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Abstract
Current works on process-oriented tolerancing for multi-station manufacturing processes (MMPs)

have been mainly focused on allocating fixture tolerances to ensure part quality specifications at a
minimum manufacturing cost. Some works have also included fixture maintenance policies into the
tolerance allocation problem since they are related to both manufacturing cost and final part qual-
ity. However, there is a lack of incorporation of other factors that lead to increase of manufacturing
cost and degrade of product quality, such as cutting-tool wear and machine-tool thermal state. The
allocation of the admissible values of these process variables may be critical due to their impact on
cutting-tool replacement and quality loss costs. In this paper, the process-oriented tolerancing is ex-
panded based on the recently developed, extended stream of variation (SoV) model, which explicitly
represents the influence of machining process variables in the variation propagation along MMPs. In
addition, the probability distribution functions (pdf) for some machining process variables are ana-
lyzed, and a procedure to derive part quality constraints according to GD&T specifications is also
shown. With this modeling capability extension, a complete process-oriented tolerancing can be con-
ducted, reaching a real minimum manufacturing cost. In order to demonstrate the advantage of the
proposed methodology over a conventional method, a case study is analyzed in detail.

Keywords: stream-of-variation, variation propagation, process-oriented tolerancing,
machining-induced variations, tool replacement, fixture maintenance

1. Introduction

Machining operations are inherently imperfect in fabricating parts. This is due to the numerous
process variables that affect the final quality of products, such as machine-tool thermal expansion,
cutting-tool wear, fixture error, etc. The inherent variability of machining processes requires to spec-
ify dimensional and geometrical tolerances on raw and machined surfaces to ensure final product
functionality. Product tolerancing defines the variability allowed for each key variable that character-
izes the functional requirements of the product, named the key product characteristics (KPCs). There
are two basic directions in tolerancing research: (a) tolerance analysis and (b) tolerance synthesis [1].
Tolerance analysis predicts the variation of the final product given the tolerance of each part using
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a mathematical model of tolerance accumulation such as the worst case model or the root square
sum [2, Chapter 9]. Tolerance synthesis, or tolerancing, focuses on assigning tolerance specifications
to individual manufacturing features on a part to ensure product functionality and minimize manu-
facturing cost. In the literature, the traditional tolerancing approach is product-oriented. It mainly
focuses on assigning tolerance to product variables, such as dimensions of final product and parts.
However, this approach only considers limited a priori knowledge about manufacturing capabilities
and manufacturing costs of specific operations, and does not explicitly specify the allowable variabil-
ity of the process variables, such as those related to tooling variations due to wear, thermal distortions
or manufacturing accuracy. Recently, the process-oriented tolerancing approach was proposed by [3].
This approach is essentially a tolerance transfer method where the quality specification of the final
product is ensured by optimally assigning tolerances of process variables throughout the manufactur-
ing process.

In a multi-station manufacturing process (MMP), the process variables, also referred as key con-
trol characteristics (KCCs), are the root causes of the process faults that negatively impact on the
KPCs. These KCCs define the working condition of the tools (machine-tools, fixtures and cutting-
tools) that are used to fabricate a part. In the process-oriented tolerancing approach, the incorporation
of KCCs into tolerance models leads to the integration of tolerancing with process maintenance and
operation strategies. As a result, a more comprehensive function cost can be considered to find out
the optimal tolerance allocation that minimizes the total manufacturing cost. The main challenge
of process-oriented tolerancing is the definition of a mathematical model that describes the effect
of KCC variations on the KPCs in a station of a MMP. Such effects on KPC variations may be
propagated to downstream stations and accumulated to the final product. Recently, this type of varia-
tion propagation in MMPs has been successfully modeled by applying the stream of variation (SoV)
modeling [4]. The SoV modeling is a systematic methodology to derive the KPC-KCC relationship
based on engineering domain knowledge on the product/process design [5]. Based on SoV models,
many quality improvement activities have been conducted on MMPs, such as process diagnosis [6],
sensor placement for in-process inspection [7, 8], quality prediction [9–11] and dimensional quality
control [12, 13]. However, only few works have been focused on process-oriented tolerancing [3, 14–
16]. In this specific field, Ding et al. [3] applied the process-oriented tolerancing approach to allocate
product and process tolerances in a multi-station assembly process (MAP). The KCCs modeled were
the variability of fixture locators caused by their degradation. Considering reciprocal functions as
cost-tolerance functions, the optimal tolerance of KCCs with the minimum manufacturing cost was
allocated by solving a constrained optimization problem. Similar problem was described by Chen
et al. [14], who expanded Ding’s work to integrate the process-oriented tolerancing with the fixture
maintenance planning. Tool fabrication cost, fixture maintenance cost and quality loss functions were
considered together to optimize the process tolerance allocation and the frequency of fixture mainte-
nance operations in MAPs. The main goal of this work was to present an integrated method to analyze
maintenance operations and process design together with the resulting assembly quality. These two
works established the fundamentals of process-oriented tolerancing through the use of the SoVmodel.
However, their works were focused on MAPs, where only fixture-induced variations are of interest
for tolerance allocating purposes.

