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CHERN-OSSERMAN INEQUALITY FOR MINIMAL SURFACES IN A
CARTAN-HADAMARD MANIFOLD WITH STRICTLY NEGATIVE

SECTIONAL CURVATURES

ANTONIO ESTEVE* AND VICENTE PALMER**

ABSTRACT. We state and prove a Chern-Osserman-type Inequality in terms of the vol-
ume growth for minimal surfacesS which have finite total extrinsic curvature and are
properly immersed in a Cartan-Hadamard manifoldN with sectional curvatures bounded
from above by a negative quantityKN ≤ b < 0 and such that they are not too curved
(on average) with respect to the Hyperbolic space with constant sectional curvature given
by the upper boundb. We have also proven the same Chern-Osserman-type Inequal-
ity for minimal surfaces with finite total extrinsic curvature and properly immersed in
an asymptotically hyperbolic Cartan-Hadamard manifoldN with sectional curvatures
bounded from above by a negative quantityKN ≤ b < 0.

1. INTRODUCTION AND MAIN RESULTS

In the papers [6] and [7], a Chern-Osserman type inequality was studied for a com-
pletely, properly and minimally immersed surface (cmi for short) in the Hyperbolic space,
extending the classical result originally established by S.S. Chern and R. Osserman in [4]
for cmi surfaces in the Euclidean space to this strictly negatively curved setting.

Chern-Osserman’s result (in fact, an improvement on this result due to M.T. Anderson
in [1] and to L.P. Jorge and W.H. Meeks in [15], see also White’s work [29] for an ap-
proach to this problem for non-minimal surfaces in the Euclidean space) relates the Euler
characteristicχ(S) of a cmi surface with finite total curvature inRn with this total cur-
vature and the (finite) supremum of the (non-decreasing) volume growth of the extrinsic
domains (known as theextrinsic balls) Er = S2 ∩B0,n

r . We denote asBb,n
r the geodesic

r-ball in K
n(b), which is the simply connected real space form with constantsectional

curvatureb. We also denote asSb,n−1
r the geodesicr-sphere inKn(b). We have

(1.1) − χ(S) =
1

4π

∫

S

‖BS‖2dσ − Supr
Vol(S2 ∩B0,n

r )

Vol(B0,2
r )

In contrast to what happens with cmi surfaces inR
n, the total Gaussian curvature of

surfacesS2 immersed in the hyperbolic spaceHn(b) is always infinite, by the Gauss equa-
tion. However, it is possible to consider surfacesS2 ⊆ H

n(b) with finite total extrinsic
curvature

∫

S
‖BS‖2dσ < ∞, and this is what Chen Qing and Chen Yi did in [6] and [7].

They proved, for a complete minimal surfaceS2 (properly) immersed inHn(b) and
such that

∫

S
‖BS‖2dσ < ∞, the following version of the Chern-Osserman Inequality, in
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2 A. ESTEVE AND V. PALMER

terms of the volume growth of the extrinsic balls:

(1.2)

Supr>0

Vol(S2 ∩B−1,n
r )

Vol(B−1,2
r )

< ∞ and

−χ(S) ≤ 1

4π

∫

S

‖BS‖2dσ − Supr

Vol(S2 ∩B−1,n
r )

Vol(B−1,2
r )

The proof of these authors entails elaborate computations which depend on the prop-
erties of the hyperbolic functions, far from the complex analysis techniques used in the
Euclidean case.

A natural question which arises in this setting is: do we havean analogous formula
when we consider complete minimal surfaces that are properly immersed in a Cartan-
Hadamard manifold with sectional curvatures bounded from above by a strictly negative
quantityb < 0? In this paper we provide a (partial) answer to this question. Namely,
we have proven that this formula holds for complete minimal surfaces that are properly
immersed in an ambient Cartan-Hadamard manifold, with the Hilbert-Schmidt norm of
its second fundamental form controlled byhb(r), the mean curvature (pointed inward) of
the geodesic spheresSb,n−1

r and with finite total extrinsic curvature. We also assume that
our ambient Cartan-Hadamard manifold is not too curved (on average) with respect to the
Hyperbolic space with constant sectional curvature given by the upper boundb.

To state the first of our main results, it must be remembered (see, for example, [23])
that

hb(r) =







√
b cot

√
br if b > 0

1/r if b = 0√
−b coth

√
−br if b < 0

We have the following:

Theorem 1.1. Let S2 be a properly immersed minimal surface in a Cartan-Hadamard
manifoldN , with sectional curvatures bounded from above by a negativequantityKN ≤
b < 0.

Let us suppose that‖AS‖(q) < hb(r(q)) outside a compact setK ⊂ S, wherer(q) =
distN (o, q) denotes the distance ofq ∈ S to a fixed poleo ∈ N and that

(1.3)
∫

S

‖AS‖2dσ < +∞

and

(1.4)
∫

S

(b −KN |S)dσ < +∞

whereAS denotes the second fundamental form ofS in N andKN |S denotes the sectional
curvature ofN restricted to the tangent planeTqS, for all q ∈ S.

Then:

(1) Supt>0
Vol(Et)

Vol(Bb,2
t )

< +∞,

(2) S2 has finite topological type,
(3) −χ(S) ≤ 1

4π

∫

S ‖AS‖2dσ − Supt>0
Vol(Et)

Vol(Bb,2
t )

+ 1
2π

∫

S(b −KN |S)dσ.

whereEt = BN
t (o) ∩ S denotes thet-extrinsic ball on surfaceS, centered ato ∈ N (see

definition 2.2),BN
t (o) is the geodesict-ball centered at the poleo in the ambient space

N , andBb,2
t denotes the geodesict-ball in H

2(b).

Remark 1.2. The main theorem in [7] is a corollary of Theorem 1.1. In fact,note that
condition (1.4) is superfluous when the ambient manifold isH

n(b). On the other hand,
when the ambient manifold isHn(b), then condition (1.3) implies that‖AS‖(q) goes
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to 0 as the distancer(q) goes to infinity (see Theorem 2.1 in [22]), so we have that
‖AS‖(q) < hb(r(q)) outside a compact setK ⊂ S and we recover the complete statement
of the main theorem in [7].

Remark 1.3. By applying the Gauss formula, if the surfaceS2 is minimal, the quantity
b − KN |S restricted toS only depends on the pointsp ∈ S. Hence the assumption
∫

S
(b−KN |S)dσ < +∞ makes sense. We shall denote asKN the restrictedKN |S when

there is no risk of confusion.

Our proof of Theorem 1.1 basically follows the lines of argument used in the proofs
given in [6] and [7]. A basic fact used in these proofs is the monotonicity property sat-
isfied by the volume growth of the extrinsic balls in minimal surfaces that are properly
immersed in the real space formsKn(b) with b ≤ 0, namely, that the functionVol(Et)

Vol(Bb,2
t )

is

a non-decreasing function ofr. We have the same monotonicity property when we con-
sider the extrinsic balls on a surfaceS that is properly immersed in a Cartan-Hadamard
manifoldN with negative and variable sectional curvature bounded from above byb < 0.
This monotonicity property comes from certain isoperimetric inequalities satisfied by the
extrinsic balls in this context which are, in turn, based on the application of a divergence
theorem to comparisons of the Laplacian of the extrinsic distance defined on the surface.
As we can see in [9] (see also [16] and [26]), this comparison arises from the Index lemma,
which provides a formula for the Hessian of the distance function in terms of the index
form along the normal geodesics to the surface of the Jacobi fields satisfying some given
initial conditions.

Following the break with the framework given by the constantcurvature of the ambient
spaceHn(b) in the works [6] and [7], we have had to overcome several analytical and
topological difficulties.

First, we have extended the Hessian analysis of the extrinsic distance alluded to earlier
(which is used in a restricted way in [6] and [7] for surfaces in the real space formsHn(b))
to surfaces in Cartan-Hadamard manifolds by using comparison results for the Hessian
and the Laplacian of a radial function that can be found in [20], [21], and [13]. These
results are, in turn, based on the Jacobi-Index analysis forthe Hessian of the distance
function given in [9], which we have mentioned previously (see the results in subsection
§3.1).

