

coefficient was obtained from the drying of pure liquid droplets by means of the mass 

conservation equation as follows: 

[ ]avdvm
L Ah

dt
dm

,, ρρ −=            (8) 
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 Equation 9 can be simplified to obtain a differential equation easy to integrate: 

[ ]
dt

h
dd

L

avdvm

ρ
ρρ ,,2

)(
−

=                            (10) 

[ ]
t

h
dd

L

avdvm

ρ
ρρ ,,

0

2 −
+=                     (11) 

where ρv,d is the vapor density at the droplet surface (equal to the saturation vapor 

concentration for a pure liquid) and ρv,a is the vapor density in the drying air. 
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The Sherwood number for the levitator can be calculated with the following equation: 

av

m

D
dh

Sh
,

=                      (12) 

where Dv,a is the diffusion coefficient of water vapor in the air 

 Figure 5 shows the evolution of the diameter during the drying of pure liquid droplets 

under the six combinations of air temperature and droplet volume analyzed in this work. 

Mass transfer coefficients were obtained by fitting the curves to Equation 11. The 

corresponding Sherwood numbers were calculated using Equation 12. In Table 1 

experimental values and those obtained from equation 7 are shown. It can be seen that the 

acoustic stream provides a drying process slower than predicted by Ranz and Marshall for 

natural convection. In the literature revision values of the Sherwood number ranging from 2.5 

to 8 were found for droplets dried in an acoustic levitator using the theoretical correlations, 

depending on the drying conditions of air temperature and droplet volume [34, 48]. In these 

previous works bigger droplets (V0 = 1-3 μl) were dried at room temperature (T = 23 ºC). It 

can be also observed also in Table 1 that the Sherwood number increases as the droplet 

volume increases and the drying temperature decreases. Hence, Sherwood numbers higher 

than in this work were found because of these conditions.  

4.3 Analysis ANOVA for the first period mass transfer rate 

 The results obtained for the first period mass transfer rate using Equation 1 were 

analyzed by means of ANOVA method, in order to establish the influence of the input 

variables on the first drying stage. 

In the Pareto chart, the most sensitive input variables can be identified. This graph 

shows an ordered bar chart of the absolute effects scaled by P-values, essentially the number 

of standardized effects beyond the mean response. The line at 2.31 P-value represents a 
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significant level for achieving 95% confidence that a given effect did not just occur by 

chance. 

Figure 6 a) shows the Pareto chart for the mass transfer rate where only the single 

effects were included. Any cross effect results of significance for the mass transfer rate in the 

analysis. Figure 6 b) shows the variation of the mass transfer rate when input variables 

change from the lower to the upper level. It can be seen that the input variables with higher 

influence in the first period mass transfer rate were the air temperature, the initial droplet 

volume and the solid mass load. All of them have a positive effect, meaning that an increase 

in their values leads to an increase in the mass transfer rate for the first drying period.  

The drying of droplets is process controlled by heat and mass transfer. When a droplet 

gets in contact with a hot medium, there is transference of heat from the hot air to the droplet. 

This heat energy is transformed in latent heat at the droplet surface and it is used to evaporate 

the water. Then the water vapor is diffused from the droplet to the surrounding air. As a 

result, the driving forces for the drying process to take place are the gradients of temperature 

and moisture content between the droplet and the drying air. As expected, an increase in the 

drying air temperature leads to a higher temperature gradient between the heat carrier and the 

droplet surface, increasing the driving force for the drying to take place. As a result, the mass 

transfer rate in the first drying period increases.  

The mass transfer rate also increases when increasing the initial droplet volume. The 

mass transfer rate is proportional to the mass transfer coefficient as can be seen in equation 8. 

The mass transfer coefficient is related to the Sherwood number (equation 12), which in 

turns, is proportional to the Reynolds number (equation 7). From the equations mentioned 

before, it is expected that an increase in the droplet volume, which leads to an increase in the 

Reynolds number produces a higher mass transfer coefficient between the droplet and the 

surrounding air. As a result, the mass transfer rate increases.  
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4.4 Application of REA model 

The drying rate of a droplet can be expressed by means of Equation 8. However, for 

liquid-solid droplets, the vapor density at the solid-gas interface, ρv,d, is an unknown 

parameter which is time-dependent during the drying process. This parameter is related to the 

saturation vapor concentration, ρv,sat, (evaluated at the droplet temperature, Td) by means of 

the relative humidity at the interface, ϕsurf. This relative humidity can be expressed in terms 

of the activation energy needed for the drying process to take place: 
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⎞
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ΔEv is expected to decrease to zero when liquid water fully covers the solid (making 

ϕsurf =1) and increase to larger values when the average water content becomes small.  