Process-oriented tolerancing has been less explored on machining systems, where unlike MAPs,
a large number of process variables with different cost functions should be considered. In this field,
Huang et al. [15] developed a tolerance allocation methodology considering as process variables the
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deviations of fixture locators and the generic deviation of the cutting-tool movements of the machine-
tool at each station. This tolerance allocation problem seeks to maximize the variance of these process
variables constrained to part quality specifications, assuming that all process variables are indepen-
dent to each other and follow a normal distribution. Recently, Liu et al. [16] studied the use of the
SoV model to determine optimal setup planning that ensures product quality with minimum cost,
assuming that cost is inversely proportional to the necessary process precision. In their work, both
fixture-induced and machining-induced deviations (considering the later as a generic cutting-tool path
deviation) were treated as random process deviations.

Four main limitations can be identified in the previous research works. (i) The process variables
considered in the machining systems are not comprehensive, and the tolerance allocation is con-
ducted considering locator tolerances and generic cutting-tool path deviations. However, machine-
tools present other process variables that influence on the cutting-tool path accuracy such as cutting-
tool wear, thermal state of the spindle, etc [17]. In fact, a recent research work [18] demonstrated that
without considering these process variables in the SoV model, part quality prediction at the end of
a MMP may result in important misleading conclusions. Therefore, a complete tolerance allocation
requires the inclusion of additional process variables. (ii) The cost to be considered in the tolerance
allocation problem should include not only fixture cost (both design and maintenance cost) but also
other cost related to machining such as cutting-tool costs, thermal-control costs, etc. (iii) The process
variables considered have been assumed to follow a normal distribution [15, 16] for tolerance alloca-
tion purposes. However, other distributions closer to the real production system should be considered
for process variables such as locators wear or cutting-tool wear. (iv) The part quality constraints
should be considered as geometric dimensional and tolerancing (GD&T) specifications, instead of
vectorial dimensioning and tolerancing (VD&T) specifications which are not used in industry, al-
though they can be easily applied by using the SoV model.

In order to illustrate the limitations of current process-oriented tolerancing due to the neglection
of specific machining-induced variations, an example of a two-station machining process shown in
Fig. 1 is considered. At the first station, the dimension of the machined feature D2 is deviated from
its nominal value due to the locator tolerance, denoted by ±T2, and the machining-induced varia-
tions due to the cutting-tool wear, denoted by ±T3, and those induced by the spindle thermal expan-
sion, denoted by ±T4. Thus, considering the worst case deviation, the tolerance of D2 is defined
by T1 = T2 + T3 + T4. The workpiece is then set up at station 2, where the dimension of the fea-
ture to be machined, D3, will be deviated from nominal values in a similar way and thus, its final
tolerance will be defined by T5 = T6 + T7 + T8. As a result, the KPC of this part defined by the
dimension of the feature D4 will depend on all previous fixture and machining-induced variations.
Its tolerance will be defined as T10 = T1 + T5 + T9 = T2 + T3 + T4 + T6 + T7 + T8 + T9 , which
means that if machining-induced variations are not negligible with respect to fixture-induced varia-
tions, the achievable tolerance of this KPC depends on the variability of six different KCCs defined
by the tolerances {T2, T3, T4, T6, T7, T8}. Note that the tolerance T9 refers to the tolerance of the
dimension D1 (raw material) so it is not related to a fixture or machining-induced variation. Ne-
glecting the machining-induced variations will result in allocating a higher tolerance value for fixture
locators. However, if in reality machining-induced variations are not negligible, the locator tolerances
allocated will generate parts outside specifications since additional sources of variation are present.
As a conclusion, a reliable process-oriented tolerancing requires the incorporation of all those KCCs
related to machining-induced variations that directly influence on part quality.
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Figure 1: Example of the influence of machining-induced variations on the tolerance allocation problem.

