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Abstract 

The stability and rheological behaviour of bimodal titania suspensions was studied. 

Bimodal mixtures were prepared by mixing nanosized TiO2 powders with an average 

primary size of  ~20-40 nm and surface area of  ~50 m2/g and/or a colloidal titania 

suspension of the same nanopowders dispersed in water with a submicrometer sized 

titania. The dispersing conditions were studied as a function of pH, type and content of 

dispersant, and sonication time for a constant solids content of 30 vol.% (62 wt%). The 

mixtures were slip cast and presintered at low temperatures (800−1000 ºC) in order to 

obtain porous materials with anatase as the major phase. The pore size distribution, 

microstructure and phase composition were characterised using MIP, SEM and XRD 

techniques, respectively. 
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Introduction 

 Titania (TiO2) based materials have a great attractive due to their photocatalytic 

activity [1]. TiO2 occurs naturally as minerals with rutile, anatase and brookite phases. 

The rutile and anatase phases have been widely studied and have significant 

technological uses related mainly to their optical properties since both are transparent in 



the visible range and absorb in the near ultraviolet. Although there is some controversy, 

it seems that a mixture of anatase/rutile phases is desirable to get enhanced 

photoactivity [2,3]. Other methods to improve photoactivity include enlargement of 

surface area, loading of noble metal clusters [4], doping with appropriate elements [5,6], 

or using special morphologies such as hollow spheres [7,8]. As a photocatalyst, TiO2 

can be used in the form of powder and thin films [9]. 

There is a growing interest to develop reliable, economic and environmentally-

friendly methods for manufacturing thin and thick coatings and layered systems. 

Layered ceramics and coatings have received increasing attention because of their 

ability to satisfy critical requisites that are not fulfilled by any monolithic material [10]. 

Current methods for producing these coatings include chemical and physical vapour 

deposition (CVD and PVD), thermal spraying, self-propagating high-temperature 

synthesis (SHS), etc. [11,12]. Regarding thermal spraying, an example is atmospheric 

plasma spraying (APS) that allows the production of finely nanostructured coatings [13-

16]. 

 Most studies concerning the dispersion and stability of TiO2 suspensions have 

been carried out using submicrometer and micrometer sized particles [16,17]. However, 

the use of TiO2 nanoparticles is continuously increasing. Handling of nanoparticulate 

systems is difficult and hazardous due to their volatility and the subsequent inhalation 

risks. One of the most extended routes to allow handling of nanoparticulate systems is 

the production of free-flowing agglomerates from colloidal suspensions subjected to a 

controlled drying process, such as spray and freeze drying [18-23]. 

 For the production of nanostructured granules the dispersion and manipulation 

of the nanoparticles is a key step. The characteristics of the suspension determine the 

morphology of the granules and then, the properties of the final ceramic product. Many 



studies have reported the dispersion and stability of suspensions of nanosized ceramic 

powders, focusing on the effect of deflocculant concentration and pH on the rheological 

properties of differently prepared suspensions. For nanosized titania, Fazio et al. [24] 

reported the dispersion and stabilisation of two commercial nanopowders which were an 

anatase and a rutile titania. Large zeta potentials were obtained for these commercial 

nanopowders dispersed with a polyelectrolyte. Faure et al. [25] optimised the stability 

of an anatase-rutile nanotitania suspension in terms of dispersing agents concentration 

and pH by measuring the rheological properties of differently prepared suspensions. In 

this case, 25 wt% solids content nanosuspensions were used for spray-drying. Vicent et 

al. studied the dispersion of titania nanopowders in water and established a simple route 

to prepare concentrated suspensions of nanoparticles by dispersing the nanopowders 

using commercially available colloidal suspensions as a dispersing medium [26,27]. 

This allowed to increase the solids loading to  30 vol.% (i.e. > 65 wt%) while 

maintaining a good flowability. 