Second, and based on this comparison analysis, we have extended the application of
the Gauss-Bonnet theorem (which we find in [7] restricted to extrinsic balls on surfaces
of Hyperbolic space) to the extrinsic balls in minimal surfaces in a Cartan-Hadamard
manifold in order to obtain estimates for the Euler characteristic of these extrinsic domains
(see the results in subsection§3.2).

Third, we present the following estimation of the Euler characteristic of an immersed
surface

−χ(S) = lim
t→∞

(−χ(Et))

for a suitable exhaustion ofS by extrinsic balls{Et}t>0 (see Theorem 4.3 in section
§.4). This is a key result which will allow us to argue in a similar way to the line taken
in [6] and [7], even though our ambient manifold has no constant curvature. Thanks
to the lower bound of the geodesic curvature of extrinsic spheres∂Et and to the bound
‖AS‖(q) < hb(r(q)) outside a compact, it is possible to show that the extrinsic distance
to a fixed pole, defined on surfaceS, has no critical points outside a compact. Hence,
we can apply classical Morse theory to conclude that, for an exhaustion ofS by extrinsic
balls {Et}t>0, χ(Et) is independent oft, for a sufficiently larget. Thereforeχ(S) =
limt→∞ χ(Et). When the ambient manifold is the Euclidean or the Hyperbolic space, the
bound‖AS‖(q) < hb(r(q)) can be omitted because, in this case, the finiteness of the total
extrinsic curvature implies that‖AS‖(q) goes to0 as the extrinsic distancer(q) goes to
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infinity (for more details, see the proofs of Theorem 2.1 in [22], concerning cmi surfaces
in H

n(b) and Theorem 4.1 in [1], about cmi submanifolds inR
n).

Another appropriate observation at this point is the following: the upper boundb on the
sectional curvatures of the ambient manifoldN must be strictly negative, because if we
use the Euclidean space as a model, the volume of the extrinsic ballsv(t) = Vol(Et) is
not balanced by a function of exponential growth but by the volume functionVol(B0,2

t ) =
πt2 with slower parabolic growth, and hence the techniques useddo not guarantee that
Supt>0

Vol(Et)

Vol(B0,2
t )

< +∞.

To illustrate the meaning of the expression “not too curved on average with respect to
the hyperbolic space”, we will refer to Cartan-Hadamard manifolds, which are asymptotic
to Hyperbolic spaceHn(b) in a sense that we define below in the following Definition 1.4
(see [28]).

Definition 1.4. Let us considerNn a complete non-compact Riemannian manifold with a
poleo ∈ N . ThenN is asymptotically locallyb-hyperbolicof orderα (abbreviated asα-
ALH) if and only if |KN(x)− b| = O(e−αr(x)), whereKN(x) is the sectional curvature
of N atx ∈ N of the radial planes from the poleo andr(x) = distN (o, x) is the distance
function from the poleo ∈ N .

These ambient manifolds satisfy hypothesis (1.4) of Theorem 1.1, so we have the sec-
ond of our main results, Theorem 1.5.

Theorem 1.5. Let S2 be a properly immersed minimal surface in a Cartan-Hadamard
manifoldN which is asymptotically locallyb-hyperbolic of order2 and with sectional
curvatures bounded from above by a negative quantityKN ≤ b < 0.

Let us suppose that‖AS‖(q) < hb(r(q)) outside a compact setK ⊂ S and that

(1.5)
∫

S

‖AS‖2dσ < +∞

whereAS denotes the second fundamental form ofS in N .
Then:

(1) Supt>0
Vol(Et)

Vol(Bb,2
t )

< +∞,

(2) S2 has finite topological type,
(3) −χ(S) ≤ 1

4π

∫

S
‖AS‖2dσ − Supt>0

Vol(Et)

Vol(Bb,2
t )

+ 1
2π

∫

S
(b −KN)dσ.

To conclude we have the following generalization of Theorem3 in [6].

Theorem 1.6. Let S2 be a properly immersed minimal surface in a Cartan-Hadamard
manifoldN , with sectional curvatures bounded from above by a negativequantityKN ≤
b < 0. Let us consider an exhaustion ofS by a family of nested extrinsic balls{Et =
{x ∈ S/r(x) ≤ t}}t>0, wherer is the distance to a fixed poleo ∈ S. Let us suppose that

limt→∞

∫
Et

cosh rdσ

cosh2 t
= π

−b .

(i) Then,S is a minimal cone inN andχ(S) = 1.
(ii) If N = H

n(b), thenS is totally geodesic (and we have Theorem 3 in[6]).

1.1. Outline of the paper. The outline of the paper is as follows. In section§.2 we
present the basic definitions and facts about the extrinsic distance restricted to a sub-
manifold, and about the rotationally symmetric spaces usedas a model for comparison
purposes. In section§.3 we present the basic results concerning the Hessian comparison
theory of restricted distance function we are going to use, obtaining as a corollary an esti-
mate of the geodesic curvature of the boundary of the extrinsic balls covering the surface
and, hence, an estimation of the Euler characteristic of such extrinsic balls. Section§.4
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presents the monotonicity property satisfied by the extrinsic balls and the estimation of
the Euler characteristic of the surface in terms of the Eulercharacteristic of the extrin-
sic balls. Section§.5 is devoted to the proof of Theorem 1.1, section§.6 to the proof of
Theorem 1.5, and section§.7 to the proof of Theorem 1.6.

2. PRELIMINARIES

2.1. Curvature restrictions and extrinsic balls. We assume throughout the paper that
ϕ : S −→ N is a complete, proper and minimal immersion of a non-compactsurface
S in a Cartan-Hadamard manifoldN . Throughout the paper, we identifyϕ(S) ≡ S
andϕ(x) ≡ x for all x ∈ S. We also assume that the Cartan-Hadamard manifoldNn

has sectional curvatures bounded from above by a negative boundKN ≤ b < 0. All
the points in these manifolds are poles. Recall that a pole isa point o such that the
exponential mapexpo : ToN

n → Nn is a diffeomorphism. For everyx ∈ Nn \ {o} we
definer(x) = distN (o, x), and this distance is realized by the length of a unique geodesic
from o to x, which is theradial geodesic fromo. We also denote byr the restriction
r|S : S → R+∪{0}. This restriction is called theextrinsic distance functionfrom o in S.
The gradients ofr in N andS are denoted by∇Nr and∇Sr, respectively. Let us remark
that∇Sr(x) is just the tangential component of∇Nr(x) in S, for all x ∈ S. Then we
have the following basic relation:

(2.1) ∇N r = ∇Sr + (∇Nr)⊥

where(∇N r)⊥(x) = ∇⊥r(x) is perpendicular toTxS for all x ∈ S.

Definition 2.1. Let o be a point in a Riemannian manifoldM and letx ∈ M \ {o}.
The sectional curvatureKM (σx) of the two-planeσx ∈ TxM is then called ano-radial
sectional curvatureof M at x iff σx contains the tangent vector to a minimal geodesic
from o to x. We also denote these curvatures byKo,M (σx).

Definition 2.2. Given a connected and complete surfaceS in a Cartan-Hadamard man-
ifold Nn, we denote theextrinsic metric ballsof radiusR and centero ∈ N by ER(o).
They are defined as the intersection

ER = BN
R (o) ∩ S = {x ∈ S : r(x) < R}

whereBN
R (o) denotes the open geodesic ball of radiusR centered at the poleo in Nn.

Remark 2.3. It should be pointed out that the extrinsic domainsER(o) are precompact
sets (because the submanifoldS is properly immersed), with a smooth boundary∂ER =
ΓR(o) = {x ∈ S : r(x) = R}. The assumption on the smoothness ofΓR(o) makes no
restriction. Indeed, the distance functionr is smooth inNn \ {o}, sinceNn is assumed
to possess a poleo ∈ Nn. Hence the restrictionr|S is smooth inS and consequently the
radii R that produce smooth boundariesΓR(o) are dense inR by Sard’s theorem and the
Regular Level Set Theorem.