In this paper, a process-oriented tolerancing methodology is proposed to include critical process
variables and cost functions, which are not considered yet in existing tolerance allocation approaches.
The proposed methodology provides a generic framework for the inclusion of a variety of process
variation sources. And specifically, the inclusion of process variables related to thermal errors and
cutting-tool wear-induced errors together with their corresponding cost functions are discussed in de-
tail. Furthermore, the probability density function (pdf) of some of the process variables are derived
mathematically according to the nature of the machining process. To ensure that the machined part
quality is within GD&T specifications (e.g. position tolerance specification), a methodology to derive
the optimization constraints is also presented.

The rest of this paper is organized as follows. Section 2 introduces the formulation of the state
space model and the deviation representation mechanism adopted in this paper. Section 3 formulates
the process-oriented tolerance allocation problem with the costs associated to fixture maintenance
policies and cutting-tool replacement policies. A case study is shown in Section 4 to demonstrate the
effectiveness of the proposed process-oriented tolerancing approach. Finally, Section 5 presents the
conclusions of the paper.

2. Stream of Variation modeling for MMPs

Process-oriented tolerancing requires a variation propagation model to relate the KPCs with the
KCCs in a MMP. Various propagation models have been developed according to the nominal product
and process design information and off-line analysis of quality-process interactions and inter-station
correlations. Mantripragada et al. [19] proposed the datum flow chain concept for MAPs design.
For modeling the 2D variation propagation in sheet metal MAPs, Jin et al. [20] developed the state
space modeling technique, which was further extended to 3D general assembly processes [16, 21].
For modeling multi-station machining processes, research works [15] and [22] investigated the 3D
variation propagation with an approximately linearized state space model. Zhou et al. [9] further
generalized the deviation representation and proposed a generic linear state space model based on
differential motion vectors (DMVs). A similar model was proposed by Wan et al. [23] including
error sources due to workpiece-fixture local contact compliance. Recently, Abellan-Nebot et al. [11]
extended the state space model developed in [9] by including specific machining-induced variations
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such as those due to geometric-thermal variations of machine-tools, cutting-tool deflections or cutting-
tool wear. In this section, the representation and derivation of the SoV model are briefly introduced.

2.1. Random deviation representation
Vectorial dimensioning and tolerancing (VD&T) was presented as an alternative to represent work-

piece tolerances in the early nineties [24]. For variation propagation modeling in MMP, Zhou et
al. [9] adopted the DMV approach originated from VD&T and robotics manipulations in order to
model variation feature representation. The DMV approach uses the vectorial representation as in
VD&T except that the orientation vector is based on the three Euler rotating angles instead of using
a unit direction vector. To understand the DMV representation, let us consider an ideal workpiece
surface plane defined by its local coordinate system (LCS1). The LCS1 can be located by a location
vector, tR1 = [tR1x, t

R
1y, t

R
1z]

T , and an orientation vector,ωR
1 = [ωR

1α, ω
R
1β, ω

R
1γ]

T . Both vectors are defined
with respect to (w.r.t.) the reference coordinate system (RCS), denoted as “R”. Thus, the LCS1 is lo-
cated by the stacked vector [(tR1 )T , (ωR

1 )
T ]T . If the surface plane deviates from its nominal location

or orientation due to certain errors in the machining process, the actual LCS1 deviates by a location
DMV dR1 = [∆x,∆y,∆z]T and an orientation DMV sR1 = [∆α,∆β,∆γ]T . Therefore, the variation
feature representation can be expressed by the stacked DMV xR1 = [∆x,∆y,∆z,∆α,∆β,∆γ]T . In
this paper, the DMV approach based on the ZYZ Euler rotation order is applied for feature variation
representation.