 The dispersion of heterogeneous mixtures is complex due to the very different 

colloidal behaviour of each phase. Some authors have demonstrated that it was possible 

to enhance sintering through green state deformation processing, as stated for alumina 

submicrometer sized particles [28,29]. When homogeneous dispersions of two phases 

with very different size or shape are needed, heterocoagulation can be a suitable route to 

force the uniformity through strong electrostatic interactions. This has been 

demonstrated to be very effective for the manufacture of carbon nanotubes reinforced 

ceramics or the production of mullite by reaction sintering by a core-shell reaction 

[30,31]. 

 Considering the difficulties associated to the densification of nanostructured 

materials, the manufacture of porous titania based photocatalysts with high surface area 



is receiving increased attention for water treatment applications [32,33]. Porous 

materials can be produced with a number of techniques, such as the use of sacrificial 

templates, replication methods, freeze drying and direct foaming using surfactants and 

polymerizable monomers [34,35]. 

 The aim of this work is to study the colloidal stability and rheological behaviour 

of mixtures of submicrometer and nanometer sized titania and to evaluate the feasibility 

to produce porous bodies at low temperature by a simple colloidal filtration route. 

 

Experimental  

As starting materials two powders with different particle size and a colloidal 

suspension of TiO2 were used in this study: a submicron sized anatase-TiO2 (808, 

Merck,  Germany), and a nanosized powder (Aeroxide® P25, Degussa-Evonik, 

Germany) that contains anatase and rutile phases in a ratio of about 4:1 [36]. A 

commercial colloidal suspension (AERODISP® W740X, Degussa-Evonik, Germany), 

was also used. The main characteristics of the starting powders are summarised in table 

1. 

The particle size distributions were determined by laser diffraction (Mastersizer 

S, Malvern, Worcestershire, United Kingdom), and dynamic light scattering (Nanosizer 

NanoZS, Malvern, United Kingdom), for submicrometer and nanometer sized powders, 

respectively. The specific surface area was measured by the N2 adsorption method 

(Monosorb Surface Area Analyser MS13, Quantachrome Co., USA). A complete 

characterisation of the P-25 nanopowder was done in a previous work [26]. Differential 

thermal analysis and thermogravimetric analyses (DTA/TG, STAY09, Netzsch, 

Germany) showed that the P25-powder had a weight loss lower than 2.5 wt%, while the 

dry powder obtained from the W740X-suspension had a weight loss of 4.5 wt%. This 



evidences the presence of some organics at the surface which can difficult the 

adsorption of deflocculants [27]. 

The colloidal behaviour of the powders and the colloidal suspension was studied 

through zeta potential measurements as a function of deflocculant content and pH using 

a Zetasizer NanoZS instrument (Malvern, United Kingdom), based in the laser Doppler 

velocimetry technique. The best accuracy of zeta potential measurements was reached 

for suspensions diluted to a concentration of titania of 0.005 wt%, using KCl 0.01M as 

inert electrolyte. pH values were determined with a pH-meter (716 DMS Titrine, 

Metrohm, Switzerland) and were adjusted with HCl and KOH solutions (0.1 and 

0.01M). To improve the dispersion state, an ultrasounds probe (UP 400S, Dr Hielscher 

GmbH, Germany) was used for a sonication time of 30 seconds. 

In a previous work, the colloidal behaviour of the dry P25 nanopowder and the 

colloidal W740X suspension was reported [27]. According to that study, a commercial 

salt of polyacrylic acid-based polyelectrolite (DURAMAXTM D-3005, Dow Chemicals, 

USA), with 35 wt% active matter, was used. This deflocculant was used also for the 

bimodal mixtures studied in the present work. 

 Concentrated suspensions with a total solids contents of 30 vol.% were prepared 

mixing  50 wt% of nanometric powder (P25 alone or dispersed inside the W740X 

suspension) and 50 wt% of submicrometric powder with the required amount of the 

polyacrylic deflocculant. The suspensions were prepared by adding first the PAA 

required to disperse both the nanosized titania (4 wt% with regard to titania) and the 

submicrometer sized one (0.5 wt%) to water or to the colloidal titania suspension, 

followed by the addition of the titania nanopowder and sonication for 1 min. In a second 

step the submicrometric powder was added and the mixture was maintained by 15 min. 

under mechanical agitation. Given PAA contents refer to the active matter 



concentration. Figure 1 shows a scheme of the procedure followed to prepare the 

suspensions. Mixtures were labelled as 30M, 15P15M, and 10W5P15M, for 

submicronic titania Merck (M), mixture of P25 and M, and mixture of the three 

powders, respectively. 