Remark 2.4. When the surfaceS is totally geodesic in the ambient manifoldN , the
extrinsicR-balls become geodesic balls inS, BS

R , and its boundaries are the distance
spheres∂BS

R. On the other hand, whenS is a totally geodesic hyperbolic plane in the
Hyperbolic space formHn(b), the extrinsicR-ballER becomes the geodesicR-ballBb,2

R

in H
2(b), with boundarySb,1

R , the geodesicR-sphere inH2(b).

For the sake of completeness, we are going to state the co-area formula in these prelim-
inaries. To do so, we shall consider a properC∞ functionf : M −→ R defined on a Rie-
mannian manifoldM . The set of critical values off is a null set ofR and the set of regular
valuesO is an open subset ofR. Then, fort ∈ O, f−1(t) = Γt = {p ∈ M : f(p) = t}
is a compact hypersurface ofM and, givenq ∈ Γt, ∇Mf(q) is perpendicular toΓt. We
defineΩt = {p ∈ M : f(p) ≤ t} andv(t) = Vol(Ωt). Then
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Theorem A (See [27], Theorem 5.8). Let M be a Riemannian manifold. Letf be a
properC∞ function defined onM . For an integrable functionu onM the following hold:

(1) Letgt be the induced metric onΓt := {p ∈ M ; f(p) = t} fromg. Then
∫

M

u‖∇f‖dνg =

∫ +∞

−∞
dt

∫

Γt

u dνgt

(2) The functiont → v(t) is aC∞ function at regular valuest of f such thatV (t) <
+∞, and

d

dt
v(t) =

∫

Γt

‖∇f‖−1dνgt

Remark 2.5. Let us consider an exhaustion ofS by a family of nested extrinsic balls
{Et}t>0, centered at a poleo ∈ N . To apply the co-area formula in this setting, we con-
sider the surfaceS as the Riemannian manifold and the functionf in the above statement
is the extrinsic distance from the polef = r. Hence, each extrinsic ballEt = Ωt , the
extrinsic spheres are the curves∂Et = Γt = {x ∈ S/r(x) = t}, andv(t) = Vol(Et) is
the volume function.

2.2. Warped products and model spaces.Warped products are generalized manifolds
of revolution. We refer to [23] for more information about these spaces.

Definition 2.6 (See [9], [10]). A w−modelMm
w is a smooth warped product

Mm
w = [0,Λ[×wS

m−1
1

with baseB1 = [0,Λ[⊂ R (where0 < Λ ≤ ∞), fiberFm−1 = S
m−1
1 (i.e., the unit

(m− 1)-sphere with standard metric), and warping functionw : [0,Λ[→ R+ ∪ {0}, with
w(0) = 0, w′(0) = 1, andw(r) > 0 for all r > 0. The pointow = π−1(0), whereπ
denotes the projection ontoB1, is called thecenter pointof the model space. IfΛ = ∞,
thenow is a pole ofMm

w .

Proposition 2.7 (See [10], [23]). The simply connected space formsK
n(b) of constant

curvatureb arewb−models with warping functions

(2.2) wb(r) =











1√
b
sin(

√
b r) if b > 0

r if b = 0
1√
−b

sinh(
√
−b r) if b < 0.

Note that forb > 0 the functionwb(r) admits a smooth extension tor = π√
b
.

Proposition 2.8(See [9], [10] and [23]). LetMm
w be aw−model with warping function

w(r) and centerow. The distance sphere of radiusr and centerow in Mm
w is the fiber

π−1(r). This distance sphere has the constant mean curvatureηω(r) = w′(r)
w(r) . On the

other hand, theow-radial sectional curvatures ofMm
w at everyx ∈ π−1(r) (for r > 0)

are all identical and determined by

(2.3) Kow,Mw
(σx) = −w′′(r)

w(r)
.

Remark 2.9. Note that, for the space formsKn(b), ηωb
(r) = hb(r).

3. HESSIAN ANALYSIS, GAUSS-BONNET THEOREM, AND ESTIMATES FOR THE

EULER CHARACTERISTIC OF THE EXTRINSIC BALLS

3.1. Hessian and Laplacian comparison analysis.We now assume thatS2 is a com-
plete, non-compact, and properly immersed surface (not necessarily minimal) in a Rie-
mannian manifoldNn that possesses a poleo.



CHERN-OSSERMAN INEQUALITY FOR SURFACES 7

The 2nd order analysis of the restricted distance functionr|S is governed by the Hes-
sian comparison Theorem A in [9]:

Theorem B (See [9], Theorem A). Let N = Nn be a manifold with a poleo, let
M = Mm

w denote aw−model with centerow, andm ≤ n. Suppose that everyo-radial
sectional curvature atx ∈ N \ {o} is bounded from above by theow-radial sectional
curvatures inMm

w as follows:

Ko,N(σx) ≥ (≤) − w′′(r)

w(r)

for every radial two-planeσx ∈ TxN at distancer = r(x) = distN (o, x) from o in N .
Then the Hessian of the distance function inN satisfies

(3.1)

HessN (r(x))(X,X) ≤ (≥) HessM (r(y))(Y, Y )

= ηw(r)
(

1− 〈∇Mr(y), Y 〉2M
)

= ηw(r)
(

1− 〈∇Nr(x), X〉2N
)

for every unit vectorX in TxN and for every unit vectorY in TyM with r(y) = r(x) = r
and 〈∇Mr(y), Y 〉M = 〈∇N r(x), X〉N .

Remark 3.1. In [9, Theorem A, p. 19], the Hessian ofrM is less than or equal to the
Hessian ofrN provided that the radial curvatures ofN are bounded from above by the
radial curvatures ofM and provided thatdimM ≥ dimN . But HessMw(r(y))(Y, Y )
do notdepend on the dimensionm, as we can easily see by computing it directly (see
[26]), so the hypothesis on the dimension can be overlooked in the comparison among the
Hessians in this case.

As a consequence of this result, we have the following Laplacian inequalities (see [20],
[26], or [13] for detailed developments):

Proposition 3.2. LetNn be a manifold with a poleo, let Mm
w denote aw−model with

centerow. Let us suppose that everyo-radial sectional curvature atx ∈ N − {o} is
bounded from above by theow-radial sectional curvatures inMm

w as follows:

(3.2) K(σ(x)) = Ko,N(σx) ≤ −w′′(r)

w(r)

for every radial two-planeσx ∈ TxN at distancer = r(x) = distN (o, x) fromp in N

Let S2 be a properly immersed surface inN . Let us consider a modified-distance
smooth functionf ◦ r : S −→ R. Then:

(A) For such a smooth functionf(r) with f ′(r) ≤ 0 for all r, (respectivelyf ′(r) ≥
0 for all r), and givenX ∈ TqS unitary:

(3.3)
HessS(f ◦ r)(X,X) ≤ (≥) ( f ′′(r) − f ′(r)ηw(r) )〈X,∇N r〉2

+f ′(r)( ηw(r) + 〈∇Nr, AS(X,X) 〉)

(B) Tracing inequality (3.3)

(3.4)
∆S(f ◦ r) ≤ (≥) ( f ′′(r) − f ′(r)ηw(r) ) ‖∇Sr‖2

+mf ′(r)
(

ηw(r) + 〈∇Nr, HS 〉
)

whereHS denotes the mean curvature vector ofS in N .