2.2. SoV model derivation
In a MMP, the product variation at a certain station consists of two components: the variation

induced within a station (fixture and machining-induced variations) and the variation propagated from
upstream stations [4]. The second component exists when the features produced by upstream stations
are used as datum features to locate the part in the current station. In these cases, the variation from
the upstream stations will be accumulated onto current station. Based on the vectorial deviation
representation with DMVs, the variation propagation can be described with a state space model as
follows. For a MMP with N stations as shown in Fig. 2, the deviations that have been generated on a
workpiece after station k are denoted as a state vector, xk, k = 1, 2, . . . , N. xk is a stack of the DMVs
of the features defined in the product design. Denoting the variation introduced from station k − 1
as xk−1, the fixture and machining-induced variations at station k as uk, and the deviations of theM
KPCs measured at station k as yk, the variation propagation is formulated as:

xk = Ak−1 · xk−1 + Bk · uk + wk, (1)
yk = Ck · xk + vk, (2)

whereAk−1·xk−1 represents the variations transmitted through datum features from upstream stations;
Bk ·uk represents the variations introduced at station k, including both fixture- and machining-induced
variations; Ck · xk represents the measurements of KPC variations, which are defined as a linear
combination of manufacturing feature deviations; wk and vk are the un-modeled system terms and
measurement noise, respectively. Note that a different “station” is considered when a workpiece is
removed from its fixture in order to be mounted on another fixture or in the same fixture but with
different datum surfaces.
Zhou et al. [9] proposed a generic method to derive the matrices Ak−1, Bk, and Ck, under the

assumptions that the machined workpiece behaves as a rigid body and the magnitudes of random
deviations are small enough to ensure the validity of the linearization. However, their model for-
mulation considers only fixture variations and generic cutting-tool path deviations in the term uk,
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Figure 2: MMP composed of N stations

without explicitly modeling specific machining-induced variations. Abellan-Nebot et al. [11] ex-
tended this formulation by including machining machining-induced variations, such as geometric-
thermal variations, cutting-tool deflections and cutting-tool wear. Without loss of generality, two
machining-induced variations are considered in the variation propagation model in this paper: i)
machining-induced variations due to cutting-tool wear and ii) machining-induced variations due to
spindle thermal expansion. Focusing the research work on small-medium workpiece size with the
use of cutter insert plates, these two machining-induced variations can be considered as the most
critical KCCs for tolerancing rather than other variation sources, such as cutting-tool deflections or
geometric deviations of machine-tool axes [11]. According to the extended SoV model, Bk and uk
terms are expanded in the form of Bk = [Bf

k Bs
k Bw

k ] and uk = [ufk ∆T s
k Vk]T . By this state

space model formulation, the KPC variations can be related to that of the KCCs, including the fixture
locator variations (ufk), the spindle thermal expansion (∆T s

k ) and the cutting-tool wear state (Vk). The
matrices Bf

k , Bs
k and Bw

k can be derived following [9] and [11].

3. Process-oriented tolerance allocation

3.1. Assumptions
In this paper, the following assumptions are made to facilitate the model formulation and derivation:

• Machined workpiece behaves as a rigid body and the magnitudes of all random deviations are
small.

• The sources of process variations are assumed to be independent of each other.

• Variability of process variables may be not normally distributed due to the nature of the ma-
chining process.

• There are no dominant process variables that impact on the KPC deviations and thus, the vari-
ance of KPCs due to the variance of any process variable is very small in comparison to the
total variance of the KPCs due to the rest of process variables.