From Equations 8 and 13 the evolution of the moisture content can be obtained by 

means of the following equation: 
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where X is the dry basis moisture content, A is the droplet area and R  is the gas constant. 

 The temperature of the droplet can be considered uniform through the droplet for Biot 

numbers less than 0.1 [10]. In this work, the value of this parameter is less than 0.07 for all 

tests and therefore, the droplet temperature could be considered uniform. The evolution of the 

droplet temperature was calculated by means of the energy balance equation with the help of 

the experimental data obtained for the drying curves. 
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were md is the overall mass of the droplet, Cp.d is the specific heat capacity of the droplet, hC 

is the heat transfer coefficient, ΔHv is the latent heat of water evaporation and dmd/dt is the 

change of liquid content inside the droplet during the drying process.  

 In Figure 7 the evolution of the droplet temperature during the drying process is 

plotted together with the corresponding drying curve for one of the tests carried out. It can be 

observed that during the first drying period the droplet temperature remains constant and 

equal to the wet bulb temperature. During the second drying period the droplet temperature 

increases up to the drying air temperature. 

The activation energy, which depends on the material and the drying conditions, was 

fitted to the expression: 

[ ]c
eqV XXbaE )(exp −−=Δ                    (16) 

where parameter a is constant, while parameters b and c depend on the solid content and the 

air temperature. The activation energy means the energy that must be applied to the droplet 

for the drying process to take place. Hence, the drying temperature and the moisture content, 

which are the driving forces of the process, must influence the activation energy [8]. 

 From the evolution of the squared-diameter and the droplet position, the drying curves 

were obtained for each tested experimental condition. For the first drying period and intervals 

of diameter variation, Equation 1 was used to obtain the mass transfer rate. For the second 

drying period and intervals of constant diameter, the mass transfer rate was obtained from the 

evolution of position by means of Equation 2. With the initial moisture content and the water 

evaporation along the process, the droplet/grain moisture content was obtained by means of 

Equation 5.  

Figure 8 shows the experimental data for the drying curves and the theoretical curves 

obtained by means of REA model. If Figures 8 a-d are compared, it can be observed that 
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when the drying temperature increases, the mass transfer rate also increases (as explained in 

section 4.3) and the drying time is shorter. It can be also concluded that the drying time is 

longer for bigger droplets due to the higher amount of liquid that has to be removed. The 

same situation can be found for lower solid contents in which higher amount of water has to 

be removed, being the drying time longer. 

To model the drying curves, the mass transfer coefficients experimentally estimated 

for the drying of droplets in the acoustic levitator were used. For each experimental 

condition, the value of parameter b that provides the best fitting is shown in the figure.  It can 

be seen that for low solid contents the parameter is independent on the temperature while for 

high solid contents, it increases when the temperature decreases. Table 2 shows the final 

mean values of all the parameters used in Equation 16 for each experimental condition. It can 

be seen that parameter c only depends on the solid content. In Table 3, the parameters 

obtained for the activation energy of different materials dried under different experimental 

conditions are shown so they can be compared with those found for silica nanofluids in this 

work. It can be observed that, even for similar operational conditions, the parameters depend 

mainly on the material being dried. The drying behavior depends not only on the operational 

conditions but also on the suspension conditions. Therefore the characteristics of the solid 

(particle size, particles size distribution and shape) influence the viscosity of the suspension 

and the packing of the particles, and then the drying behavior.  