Another result we shall use concerning the radial functionsdefined on the surface is
the following:



8 A. ESTEVE AND V. PALMER

Proposition 3.3. LetS2 be a complete, non-compact, and properly immersed surface in a
Cartan-Hadamard manifoldNn. Let us consider{Et}t>0 an exhaustion ofS by extrinsic
balls. Letf : S → R be a positiveC∞ function. Then
∫

S

e−
√
−br(x) f(x)dσ < +∞ if and only if

∫ +∞

0

e−
√
−bt

∫

Et

f(x) dσ dt < +∞

and when these integrals converge
∫

S

e−
√
−br(x) f(x)dσ =

∫ +∞

0

e−
√
−bt

∫

Et

f(x) dσ dt

Proof. Given the exhaustion ofS by extrinsic balls{Et}t>0, we apply the co-area for-
mula to obtain, for eacht > 0:

∫

Et

e−
√
−br(x) f(x)dσ =

∫ t

0

e−
√
−bs

∫

∂Es

f(x)

‖∇Sr‖dµds

and, on the other hand,

d

ds

∫

Es

f(x)dσ =

∫

Γs

f(x)

‖∇Sr‖dµ

Hence

(3.5)

∫

Et

e−
√
−br(x) f(x) dσ =

∫ t

0

e−
√
−bs

(

d

ds

∫

Es

f(x)dσ

)

ds

= e−
√
−bt

∫

Et

f(x) dσ +
√
−b

∫ t

0

e−
√
−bs

∫

Es

f(x) dσ

Taking limits whent → ∞

(3.6)

∫

S

e−
√
−br(x) f(x) dσ = lim

t→∞

∫

Et

e−
√
−br(x) f(x) dσ

=

(

lim
t→+∞

e−
√
−bt

)
∫

S

f(x) dσ +
√
−b

∫ +∞

0

e−
√
−bs

∫

Et

f(x) dσ

and we have the result because both integrals on the right-hand side of equation (3.6) are
non-negative. �

3.2. An application of the Gauss-Bonnet theorem: geodesic curvature of the extrin-
sic curves on the surfaceS. These results have been stated and proven previously in [6]
and [7], when the ambient manifold is the hyperbolic space. We extend it here to minimal
surfaces in a Cartan-Hadamard manifold.

Proposition 3.4. Let S2 be a properly immersed and minimal surface in a Cartan-
Hadamard manifoldN , with sectional curvatures bounded from above by a negative
quantityKN ≤ b < 0. Let Et be an extrinsic ball inS centered on a poleo ∈ N .
The geodesic curvature of the extrinsic sphere∂Et, denoted asktg, is bounded from below
as follows

(3.7)

ktg ≥ 1

‖∇Sr‖
{

ηωb
+
〈

AS(e, e),∇Nr
〉}

= {ηωb
(t)− 〈∇⊥r, AS(

∇Sr

‖∇Sr‖ ,
∇Sr

‖∇Sr‖ )〉}
1

‖∇Sr‖
whereAS denotes the second fundamental form ofS in N , e ∈ TS is unitary and tangent
to Γt andηωb

(t) = hb(t) is the constant mean curvature of the distance spheres in the
hyperbolic spacesHn(b).
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Proof. We apply Proposition 3.2 tof(r) = r to conclude that the geodesic curvaturektg
satisfies the inequality

(3.8)

ktg =
1

‖∇Sr‖HessSr(e, e) ≥

1

‖∇Sr‖
{

−ηωb

〈

e,∇Nr
〉2

+ ηωb
+
〈

AS(e, e),∇Nr
〉

}

=

1

‖∇Sr‖
{

ηωb
+
〈

AS(e, e),∇Nr
〉}

,

wheree ∈ TS is unitary and tangent toΓr.
As

(3.9) HS =
1

2

[

AS(e, e) +AS(
∇Sr

‖∇Sr‖ ,
∇Sr

‖∇Sr‖ )
]

= 0,

we obtain:

(3.10) ktg ≥ 1

‖∇Sr‖

{

ηωb
(t)−

〈

AS(
∇Sr

‖∇Sr‖ ,
∇Sr

‖∇Sr‖ ),∇
⊥r

〉}

.

�

Proposition 3.5. Let S2 be a properly immersed and minimal surface in a Cartan-
Hadamard manifoldN , with sectional curvatures bounded from above by a negative
quantityKN ≤ b < 0. Let Et be a (non-connected) extrinsic ball inS centered on a
poleo ∈ N . The volumev(t) = Vol(Et) satisfies the inequality

2πχ(Et) ≥ ηωb
(t)v′(t)−

∫

∂Et

〈 ∇⊥r

‖∇Sr‖ , A
S(

∇Sr

‖∇Sr‖ ,
∇Sr

‖∇Sr‖ )〉dσt

+

∫

Et

KS dσ

(3.11)

whereKS denotes the Gaussian curvature ofS.

Proof. Applying the Gauss-Bonnet theorem

(3.12)
∫

∂Et

ktgdµ+

∫

Et

KSdσ = 2πχ(Et),

Now, using Proposition 3.4

(3.13)

2πχ(Et) ≥
∫

∂Et

1

‖∇Sr‖

{

ηωb
(t)−

〈

AS(
∇Sr

‖∇Sr‖ ,
∇Sr

‖∇Sr‖ ),∇
⊥r

〉}

dσt

+

∫

Et

KSdσ.

�

Proposition 3.6. Let S2 be a properly immersed and minimal surface in a Cartan-
Hadamard manifoldN , with sectional curvatures bounded from above by a negative
quantityKN ≤ b < 0. Let Et be an extrinsic ball inS centered on a poleo ∈ N .
Then, given the non-negative real numberst > s > 0, we have
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∫

Et
cosh

√
−brdσ

cosh2
√
−bt

−
∫

Es
cosh

√
−brdσ

cosh2
√
−bs

≥
∫

Et−Es

1 + sinh2
√
−br‖∇⊥r‖2

cosh3
√
−br

dσ

(3.14)

Proof. As KN ≤ b by applying (3.4) to the radial functionf(r) = cosh
√
−br, and asS

is minimal, we have,

(3.15) ∆S cosh
√
−br ≥ −2b cosh

√
−br

We integrate inequality (3.15) withinEu and then we apply the divergence theorem to
obtain

(3.16)
√
−b sinh

√
−bu

∫

Γu

‖∇Sr‖dσu ≥ −2b

∫

Eu

cosh
√
−br dσ

Therefore

(3.17)
∫

Eu

cosh
√
−br dσ ≤ 1

2

sinh
√
−bu√

−b

∫

Γu

‖∇Sr‖dσu

Deriving and using the inequality above

d

du

(
∫

Eu
cosh

√
−brdσ

cosh2
√
−bu

)

≥

1

cosh3
√
−bu

{
∫

Γu

cosh2
√
−br − sinh2

√
−br‖∇Sr‖2

‖∇Sr‖ dσu

}

=

∫

Γu

1

‖∇Sr‖

{

1 + sinh2
√
−br‖∇⊥r‖2

cosh3
√
−bu

dσu

}

Now, integrate the inequality above betweens andt and apply the co-area formula.�

4. EXTRINSIC ISOPERIMETRY, VOLUME GROWTH, AND TOPOLOGY OF SURFACES

As mentioned in the Introduction, two key ingredients for our proof of the Chern-
Osserman inequality are the following results: an isoperimetric inequality established in
[25] for the extrinsic balls of minimal submanifolds in Cartan-Hadamard manifolds (and
also a monotonicity result which is derived from it and from the co-area formula (see [18]
and [2])), and a result which relates the Euler characteristic of a surface with the limit
value of the Euler characteristic of the sets of an exhaustion by connected extrinsic balls
of such a surface.

The first of these results is stated as follows:

Theorem C. (see[2], [18], [25]) LetPm be a minimal submanifold properly immersed
in a Cartan-Hadamard manifoldNn with sectional curvatureKN ≤ b ≤ 0. LetEr be an
extrinsicr-ball in Pm, with center at a pointo which is also a pole in the ambient space
N . Then

(4.1)
Vol(∂Er)

Vol(Er)
≥ Vol(Sb,m−1

r )

Vol(Bb,m
r )

for all r > 0 .

and

(4.2)
Vol(∂Er)

Vol(Er)
≥ (m− 1)hb(r) for all r > 0

Furthermore, the functionf(r) = Vol(Er)

Vol(Bb,m
r )

is monotone non-decreasing inr.
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Moreover, if the equality in inequality (4.1) holds for somefixed radiusr0 thenEr0 is
a minimal cone in the ambient spaceNn, so ifNn is the hyperbolic spaceKn(b), b < 0,
thenPm is totally geodesic inKn(b).

Remark 4.1. In [19] there is a comparison among the lower bounds for the isoperimetric
quotient in (4.1) and (4.2), depending on the sectional curvatureb ∈ R.

A particularization for cmi surfaces in a negatively curvedCartan-Hadamard manifold
gives the following monotonicity result:

Corollary 4.2 (Minimal Monotonicity). LetS be a properly immersed and minimal sur-
face in a Cartan-Hadamard manifoldN , with sectional curvatures bounded from above
by a negative quantityKN ≤ b < 0.