 Rheological behaviour of all prepared suspensions was determined using a 

rheometer (RS50, Haake Thermo, Germany) operating at controlled shear rate (CR). 

Flow curves were obtained with a three-stage measuring program with a linear increase 

in the shear rate from 0 to 1000 s-1 in 300 s, a plateau at 1000 s-1 for 60 s, and a further 

decrease to zero shear rate in 300 s. The measurements were performed at 25 ºC using a 

double-cone and plate system. 

 Concentrated suspensions were slip cast in plaster moulds to obtain discs with 2 

cm in diameter. The density of the cast specimens (green and presintered) was measured 

by the Archimedes’ method using mercury and water, respectively. 

Constant heating rate (CHR, heating and cooling rates 5 ºC/min) experiments up 

to 1600 ºC were performed in a differential dilatometer with alumina rod (DI24, 

Adamel Lhomargy, France). From the results of the dilatometer and DTA-TG analyses 

the temperatures of interest were selected (800 and 1000 ºC) and new specimens were 

prepared by quenching from those temperatures using the same heating rates. The 

quenched specimens were characterised as pieces by X-ray diffraction using a XRD 

diffractometer (D8 Advance, Bruker AXS, Germany). The microstructures of fracture 

samples were characterized by field emission gun-scanning electron microscopy with 

energy dispersive X-ray microanalysis, FE-SEM-EDX (S-4700 type I, Hitachi Japan). 

Pore distribution was measured by Mercury Intrusion Porosimetry (MIP, Poremaster, 

Quantachrome Corp., USA). 

 



Results and discussion 

The colloidal stability of the different starting materials is plotted in figure 2, 

which shows the variation of zeta potential with pH before and after the addition of the 

better concentration of polyelectrolyte as it was established in previous studies 

concerning on the stability of either the submicrometer sized or the nanosized powders 

used herein. The isoelectric point of the P25 nanopowder changes from pH 7 to pH 4 

after the addition of 4 wt% of deflocculant as reported before [26]. The equivalent 

commercial suspension (W740X) has the isoelectric point at pH 6, slightly lower than 

that of the dry powder, this being a clear indication of the presence of some organic 

adsorbed on the surface of the particles [27]. The zeta potential does not change with the 

addition of PAA, which supports previous statement that colloidal titania particles have 

full coverage and there are no free sites to be filled by the PAA molecules. The 

isoelectric point of the submicrometer sized powder occurs at pH 5. The presence of 

PAA shifts down the IEP by only one pH unit. 

Concentrated suspensions were always prepared to a total solids loading of 30 vol.% 

and the dispersion was improved changing the homogenisation time by ultrasounds. 

Firstly, the rheological behaviour of submicron sized powder suspensions (30M) was 

optimised. Figure 3 shows the flow curves of these suspensions prepared with different 

US times. The best results are obtained after 2−3 min sonication, where suspensions 

have very low viscosity (c.a. 12 mPa·s) and slightly shear thinning behaviour without 

thixotropy. 

Secondly, bimodal 15P15M suspensions were prepared. Figure 4 shows the 

corresponding flow curves. The viscosities are significantly higher due to the presence 

of nanosized particles. Very low viscosities are obtained after sonication times of 5−7 

min, the curves showing shear thinning behaviour and no thixotropy. 



Finally, the 3-component10W5P15M suspensions were prepared maintaining a ratio 

of submicron to nanosized particles of 1:1 and a total solids content of 30 vol.%. The 

substitution of solid nanoparticles by the colloidal suspension reduces the viscosity of 

the bimodal suspension allowing better flowability for shaping. Figure 5 shows the 

corresponding flow curves. The lowest viscosity is reached after 6-7 min sonication.  

Samples of all these mixtures were obtained at the optimum dispersing conditions by 

slip casting in plaster moulds. The density of the green specimens is shown in table 2. 