• The manufacturing process is assumed to be centered and thus, it is assumed that there is no
mean-shift of KPCs.

• In a fixture device when the maximum admissible wear of a locator is reached, a fixture main-
tenance action is carried out to replace and calibrate all fixture locators.
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3.2. Problem Formulation
For tolerance allocation purposes, we reformulate the matrix Bk as

[

Bf
k Bf

k Bs
k Bw

k

]

and the

vector uk as
[

(

ufik
)T

,
(

ufwk
)T

,∆T s
k , Vk

]T

in order to separate the fixture deviation in two indepen-

dent components: the component due to the accuracy of each locator after mounting and calibrating
the fixture device (defined by the term ufik ) and the component due to the degradation of each fixture
locator during normal operation (defined by the term ufwk ). If the machined part is inspected at the
end of the machining process, Eqs. (1) and (2) can be rewritten in an input-output form as:

Y = Γ · U+ ε, (3)

where U = [(u1)T , . . . , (uN)T ]T is the vector of the KCCs of all stations, and Y = [y1, . . . , yM ]T is
the vector of theM KPC measurements collected at the end of a MMP. Γ and ε can be obtained as
shown in [4].

The process-oriented tolerancing consists of defining the tolerances for all KCCs that minimize the
total manufacturing cost and ensuring part quality specifications. Thus, the optimal process-oriented
tolerance allocation can be formulated as the following optimization problem:

min
TU

{CT (TU)}, subjected to Ψ, (4)

where CT is the total manufacturing cost which is a function of TU; TU = [T1, T2, . . . , Tη]T is a
vector where the element Tχ represents the tolerance of the χth KCC defined in U; andΨ is a vector
of constraints. Considering two types of machining-induced variations (due to tool wear and spindle
thermal expansion) and the fixture-induced variations, this optimization problem is to minimize the
total manufacturing cost for allocating: i) the initial precision of fixture locators, ii) the admissible
maximum wear of fixture locators before a maintenance operation is carried out, and iii) the admis-
sible maximum wear of cutting-tools before a cutting-tool replacement is conducted. The tolerance
allocation problem is thus composed of the following cost functions: i) fixture precision cost, ii) fix-
ture maintenance cost, iii) cutting-tool replacement cost, and iv) quality loss cost, which is incurred by
the scrap and rework of the parts that fail to meet the quality specification. Furthermore, the vector of
constraints is composed of: i) constraints of the non-maintainable KCCs, ii) constraints of the main-
tainable KCCs, and iii) constraints related to part quality specifications. The following subsections
will describe the manufacturing cost functions and the constraints in detail.

3.3. Definition of manufacturing cost functions
3.3.1. Fixture precision cost
The first group of manufacturing costs is related to the precision of the fixtures to be used. Tighter

tolerances of fixturing elements result in higher tooling fabrication and assembly costs. Several alge-
braic functions have been proposed to calculate fixture precision costs, such as reciprocal, reciprocal
power, negative exponential and reciprocal squared functions [2]. For tolerance allocation, the recip-
rocal function and negative exponential function are widely accepted [25]. In this paper, we assume a
fixture layout at each station based on the common 3-2-1 locating principle applied in machining pro-
cesses [26]. For this fixture layout, the cost function for the jth fixture component (locator) installed
at station k is chosen to be a reciprocal function as [14, 16]
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CL
j,k =

wD
j,k

∆lDj,k
, k = 1, . . . , N, j = 1, . . . , 6, (5)

where ∆lDj,k is the tolerance assigned to the jth locator at station k, and wD
j,k is a weighting coefficient

related to its fabrication and assembly cost.