Then, the functions v(t)

cosh(
√
−bt)−1

and v(t)

e(
√
−bt)

are non-decreasing in[0,+∞),

wherev(t) = Vol(Et).

On the other hand, we also have the following theorem: as we have mentioned in the
Introduction, this is a key result which will allow us to argue as in [6] and [7], applying
classical Morse theory to conclude thatχ(S) = limt→∞ χ(Et) for an exhaustion ofS by
extrinsic balls{Et}t>0.

Recall that an exhaustion of the surfaceS by extrinsic balls is a sequence of such
subsets, centered at the same point{Et ⊆ S}t>0, such that:

• Et ⊆ Es whens ≥ t
• ∪t>0Et = S

Recall too that the Euler characteristic of a (pre) compact set is finite.

Theorem 4.3. Let S be an complete minimal surface properly immersed in a Cartan-
Hadamard manifoldN with sectional curvature bounded from above by a negative quan-
tity KN ≤ b < 0. Let us suppose that

∫

S
‖AS‖2dσ < ∞ and that‖AS‖(q) ≤ hb(r(q))

outside a compact setK ⊂ S, wherer(q) = distN (o, q), the distance to a fixed pole
o ∈ N . Then

(i) S is diffeomorphic to a compact surfaceS∗ punctured at a finite number of points.

(ii) For all sufficiently larget > R0 > 0, χ(S) = χ(Et) and, hence, given{Et}t>0

an exhaustion ofS by extrinsic balls centered at the poleo ∈ N ,

−χ(S) = lim
t→∞

inf(−χ(Et)) < ∞

Proof. Let us consider{Et}t>0 an exhaustion ofS by extrinsic balls, centered at the pole
o ∈ N . We apply Proposition 3.4 to the smooth curves∂Et = Γt. As

−‖AS‖ ≤ 〈AS(e, e),∇⊥ r〉 ≤ ‖AS‖
we have, on the points of the curveq ∈ Γt,

(4.3)
‖∇S r‖(q) · kΓt

g (q) ≥ hb(rp(q)) + 〈AS(e, e),∇⊥ r〉(q)
≥ hb(rp(q))− ‖AS‖(q)

As ‖AS‖(q) ≤ hb(r(q)) ∀q ∈ S \ K, we have, for all the pointsq ∈ Γt and for suffi-
ciently larget,

(4.4) ‖∇S r‖(q) · kΓt
g (q) > 0

Hence,‖∇S r‖ > 0 in Γt, for all sufficiently larget. By fixing a sufficiently large radius
R0, we can conclude that the extrinsic distancero has no critical points inS \ ER0 .

The above inequality implies that for this sufficiently large fixed radiusR0, there is a
diffeomorphism:
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Φ : S \ ER0 → ΓR0 × [0,∞[

In particular,S has only finitely many ends, each of a finite topological type.
To prove this we apply Theorem 3.1 in [17], concluding that, as the extrinsic annuli

AR0,R(o) = ER(o) \ER0(o) contains no critical points of the extrinsic distance function
ro : S −→ R because of inequality (4.3), thenER(o) is diffeomorphic toER0(o) for all
R ≥ R0.

The above diffeomorphism implies that we can constructS from ER0 by attaching
annuli and thatχ(S \Et) = 0 whent ≥ R0. Then, for allt > R0,

χ(S) = χ(Et ∪ (S \ Et)) = χ(Et)

�

5. PROOF OFTHEOREM 1.1

In this Section we are going to prove our main result, (Theorem 1.1), which generalizes
the main theorem in [7].

Let us consider{Et}t>0 an exhaustion ofS by extrinsic balls centered at the pole
o ∈ N . By adding the quantitybv(t) on both sides of inequality (3.11), using the Gauss
formula to replaceKS by KN − 1

2‖AS‖2 in this same inequality and definingR(t) :=
∫

Et
‖AS‖dσ, we have

(5.1)

ηωb
(t)v′(t) + b v(t) ≤ −

∫

Et

(KN − 1

2
‖AS‖2)dσ+

∫

∂Et

1

‖∇Sr‖〈A(
∇Sr

‖∇Sr‖ ,
∇Sr

‖∇Sr‖ ),∇
⊥r〉dσt + 2πχ(Et)

+

∫

Et

b dσ = −
∫

Et

(KN − b)dσ +
1

2
R(t)

+

∫

∂Et

1

‖∇Sr‖〈A(
∇Sr

‖∇Sr‖ ,
∇Sr

‖∇Sr‖ ),∇
⊥r〉dσt + 2πχ(Et).

From now on, we denote

(5.2) I(t) =

∫

∂Et

1

‖∇Sr‖

〈

AS

( ∇Sr

‖∇Sr‖ ,
∇Sr

‖∇Sr‖

)

,∇⊥r

〉

dσt,

It is straightforward to check that

(5.3) ηωb
(t)v′(t) + b v(t) =

√
−b

cosh2(
√
−bt)

sinh(
√
−bt)

d

dt

v(t)

cosh(
√
−bt)

.

Then, inequality (5.1) becomes

(5.4)

d

dt

v(t)

cosh(
√
−bt)

≤ 1√
−b

sinh(
√
−bt)

cosh2(
√
−bt)

{

−
∫

Et

(KN − b)dσ +
1

2
R(t)+

I(t) + 2πχ(Et)}
On the other hand, for allt > 0 we have:

(5.5)
sinh(

√
−bt)

cosh2(
√
−bt)

≤ 2e−
√
−bt

and hence
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(5.6)

d

dt

v(t)

cosh(
√
−bt)

≤ 1√
−b

{2e−
√
−bt

∫

Et

(−KN + b)dσ + e−
√
−btR(t)

+
sinh(

√
−bt)

cosh2(
√
−bt)

I(t) + 4e−
√
−btπχ(Et)}.

By Theorem 4.3, for all sufficiently larget > R0, χ(Et) = χ(S). Now, we integrate
both sides of inequality (5.6) between0 and a fixedt > R0, and taking into account that
v(0)

cosh(0) = 0, the definition ofI(t), applying the co-area formula and using the fact that,
by Theorem 4.3,χ(Es) ≤ |χ(Es)| = |χ(S)| < ∞ ∀s > R0:

(5.7)

v(t)

cosh(
√
−bt)

≤ 1√
−b

{

2

∫ t

0

e−
√
−bs

∫

Es

(b −KN)dσds

+

∫ t

0

e−
√
−bsR(s)ds+

∫ t

0

sinh(
√
−bs)

cosh2(
√
−bs)

I(s)ds

+ 4π

∫ t

0

χ(Es)e
−
√
−bsds }

≤ 1√
−b

{

2

∫ t

0

e−
√
−bs

∫

Es

(b−KN )dσds+

∫ t

0

e−
√
−bsR(s)ds

+

∫ t

0

sinh(
√
−bs)

cosh2(
√
−bs)

I(s)ds+ C(0)}

where

0 < C(0) = 4π

∫ R0

0

χ(Es)e
−
√
−bsds+ 4π|χ(S)|

∫ ∞

R0

e−
√
−bsds

= 4π

∫ R0

0

χ(Es)e
−
√
−bsds+

4π|χ(S)|√
−b

e−
√
−bR0 < ∞

We are going to estimateSupt>0
v(t)

cosh(
√
−bt)

using the above inequality. To do so, we

proceed as follows.
As
∫

S ‖AS‖2dσ < +∞, then
∫

S e−
√
−br‖AS‖2dσ < +∞.