In the present study, for the silica system, empirical correlations were obtained to 

relate parameters b and c to the solid content and drying temperature. For the parameter b, a 

multiparametric fitting was done with all the values obtained in each individual test (20 data) 

and the following equation was obtained: 

TYTYb SS 250.010·233.9193.29217,1 3 −++= −   R2 = 0.912               (17) 
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 For the parameter c, a power fitting was done to relate the parameter to the solid 

content: 

582.1310·178.1735.0 −−−= SYc   R2 = 0.999               (18) 

 In order to check the applicability of the correlations obtained, the parameters for YS = 

0.10 and T = 100ºC were obtained. The resulting values were b = 2.56 and c = 0.69. With this 

information the drying curves for YS = 0.10, T = 100ºC, V0 = 0.3 – 0.8 μl, pH = 10 and 

[NaCl] = 0 M were predicted. The calculated curves were compared with the experimental 

values obtained from tests carried out under these conditions. In Figure 9 the good agreement 

between experimental and theoretical curves can be seen. 

Finally, the final grain diameter can be related with the critical moisture content by 

means of the following equation [16]: 
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 From the theoretical curves, the critical moisture content can be obtained. This 

moisture content corresponds to the value at which the transition from first to second period 

takes place, at the point in which a change in the slope of the curves occurs. For each 

experiment, the critical moisture content was obtained experimentally and theoretically from 

the drying curves. In Figure 10 it can be seen that the theoretical results show a good 

agreement with the experimental ones.  

 The theoretical final grain diameter was obtained using the theoretical moisture 

content and Equation 19. The obtained results were compared with those derived from the 

image processing of the videos recorded for each experimental test. Figure 11 shows a good 

agreement between the theoretical and the experimental results. This means that the equation 

can be used to predict the final diameter of the grains obtained. This property is very 
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important to estimate the degree of hollowness of the grain and other physical properties like 

the mechanical properties and the flowability of a spray dried powder. 

5 Conclusions 

 The drying behavior of silica nanofluid droplets was studied under different 

experimental condition. For this system, all the experiments tested presented first and second 

drying period. Moreover, a transition period could be observed depending of the interparticle 

forces present in the nanofluid. This transition period was longer and more significant in 

suspension electrostatically stabilized, where the capillary forces have to overcome the 

electrostatic repulsion. 

 Under the experimental conditions in which the drying tests were carried out, the 

crystallization of NaCl only on the grain surface showed that the evaporation front in those 

cases was located on the shell surface and not in its inner part. This means that evaporation of 

liquid took place at the surface of the grain.  

 The ANOVA analysis indicate that the air temperature, the initial droplet volume and 

the initial solid content were the input variables that have higher influence in the mass 

transfer rate for the first drying period. All of them present a positive effect meaning that an 

increase in their values leads to a faster drying. The increase in the gradient of temperature 

between the droplet surface and the surrounding air, and the increase of the mass transfer 

coefficient (due to the increase of Reynolds number) produce an increase in the heat and 

mass transfer between the droplet and the air.  

 Experimental drying curves were modeled using the REA model. Theoretical curves 

showed a good agreement with the experimental data. Correlations for the activation energy 

are shown for this system under different drying condition. Parameter a in the activation 

energy was found to be constant, parameter b was observed to depend on the solid content 
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and the air temperature, and finally, parameter c only depended on the solid content. 

Correlations for parameters b and c were obtained and used to predict drying curves 

providing good results. The volume of the droplet did not affect the activation energy 

equation but had an influence in the mass transfer coefficient. 

 Finally, from the drying curves, the critical moisture content and the final grain 

diameter could be predicted. The values obtained for the two grain properties showed good 

agreement with the experimental results. 
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Nomenclature 

A  area [m2] 

d  droplet diameter [m] 

D  diffusion coefficient [m2/s] 

hm  mass transfer coefficient [m/s] 

hC  heat transfer coefficient [J/(s·m2·K)] 

m  mass transfer rate [kg/s] 

M  mass of component [kg] 

R  gas constant [J/(mol·K)] 

T  air temperature [ºC] 

t  drying time [s] 
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V  volume [m3] 

X  dry basis moisture content [kg water/kg dry solid] 

Y  mass fraction [kg component/kg suspension ≡ w/w] 

y  droplet position [m] 

ΔEV  activation energy [J/mol] 

ρ  density [kg/m3] 

ϕ  relative humidity [-] 

Subscripts 

a  air 

cr  critical 

d  droplet 

eq  equilibrium 

f  final 

L  liquid 

S  solid 

sat  saturation 

surf  surface 

Sus  suspension 

v  water vapor 

0  initial 
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Figure captions 
Figure 1. Drying kinetic of a single droplet. 

Figure 2. General sketch of the (a) experimental set-up and (b) acoustic levitator tube. 