3.3.2. Fixture maintenance cost
The second group of manufacturing costs defines the cost due to the fixture maintenance. For a new

fixture, the allowable varying ranges of locators position are determined by their design tolerances.
Thus, the jth locator of a manufactured fixture should match an initial precision defined by the design
tolerance ∆lDj,k. However, due to the gradual degradation, the dimension of a locator in station k will
decrease until it reaches a limit specified by the admissible maximumwear∆lwk . Then, a maintenance
operation should be carried out. Such operations are commonly referred to as hard-time maintenance
actions in industry. The time between fixture maintenance actions is defined by tak, which can be
estimated from maintenance data or fixture specifications.
Intuitively, a low frequency of maintenance actions imposes a higher precision of the initial locator

dimensions (design tolerances) to keep parts within specifications for a longer period of time and thus,
higher precision costs and lower fixture maintenance costs.
According to [14], the long-run average maintenance cost of a fixture at station k can be expressed

as:

CM
k =

(

∑6
j=1C

L
j,k

)

+ Cf
k

tak
, (6)

where

tak = min
j=1,...,6

(

t
aj
k

)

, (7)

t
aj
k = f j

k (∆lwk ) , k = 1, . . . , N, j = 1, . . . , 6; (8)

Cf
k is the fixed cost related to the maintenance operations at station k; and t

aj
k is the time required to

wear the jth locator at station k up to a level of∆lwk , and it is modeled by the function f
j
k(·). According

to the nature of machining processes, and without a loss of generality, the following assumptions are
made in regarding to the progressive degradation in locators. In fixture devices based on punctual
locators, material wear rates are constant along the time as it can be observed in many maintenance
handbooks (e.g. [27]). However, fixture components are usually coated with special materials to
minimize the wear rate. Thus, the wear rates of fixture devices usually presents a very low wear
rate at the beginning of the production but increases when the coating is abrased or deteriorated.
Therefore, for the sake of simplicity, the fixture degradation can be modeled as a quadratic curve with
respect to the production time. Thus, the admissible maximum wear of fixture locators at station k
can be modeled as ∆lwk = Gk(tak)

2, where Gk is a constant that indicates the wear rate of locators at
station k and tak is the operation time when a fixture maintenance action is conducted. According to
this definition, the locator wear defined as∆lwk is a random variable with the pdf derived in Appendix
A.
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3.3.3. Cutting-tool replacement cost
A cutting-tool replacement is conducted when the admissible maximum wear value of the cutting-

tool is reached. The time to replace the τ th cutting-tool at station k, called tbτ,k, basically depends on
two factors: i) the deviation generated on the machined feature due to the cutting-tool wear, and ii)
the maximum flank wear recommended by the tool manufacturing vendor to avoid breakage or un-
safe operations. In general, two terms define the cutting-tool replacement cost. The first term refers
to the residual cost of the cutting-tool which is the cost of under-using the cutting-tool due to an early
replacement before the maximum cutting-tool wear is reached. The second term refers to the cost of
the cutting-tool replacement itself that involves the replacement of cutting-inserts or cutting-tools by
operators.

Intuitively, a high replacement frequency decreases the dimensional variability of the machined
features but increases the replacement cost. Therefore, cutting-tool replacement policies seek a trade-
off between the dimensional variability of the feature machined due to tool-wear and the replacement
cost of the cutting-tool. In this paper, the cost of cutting-tool replacement is defined as follows:

Cw
τ,k = (wresτ

k · Rτ,k + wrepτ
k ) /tbτ,k, (9)

where

Rτ,k = min
ϕ=1,...,µτ,k

(

(V maxϕ

τ,k − V ϕ
τ,k)

V maxϕ

τ,k

)

(10)

tbτ,k = min
ϕ=1,...,µτ,k

(

tbϕτ,k

)

, (11)

tbϕτ,k = gk
(

V ϕ
τ,k

)

, k = 1, ..., N (12)

where wresτ
k is the residual cost of under-using a cutting-tool edge in the τ th cutting-tool at station

k; wrepτ
k is the cost related to replace or turn the τ th cutting-tool in order to use a new cutting-tool

edge at station k; Rτ,k is the residual life of the cutting-tool in terms of percentage; tbϕτ,k is the time
required to wear the ϕth edge of the τ th cutting-tool at station k up to a flank wear value of V ϕ