Then, applying Proposition 3.3 to the non-negative function f = ‖AS‖2, using hy-
pothesis (1.3), we have:

(5.8)
∫ +∞

0

e−
√
−btR(t) dt < +∞

By also applying Proposition 3.3 to the non-negative function f(x) = b − KN (x)
defined onS, and using hypothesis (1.4) we know that:

(5.9)
∫ +∞

0

e−
√
−bt

∫

Et

(b−KN )dσdt < +∞

With these estimates we can conclude, by applying the co-area formula and definition
(5.2), that:

(5.10)

v(t)

cosh(
√
−bt)

≤ C1(0) +
1√
−b

∫ t

0

sinh(
√
−bs)

cosh2(
√
−bs)

I(s)ds

= C1(0) +
1√
−b

∫

Et

sinh(
√
−br)

cosh2(
√
−br)

〈AS(
∇Sr

‖∇Sr‖ ,
∇Sr

‖∇Sr‖ ),∇
⊥r〉dσ.
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whereC1(0) =
1√
−b

{C(0) +
∫ +∞
0 e−

√
−bt
∫

Et
(b −KN )dσdt +

∫ +∞
0 e−

√
−btR(t) dt}

is a positive and finite constant.

To obtain the result, we need the following:

Lemma 5.1. There is a constantC2 ≥ 0 satisfying

(5.11)

∫

Et

sinh(
√
−br)

cosh2(
√
−br)

〈

AS(
∇Sr

‖∇Sr‖ ,
∇Sr

‖∇Sr‖ ),∇
⊥r

〉

dσ ≤

C2

√

v(t)

cosh(
√
−bt)

Proof. Let us consider{e1, e2} an orthonormal basis ofTpS, (p ∈ S), beinge1 = ∇Sr
‖∇Sr‖ .

Then

(5.12) ‖AS(
∇Sr

‖∇Sr‖ ,
∇Sr

‖∇Sr‖ )‖
2 ≤ ‖AS‖2

so

(5.13) 〈AS(
∇Sr

‖∇Sr‖ ,
∇Sr

‖∇Sr‖ ),∇
⊥r〉 ≤ ‖AS‖ ‖∇⊥r‖

Applying Cauchy-Schwartz Inequality to the functions

‖AS‖
(cosh(

√
−br))1/2

and
sinh(

√
−br)‖∇⊥r‖

(cosh(
√
−br))3/2

,

we obtain:
∫

Et

sinh(
√
−br)

cosh2(
√
−br)

〈

AS(
∇Sr

‖∇Sr‖ ,
∇Sr

‖∇Sr‖ ),∇
⊥r

〉

dσ ≤
∫

Et

sinh(
√
−br)‖AS‖ ‖∇⊥r‖

cosh2(
√
−br)

dσ ≤
√

∫

Et

‖AS‖2dσ
cosh(

√
−br)

√

∫

Et

sinh2(
√
−br)‖∇⊥r‖2dσ

cosh3(
√
−br)

.

Takings = 0 in Proposition 3.6 we obtain

∫

Et

1 + sinh2(
√
−br)‖∇⊥r‖2

cosh3(
√
−br)

dσ ≤
∫

Et
cosh(

√
−br)dσ

cosh2(
√
−bt)

As, on the other hand,cosh(
√
−br) is non-decreasing, then

∫

Et
cosh(

√
−br)dσ

cosh2(
√
−bt)

≤ cosh(
√
−bt)v(t)

cosh2(
√
−bt)

=
v(t)

cosh(
√
−bt)

Hence
∫

Et

sinh2(
√
−br)‖∇⊥r‖2

cosh3(
√
−br)

dσ ≤ v(t)

cosh(
√
−bt)

and therefore:
∫

Et

sinh(
√
−br)

cosh2(
√
−br)

〈AS(
∇Sr

‖∇Sr‖ ,
∇Sr

‖∇Sr‖ ),∇
⊥r〉 ≤

√

∫

Et

‖AS‖2
cosh(

√
−br)

√

v(t)

cosh(
√
−bt)

As 1
cosh

√
−bt

≤ 2e−
√
−bt ∀t > 0, we have
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0 ≤
√

∫

Et

‖AS‖2dσ
cosh(

√
−br)

≤
√

∫

S

2e−
√
−br‖AS‖2dσ = C2 < ∞

because
∫

S e−
√
−br‖AS‖2dσ < ∞ as we have seen before. �

Returning to (5.10), and using Lemma 5.1, we have

v(t)

cosh(
√
−bt)

≤ C1(0) + C2

√

v(t)

cosh(
√
−bt)

.

By puttingh(t) =
√

v(t)

cosh(
√
−bt)

the inequality above becomes:

h2(t)− C2h(t)− C1(0) ≤ 0

and hence the values ofh(t) lie between the zeroes of the functionf(x) = x2 − C2x −
C1(0), which are real and distinct numbers (becauseC1(0) > 0 andC2 ≥ 0 and it is not
possible thatC1(0) = C2 = 0). Hence,h(t) (and alsoh2(t)) are bounded.

We have proven that v(t)

cosh(
√
−bt)

< ∞ and therefore, v(t)

cosh(
√
−bt)−1

< ∞, so assertion
(1) of the Theorem is proven.

To prove assertion (2), we remember equation (5.2) so that inequality (5.1) becomes

(5.14) − 2πχ(Et) ≤ −
∫

Et

(KN − b)dσ +
1

2
R(t) + I(t)− ηωb

(t)v′(t)− b v(t)

We now need the following

Lemma 5.2.
∫ t

0
cosh(

√
−bs) v′(s)ds ≥ cosh(

√
−bt)+1
2 v(t)

Proof. As v(t)

cosh(
√
−bt)−1

is non-decreasing, we know that

(5.15)
(

cosh(
√
−bt)− 1

)

v′(t) ≥ v(t)
√
−b sinh(

√
−bt)

Hence, integrating both sides of the inequality above:

∫ t

0

cosh(
√
−bs) v′(s)ds =

v(t) cosh(
√
−bt)−

√
−b

∫ t

0

v(s) sinh(
√
−bs)ds ≥

v(t) cosh(
√
−bt)−

∫ t

0

(cosh(
√
−bs)− 1)v′(s)ds =

v(t)(cosh(
√
−bt) + 1)−

∫ t

0

cosh(
√
−bs) v′(s)ds.

�
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Again, using the definition ofI(t), inequality (5.13), and the arithmetic-geometric

mean inequalityxy ≤ x2+y2

2 , we have

(5.16)

I(t) ≤
∫

∂Et

‖AS‖‖∇
⊥r‖

‖∇Sr‖ dσt

=

∫

∂Et

‖AS‖
√

ηωb
(t)
√

‖∇Sr‖

√

ηωb
(t)‖∇⊥r‖

√

ηωb
(t)
√

‖∇Sr‖
dσt ≤

1

2

∫

∂Et

( ‖AS‖2
ηωb(t)‖∇Sr‖ +

ηωb
(t)‖∇⊥r‖2
‖∇Sr‖

)

dσt ≤

1

ηωb
(t)

∫

∂Et

‖AS‖2
‖∇Sr‖ + ηωb

(t)

∫

∂Et

‖∇⊥r‖2
‖∇Sr‖ dσt.

But, by applying the co-area formula,

1

ηωb
(t)

R′(t) =
1

ηωb
(t)

∫

∂Et

‖AS‖2
‖∇Sr‖dσt,

so we have

(5.17) I(t) ≤ R′(t)

ηωb
(t)

+ ηωb
(t)

∫

∂Et

‖∇⊥r‖2
‖∇Sr‖ dσt.

On the other hand, by using the co-area formula, inequality (3.17), and Lemma 5.2 we
obtain:

(5.18)

ηωb
(t)

∫

∂Et

‖∇⊥r‖2
‖∇Sr‖ dµ = ηωb

(t)

∫

∂Et

1− ‖∇Sr‖2
‖∇Sr‖ dµ

≤ηωb
(t)v′(t)− ηωb

(t)

∫

∂Et

‖∇Sr‖dσ

≤ηωb
(t)v′(t)− 2ηωb

(t)
√
−b

sinh(
√
−bt)

∫

Et

cosh(
√
−br)dσ

=ηωb
(t)v′(t)− 2ηωb

(t)
√
−b

sinh(
√
−bt)

∫ t

0

cosh(
√
−bs) v′(s)ds

≤ηωb
(t)v′(t)− v(t)ηωb

(t)
√
−b

sinh
√
−bt

(cosh
√
−bt + 1)

= ηωb
(t)v′(t)− ηωb

(t)2v(t)−
√
−bηωb

(t)v(t)

sinh
√
−bt

Finally, from (5.17) y (5.18) we obtain:

(5.19) I(t) ≤ 1

ηωb
(t)

R′(t) + ηωb
(t)v′(t)− ηωb

(t)2v(t)−
√
−bηωb

(t)v(t)

sinh
√
−bt

.