Figure 3. Evolution of the squared-diameter and the position of a silica nanofluid droplet in 
presence of (a) repulsive forces and (b) attractive forces. 

Figure 4. Internal microstructure of the shell and salt crystallization at the surface: Ys=0.02, 
pH=2, [NaCl]=0.05 M (a) T=120ºC, V0=0.8μl (b) T=80ºC, V0=0.3μl. 

Figure 5. Evolution of diameter for pure water droplets. 

Figure 6. a) Standardized effects and b) main effects for the first period mass transfer rate. 

Figure 7. Evolution of moisture content and droplet temperature for Ys=0.20, pH=2, 
[NaCl]=0 M, T=120ºC, V0=0.8μl. 

Figure 8. Drying curves: experimental data and REA model. (a) Ys=0.02, T=80ºC, (b) 
Ys=0.02, T=120ºC, (c) Ys=0.20, T=80ºC, (d) Ys=0.20, T=120ºC, (e) Ys=0.10, T=80ºC, (f) 
Ys=0.10, T=120ºC. 

Figure 9. Drying curves: experimental data and REA model. 

Figure 10. Critical moisture content determined experimentally and theoretically. 

Figure 11. Final grain diameter determined experimentally and theoretically. 
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Figure 1. Drying kinetic of a single droplet. 
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Figure 2. General sketch of the (a) experimental set-up and (b) acoustic levitator tube. 
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Figure 3. Evolution of the squared-diameter and the position of a silica nanofluid 
droplet in presence of (a) repulsive forces and (b) attractive forces.  
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(b) 
Figure 4. Internal microstructure of the shell and salt crystallization at the surface: 

Ys=0.02, pH=2, [NaCl]=0.05 M (a) T=120ºC, V0=0.8μl (b) T=80ºC, V0=0.3μl. 
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Figure 5. Evolution of diameter for pure water droplets. 
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Figure 6. a) Standardized effects and b) main effects for the first period mass transfer 
rate. 
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Figure 7. Evolution of moisture content and droplet temperature for Ys=0.20, pH=2, 

[NaCl]=0 M, T=120ºC, V0=0.8μl. 
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(f) 

Figure 8. Drying curves: experimental data and REA model. (a) Ys=0.02, T=80ºC, (b) 
Ys=0.02, T=120ºC, (c) Ys=0.20, T=80ºC, (d) Ys=0.20, T=120ºC, (e) Ys=0.10, T=80ºC, (f) 

Ys=0.10, T=120ºC. 
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Figure 9. Drying curves: experimental data and REA model.  
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Figure 10. Critical moisture content determined experimentally and theoretically. 
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Figure 11. Final grain diameter determined experimentally and theoretically. 
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Table captions 
Table 1. Mass transfer coefficients and Sherwood number. 

Table 2. Activation energy coefficients. 

Table 3. Activation energy coefficients for different materials. 
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Table 1. Mass transfer coefficients and Sherwood number. 
Temperature, T, 

[ºC] 
Droplet volume, V0, 

[μl] 
hm 

[m/s] 
Sherwood, Sh 

(Eq. 12) 
Sherwood, Sh 

(Eq. 7) 

0.3 0.1094 3.48 5.26 
80 

0.8 0.0857 3.58 5.78 

0.3 0.0988 3.06 5.20 
100 

0.8 0.0832 3.38 5.69 

0.3 0.0798 2.42 5.16 
120 

0.8 0.0796 3.16 5.65 
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Table 2. Activation energy coefficients. 
Solid mass load, YS, 

[w/w] 
Temperature, T, 

[ºC] b c a 

80 
0.02 

120 
2.33 0.16 

80 
0.10 

120 
2.20 0.69 

80 3.93 
0.20 

120 2.20 
0.72 

3.15·107 
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Table 3. Activation energy coefficients for different materials. 

Material Drying 
conditions Reference b c a 

Kiwifruit T = 90 ºC 
Ys = 0.13 Chen and Xie, 1997 1.00 1.02 6.50·105 

Milk T = 65-107 ºC 
Ys = 0.20-0.30 Chen and Lin, 2005 1.35 0.93 2.43·107 

Lactose T = 80-100 ºC 
Ys = 0.22 Lin and Chen., 2006 1.68 1.02 2.25·107 

 
 
 