The densities of 30M cast specimens are also shown. These cast samples give a relative 

green density of 56%, whereas the 15P15M mixture leads to the highest densities, above 

65% TD. This demonstrates that there is an effective packing of the smaller particles in 

the voids left by the larger ones, when nanoparticles were added. However, in the case 

of the 10W5P15M mixture, the green density is lower than in the case of the 15P15M 

mixture, although it is still higher than the green density of the submicrometer sized 

titania compacts. Considering that the viscosity of this mixture is lower, a higher density 

should be expected. This result could be related to a faster migration of the colloidal 

particles through the cake during filtration process. More work would be necessary to 

demonstrate this point, but it is outside the scope of this study. 

To evaluate the sintering behaviour dilatometric experiments were performed using 

green slip cast bodies. The shrinkage curve of submicrometer sized titania (Merck), 

reported in a previous work [37] showed two significant slope changes that were 

highlighted in the derivative curve (Figure 6a). The first one, occurring at about 1060 ºC 

was identified as the transformation of anatase to rutile, which involves a sudden 

shrinkage of about 8.5 vol.% (calculated using the theoretical densities of anatase−TiO2, 

3.89 g/cm3, and rutile-TiO2, 4.25 g/cm3). This transformation can occur between 400 

and 1200 ºC depending on several parameters, such as grain size, impurities and 



atmosphere [38,39]. The second slope change (∼1220 ºC) corresponded to the maximum 

shrinkage rate and it was wider than the previous one indicating that it is a progressive 

process. Shrinkage was arrested at ∼1400 ºC. When the nanopowders are added to the 

submicron sized titania, the behaviour is different, as observed in figure 6b. The first 

peak associated to phase transformation centred at 950 ºC has a shoulder that can be 

associated to necks formation among nanoparticles, and the second peak, corresponding 

to maximum shrinkage rate appears at 1170 ºC (figure 6a). That is, the temperature of 

the characteristic processes decreased due to the higher activity of the nanoparticles. 

The 10W5P15M mixture led to a similar behaviour but the characteristic temperatures 

of the minima were slightly higher, 970 ºC and 1190 ºC (figure 6c). In all cases there 

was a continuous progress of shrinkage, and densification slightly increased until a 

sintering temperature of 1500 ºC. This was expected because the presence of the 

submicrometer sized particles determines the densification temperature. 

 From these results new samples of the 10W5P15M mixture were prepared and 

quenched at 800 ºC and 1000 ºC in order to know the phases at these characteristic 

temperatures before and after phase transformation. The XRD patterns shown in figure 

7 demonstrate that at 1000 ºC most of the anatase has transformed to rutile phase, while 

at 800 ºC the anatase remains as the major phase. The microstructure of the obtained 

specimens can be seen in the pictures of figure 8. An open microstructure is obtained at 

both temperatures, as expected from dilatometric results, but the grain size strongly 

increases in the specimens treated at 1000 ºC in agreement to the transformation to 

rutile phase. Therefore, all nanoparticles have grown and no differences are found when 

naonosize titania is added to submicron sized one. 

Table 3 summarizes the data obtained by MIP for the quenched samples and its pore 

size distribution is shown in figure 9. It is observed that the pore diameter is a function 



of the temperature in addition to particle size. The material obtained by quenching at 

800 ºC has higher porosity and finer pore size, and consequently it has a significantly 

higher total pore area. For the production of porous titania materials with photocatalytic 

properties, the presence of some anatase phase has been reported elsewhere to be 

essential. Then, the porous materials obtained in this work by slip casting and treated at 

800 ºC are expected to be suitable candidates for the desired photocatalytic applications. 

 

Conclusions 

Concentrated bimodal suspensions of titania were prepared to a total solids content 

of 30 vol.% with a ratio of submicrometer to nanosized particles of 1:1. The viscosities 

of bimodal suspensions are higher than submicrometer sized suspension with the same 

solids loading. Very low viscosities are obtained after sonication times of 5−7 min, the 

curves showing shear thinning behaviour and no thixotropy. The partial substitution of 

nanoparticles by the colloidal suspension leads to a significant reduction of viscosity. 