Now considering (5.14), and applying (5.19):

(5.20)

− 2πχ(Et) ≤
∫

Et

(b−KN)dσ +
1

2
R(t) +

1

ηωb
(t)

R′(t)

+ηωb
(t)v′(t)− ηωb

(t)2v(t)− (ηωb
(t)v′(t) + b v(t))−

√
−bηωb

(t)v(t)

sinh
√
−bt

≤
∫

Et

(b −KN)dσ +
1

2
R(t) +

1

ηωb
(t)

R′(t)

+ v(t)(−b − ηωb
(t)2)−

√
−bηωb

(t)v(t)

sinh
√
−bt



CHERN-OSSERMAN INEQUALITY FOR SURFACES 17

It is straightforward to see, taking into account thatVol(Bb,2
t ) = −2π

b (cosh
√
−bt−1),

(5.21) v(t)(−b − ηωb
(t)2)−

√
−bηωb

(t)v(t)

sinh
√
−bt

=
bv(t)

cosh
√
−bt− 1

=
−2πv(t)

Vol(Bb,2
t )

and hence

(5.22) −2πχ(Et) ≤
∫

Et

(b −KN)dσ +
1

2
R(t) +

1

ηωb
(t)

R′(t)− 2πv(t)

Vol(Bb,2
t )

As we defineR(t) =
∫

Et
‖AS‖2dσ, then

∫

S ‖AS‖2dσ = limt→∞ R(t) =
∫ +∞
0 R′(t)dt <

+∞. Therefore, there is a monotone increasing (sub)sequence{ti}∞i=1 tending to infinity
(namely,ti → ∞ wheni → ∞), such thatR′(ti) → 0 wheni → ∞, and hence

lim
i→+∞

1

ηωb
(ti)

R′(ti) =
0√
−b

= 0.

Let us consider the exhaustion ofS by these extrinsic balls, namely,{Eti}∞i=1. Since
{Eti}∞i=1 is a family of precompact open sets exhaustingS, then the sequence

{inf({−χ(Erk)}∞k=i}∞i=1

is monotone non-decreasing. Then we have, by replacingt for ti and taking limits when
i → ∞ in inequality (5.22), that

lim
i→∞

inf({−χ(Erk)}∞k=i)

≤
∫

S

(b −KN)dσ +
1

2

∫

S

‖AS‖2dσ − 2π Supt>0

v(t)

Vol(Bb,2
t )

< ∞

and hence, by applying Theorem 4.3,S2 has finite topology and

(5.23) − 2πχ(S) ≤
∫

S

(b −KN)dσ +
1

2

∫

S

‖AS‖2dσ − 2π Supt>0

v(t)

Vol(Bb,2
t )

6. PROOF OFTHEOREM 1.5

We are going to apply Theorem 1.1, and to do so it is enough to check that hypothesis
(1.4) in Theorem 1.1, i.e., inequality

∫

S

(b −KN)dσ < ∞

is satisfied in our setting. By Definition 1.4, we have that|KN |S − b| ≤ Ke−2
√
−br(x),

for all x ∈ S−EM (o), EM (o) being an extrinsic ball centered at one poleo ∈ N . Hence,
if we consider{Et}t>0 an exhaustion ofS by extrinsic balls centered at the poleo ∈ N ,
we have,

(6.1)

∫

S

(b −KN |S)dσ ≤
∫

S

|b−KN |S |dσ =

∫

EM (o)

|b−KN |S |dσ

+

∫

S−EM(o)

|b−KN |S |dσ

≤ C1 +K

∫

S−EM (o)

e−2
√
−brdσ

≤ C1 +K

∫

S

e−2
√
−brdσ

and, applying the co-area formula as in (3.5) and (3.6), we obtain
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(6.2)

∫

S

(b −KN |S)dσ ≤
∫

S

|b−KN |S |dσ

≤ C1 +K

∫

S

e−2
√
−brdσ = C1 +K lim

t→∞
v(t)e−2

√
−bt

+ 2K
√
−b lim

t→∞

∫ t

0

v(s)e−2
√
−bsds

To prove the theorem, we must check thatlimt→∞ v(t)e−2
√
−bt < ∞ and that

∫∞
0

v(s)e−2
√
−bsds < ∞. To do so, let us consider the non-decreasing functionf(t) =

v(t)

e
√

−bt
(see Corollary 4.2). We shall see thatf(t) is bounded, that is, thatlimt→∞ f(t) <

∞.
Taking into account the fact thatηwb

(t) =
√
−b coth(

√
−bt) ≥

√
−b ∀t > 0, we

obtain

(6.3)
√
−bv′(t) + bv(t) ≤ ηwb

(t)v′(t) + bv(t) ∀t > 0

On the other hand,

(6.4)
√
−bv′(t) + bv(t) =

√
−be

√
−btf ′(t)

so, using inequality (5.1) in the proof of Theorem 1.1,

(6.5)

f ′(t) ≤ 1√
−b

e−
√
−bt{

∫

Et

(b−KN )dσ +
1

2
R(t) + I(t) + 2πχ(Et)}

≤ 1√
−b

e−
√
−bt{

∫

Et

|b−KN |dσ +
1

2
R(t) + I(t) + 2πχ(Et)}

Now, we integrate both sides of inequality (6.5) between0 andt > R0 as in the proof
of Theorem 1.1. Then:

(6.6)

f(t) ≤ 1√
−b

{
∫ t

0

e−
√
−bs

∫

Es

|b−KN |dσds

+

∫ t

0

e−
√
−bsR(s)ds+

∫ t

0

e−
√
−bsI(s)ds

+ C2(0)}
where, as in the proof of Theorem 1.1,

0 < C2(0) = 4π

∫ R0

0

χ(Es)e
−
√
−bsds+ 4π|χ(S)|

∫ ∞

R0

e−
√
−bsds

= 4π

∫ R0

0

χ(Es)e
−
√
−bsds+

4π|χ(S)|√
−b

e−
√
−bR0 < ∞

With the same arguments as in the proof of Theorem 1.1 and using hypothesis (1.3),
we have

(6.7)

f(t) ≤ 1√
−b

{
∫ t

0

e−
√
−bs

∫

Es

|b−KN |dσds

+

∫ t

0

e−
√
−bsI(s)ds+ C3}

where0 < C3 = C2(0) +
∫

S e−
√
−br‖AS‖2dσ < ∞

Now, we are going to prove the following Lemma:
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Lemma 6.1. There is a constantC4 > 0 satisfying

(6.8)
∫ t

0

e−
√
−bsI(s)ds ≤ C4

√

f(t) ∀t > 0

Proof. We argue as in Lemma 5.1: by applying Cauchy-Schwartz inequality and the co-
area formula, and using inequality (5.13), we obtain

(6.9)

∫ t

0

e−
√
−bsI(s)ds =

∫ t

0

e−
√
−bs

∫

∂Ds

〈

AS(
∇Sr

‖∇Sr‖ ,
∇Sr

‖∇Sr‖ ),∇
⊥r

〉

dσsds

≤
∫ t

0

e−
√
−bs

∫

∂Ds

‖AS‖‖∇
⊥r‖

‖∇Sr‖ dσsds ≤
∫

Et

‖AS‖‖∇⊥r‖dσ
√

e
√
−br
√

e
√
−br

≤
√

∫

Et

‖AS‖2dσ
e
√
−br

√

∫

Et

‖∇⊥r‖2dσ
e
√
−br

≤ C4

√

∫

Et

‖∇⊥r‖2dσ
e
√
−br

because0 <
∫

Et

‖AS‖2dσ

e
√

−br
= C4 < ∞

To conclude the proof of the Lemma, we are going to see that, for all t > 0,

(6.10)
∫

Et

‖∇⊥r‖2dσ
e
√
−br

≤ v(t)

e
√
−bt

By inequality (3.15), we have, for allr > 0

(6.11) ∆S cosh
√
−br ≥ −2b cosh

√
−br ≥ −be

√
−br

Integrating two sides of (6.11) and applying Divergence theorem, we have

(6.12)
sinh

√
−bt√

−b

∫

∂Et

‖∇Sr‖dσt ≥
∫

Et

e
√
−brdσ

Deriving the function
∫
Eu

e
√

−brdσ

e2
√

−bu
and using inequality (6.12):

(6.13)
d

du

∫

Eu
e
√
−brdσ

e2
√
−bu

≥
∫

∂Eu

e−
√
−br ‖∇⊥r‖2

‖∇Sr‖ dσu

So, by integrating both sides of (6.13) between0 andt and using the co-area formula,
and the fact thate

√
−br is non-decreasing:

(6.14)
∫

Et

e−
√
−br‖∇⊥r‖2dσ ≤

∫

Et
e
√
−brdσ

e2
√
−bt

≤ v(t)

e
√
−bt

Then, there existsC4 ≥ 0 such that

(6.15)
∫ t

0

e−
√
−bsI(s)ds ≤ C4

√

∫

Et

e−
√
−br‖∇⊥r‖2dσ ≤ C4

√

v(t)

e
√
−bt

�

Now, using inequality (6.7) and Lemma 6.1 we have

(6.16) f(t) ≤ 1√
−b

{
∫ t

0

e−
√
−bs

∫

Es

|b−KN |dσds+ C4

√

f(t) + C3}



20 A. ESTEVE AND V. PALMER

We are now going to see that

(6.17)
∫ t

0

e−
√
−bs

∫

Es

|b −KN |dσds ≤ C5 +K

∫ t

0

e−
√
−bs

∫

Es

e−
√
−brdσds

As |b −KN(x)| = O(e−2
√
−br(x)), namely, there existsM > 0 andK > 0 such that

|b−KN (x)| ≤ Ke−2
√
−br(x) ≤ Ke−

√
−br(x) for all x ∈ S − EM (o), then

(6.18)

∫ t

0

e−
√
−bs

∫

Es

|b−KN |dσds ≤
∫ M

0

e−
√
−bs

∫

Es

|b−KN |dσds

+

∫ t

M

e−
√
−bs

∫

Es

|b−KN |dσds

≤ C5 +

∫ t

M

e−
√
−bs{

∫

Es−EM

|b−KN |dσ +

∫

EM

|b −KN |dσ}ds

≤ C5 +K

∫ t

0

e−
√
−bs

∫

Es

e−
√
−brdσds

Now, using equality (3.5) in Proposition 3.3, and from the fact that given a fixedt > 0,
e−

√
−bt ≤ e−

√
−br for all r ≤ t, we have

(6.19)

√
−b

∫ t

0

e−
√
−bs

∫

Es

e−
√
−brdσds =

∫

Et

e−2
√
−brdσ

− e−
√
−bt

∫

Et

e−
√
−brdσ ≤

∫

Et

e−2
√
−br

− e−
√
−bt v(t)

e
√
−bt

= 2
√
−b

∫ t

0

v(s)e−2
√
−bsds

= 2
√
−b

∫ t

0

f(s)e−
√
−bsds

and hence, from inequality (6.16) and with̄C1 := K > 0, C̄2 := C5 + C3 > 0 and
C̄3 := C4 > 0

(6.20) f(t) ≤ 1√
−b

{2C̄1

∫ t

0

f(s)e−
√
−bsds+ C̄2 + C̄3

√

f(t)}

On the other hand,f(t) = v(t)

e
√

−bt
≥ 0 for all t > 0 and, asS is minimal, using

inequality (4.2) in Theorem C,f ′(t) ≥ 0 for all t > 0. Moreover, we can assume that
there existst0 > 0 such thatf(t) ≥ 1 for all t ≥ t0 (in contrast,f(t) ≤ 1 ∀t > 0 and
the theorem is proven using inequality (6.2)). Hence,f(t) ≥

√

f(t) for all t ≥ t0 and
inequality (6.20) becomes (for allt > 0 becausef(t) is bounded in[0, t0]):

(6.21) f(t) ≤ 1√
−b

{2C̄1

∫ t

0

f(s)e−
√
−bsds+ C̄2 + C̄3f(t)}

Now, let us denotey(t) =
∫ t

0
f(s)e−

√
−bsds. Then,y′(t) = f(t)e−

√
−bt andy(0) =

0. Therefore (6.21) becomes the differential inequality:

(6.22) Ae
√
−bty′(t)−By(t) ≤ C

with A = 1− C̄3, B = 2C̄1√
−b

> 0 andC = C̄2 > 0.
Let us suppose thatA 6= 0 (if A = 0, then we have the result using (6.22)).
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Then we now have the differential inequality

(6.23) y′(t) ≤ C

A
e−

√
−bt +

B

A
e−

√
−bty(t) = F (t, y(t))

As F (t) is continuous and locally Lipschitz, if we consider

u0(t) =
C

B
(e

B
A
(1−e−

√
−bt) − 1)

the solution ofy′(t) = F (t, y(t)) with y(0) = 0, by applying Theorem 1.4 in [14], we
have that for allt > 0,

(6.24) y(t) =

∫ t

0

f(s)e−
√
−bsds ≤ u0(t) =

C

B
(e

B
A
(1−e−

√
−bt) − 1) ≤ C < ∞

so now inequality (6.20) becomes,

(6.25) f(t) ≤ 1√
−b

{A1 +A2

√

f(t)}

with A1 = 2C̄1C + C̄2 > 0 andA2 = C̄3 > 0
Let us denoteg(t) =

√

f(t) and inequality (6.25) becomes

(6.26) g2(t)−A2g(t)−A1 ≤ 0 ∀t > 0

Therefore,g(t) lies between the zeroes of the functionx2 − A2x − A1, which are
real and distinct numbers, becauseA1 ≥ 0 andA2 ≥ 0, and it is not possible that
A1 = A2 = 0. Hence,g(t) (and alsog2(t) = f(t) = v(t)

e
√

−bt
) is bounded, so the Theorem

is proven by using inequality (6.2).

7. PROOF OFTHEOREM 1.6

This proof is modeled on the proof of Theorem 3 in [6]. AsS is minimal, we apply
Theorem C, the fact that the center of the extrinsic ballso ∈ S, and the co-area formula
to obtain (see [25] for detailed proof), that the functionv(t) = Vol(Et) satisfies

(7.1) v(t) ≥ Vol(Bb,2
t ) ∀t > 0

Now, using the co-area formula again and the fact that the function f(t) = Vol(Et)

Vol(Bb,m
t )

is

monotone non-decreasing int (and hencev′(t) ≥ 2π√
−b

sinh
√
−bt ∀t > 0), we have

(7.2)
∫

S

1

cosh3
√
−br

dσ ≥ 2π√
−b

∫ ∞

0

sinh
√
−bt

cosh3
√
−b

dt =
π

−b

As, on the other hand,

(7.3) lim
t→0

∫

Et
cosh rdσ

cosh2 t
≤ lim

t→0

v(t)

cosh t
= 0

by applying Proposition 3.6, we have:

(7.4)

π

−b
= lim

t→∞

∫

Et
cosh rdσ

cosh2 t
≥ lim

t→∞

∫

Et

1 + sinh2
√
−br‖∇⊥r‖2

cosh3
√
−br

dσ

=

∫

S

1

cosh3
√
−br

dσ +

∫

S

1 + sinh2
√
−br‖∇⊥r‖2

cosh3
√
−br

dσ

≥ π

−b
+

∫

S

1 + sinh2
√
−br‖∇⊥r‖2

cosh3
√
−br

dσ

so
∫

S
1+sinh2

√
−br‖∇⊥r‖2

cosh3
√
−br

dσ = 0 and hence‖∇⊥r‖ = 0 onS. Therefore‖∇r‖ = 1 on

S andS is a minimal cone inN . Moreover, by applying Theorem 3.1 in [17],χ(Et) =



22 A. ESTEVE AND V. PALMER

χ(S) for all t > 0. As, for sufficiently smallt, the extrinsic and the geodesic balls are
diffeomorphic,Et ≡ Bb,2

t , thenχ(S) = 1.
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