The shrinkage curve of submicrometer sized titania  showed a first peak at 1060 ºC 

corresponding to the transformation of anatase to rutile and a second slope change at 

1220 ºC that corresponds to the maximum shrinkage rate. When the nanopowders are 

added to the submicron sized titania, the first peak appears at 950 ºC and has a shoulder 

that can be associated to necks formation among nanoparticles, and the maximum 

shrinkage rate occurs at lower temperature, 1170-1190  ºC. XRD patterns of bimodal 

porous samples quenched at 800 ºC and 1000 ºC show that at 1000  ºC most of the 

anatase has transformed to rutile phase, but at 800 ºC the anatase remains as the major 

phase and has higher surface area and porosity, as desired for photocatalytic 

applications. 
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Table 1. Characteristics of the starting materials 

 

 

 

 

 

 

 

 

* Properties of the nanopowder dried from the colloidal suspension 

PROPERTY  MERCK P25 W740X* 

Major phase 

Ss (m2/g) 

Dv,50 (nm) 

Purity (%) 

Density (g/cm3) 

Weight loss (%) 

A 

9 

350 

99.5 

3.87 

0.5 

A (R) 

39 

21 

99.5 

3.76 

2.5 

A (R) 

32 

20 

99.5 

- 

4.5 



 
 

Table 2. Green densities of the slip cast bodies produced with the different mixtures. 

Sample Absolute density  
(g/cm3) 

Relative density  
(% TD) 

30M 2.20 56.0 

15P15M 2.55 65.5 

10W5P15M                      2.26 58.1 

 



 
Table 3. Density and porosity data of samples produced with the mixture of the three 

powders (10W5P15M ) quenched at 800 and 1000 ºC. 

T (ºC)   (g/cm3)  r (% TD)  Vpore (cm3/g)  dpore (nm)  Porosity (%) Apore (m2/g)  

1000                    2.97  70.5  0.11 85 31.5 5.2 

800 2.31  59.5  0.16 23 37.0 27.4 

 

 



 
Captions to figures 

Figure 1. Scheme of the procedure followed to prepare the suspensions of the mixtures.  

Figure 2. Variation of zeta potential with pH of the starting powders as received and 

After the addition of the optimum deflocculant content. 

Figure 3. Flow curves of 30M suspensions prepared with different US times. 

Figure 4. Flow curves of bimodal 15P15M suspensions prepared with different US 

times. 

Figure 5. Flow curves of 3-component10W5P15M suspensions prepared with 

different US times. 

Figure 6. Dilatometry curves and derivatives of 30M (a), bimodal 15P15M (b), and 

3-component10W5P15M (c) suspensions. 

Figure 7. XRD patterns of 10W5P15M samples quenched at 800 ºC and 1000 ºC. 

Figure 8. FE-SEM pictures of 10W5P15M samples quenched at 800 ºC (a,b)  

and 1000 ºC (c,d). 

Figure 9. Pore diameter distribution of 10W5P15M samples quenched at 800 ºC and 

1000 ºC. 
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Figure 1. Scheme of the procedure followed to prepare the suspensions of the mixtures. 
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

Figure 2. Variation of zeta potential with pH of the starting powders as received and
After the addition of the optimum deflocculant content. 
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Figure 3. Flow curves of 30M suspensions prepared with different US times.
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Figure 4. Flow curves of bimodal 15P15M suspensions prepared with different US times.
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Figure 5. Flow curves of 3-component10W5P15M suspensions prepared with
different US times.
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Figure 6. Dilatometry curves and derivatives of 30M (a), bimodal 15P15M (b), and
3-component10W5P15M (c) suspensions.
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Figure 7. XRD patterns of 10W5P15M samples quenched at 800 ºC and 1000 ºC. 
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Figure 8. FE-SEM pictures of 10W5P15M samples quenched at 800 ºC (a,b) 
and 1000 ºC (c,d). 
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Figure 9. Pore diameter distribution of 10W5P15M samples quenched at 800 ºC 
and 1000 ºC.