τ,k, and
it is modeled by the function gk(·); and V

maxϕ

τ,k is the admissible maximum tool wear in the ϕth edge
of the τ th cutting-tool to avoid a breakage or an unsafely machining operation at station k. It is noted
that τ , τ = 1, . . . , κk, is the index of cutting-tools used at station k, and ϕ, ϕ = 1, . . . , µτ,k, is the
index of cutting edges, which remove material simultaneously (e.g. end mills use two cutting edges
simultaneously). In the literature, cutting-tool wear has been modeled as a third-order polynomial
function of machining time in common machining operations, whereas in machining operations with
high cutting speeds the cutting-tool wear tends to follow a second-order function [28]. Without loss
of generality, it is assumed that the cutting-tool flank wear curve follows a second-order polynomial
function with machining time. Thus, the admissible maximum wear of the τ th cutting-tool at the
station k can be modeled as V ϕ

τ,k = Eϕ
τ,k · t

b
k + F ϕ

τ,k · (t
b
k)

2, where tbk is the machining time when a
cutting-tool replacement is conducted. For this equation, Eϕ

τ,k and F ϕ
τ,k are coefficients that model

the wearing rate of the ϕth cutting-tool edge of the τ th cutting-tool at station k. According to this
definition, the cutting-tool wear, defined as V ϕ

τ,k, is a random variable with the pdf derived in Appendix
A.
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3.3.4. Quality loss cost
According to [29], even if a product is well within specifications, the product has a quality loss if its

quality characteristic value is not at the ideal performance target. In manufacturing, the quality loss
associated may include the cost of scrap or rework. As this paper deals with variation propagation
and the SoV model predicts the variability of the KPCs, the ideal targets value of the KPC variations
are zeros, which refer to no-variation is presented. The Taguchi quality loss function for this case is
the “smaller-the-better” function [29]. The equation used to describe this quality loss function of one
part is:

L =
I0 · y2i
(Tyi/2)

2
, (13)

where I0 is the loss in monetary units per unit of time when the 0.27% of parts manufactured are
out of specifications; yi is the deviation of the ith KPC from its target; and Tyi is the dimensional
tolerance of the ith KPC.

3.4. Definition of constraints
3.4.1. Constraints of non-maintainable KCCs
Many KCCs that contribute to final KPC variations can not be cost-effectively maintained or con-

trolled since their variation ranges cannot be reduced through correction actions in an feasible way.
However, although the variation range of these KCCs, named non-maintainable KCCs, cannot be
reduced, they can be estimated when shop-floor data is available. In the process-oriented tolerancing
problem, the variability of each non-maintainable KCC is restricted to a constant range. For instance,
one common non-maintainable KCC is generally related to the temperature variations of the machine-
tool spindle. In practice, it is infeasible to maintain or control the temperature of the machine-tool
spindle during machining. However one can estimate, using historical data, the temperature variation
range of the machine-tool in normal conditions. Thus, the deviation of the spindle temperature with
respect to the nominal temperature can be restricted by the six-sigma range as:

−3 · σT s
k
≤ ∆T s

k ≤ +3 · σT s
k
, k = 1, ..., N, (14)

where σT s
k
is the standard deviation of the spindle temperature at station k under normal manufacturing

conditions, which is estimated from empirical shop-floor data or a priori knowledge. Other non-
maintainable KCCs such as cutting-tool deflections due to cutting-force variations or geometrical
axis deviations due to straightness errors or misalignments can be defined by similar constraints.

3.4.2. Constraints of maintainable KCCs
Unlike non-maintainable KCCs, the maintainable KCCs can be kept within a range of variation

by adequate corrective actions. Two common types of maintainable KCCs are related to the initial
precision of fixture locators and the wear of cutting-tools. Constraints of these maintainable KCCs
are: i) the initial precision of locators cannot be lower than a minimum tolerance, denoted by ∆lDmin,
which is defined by manufacturing and assembly limitations of fixture components; ii) the initial pre-
cision of locators, in case that a non-accurate locator were needed, cannot be higher than a maximum
tolerance range, denoted by ∆lDmax; and iii) the maximum cutting-tool wear cannot exceed its max-
imum allowable value, denoted by V maxϕ

τ,k , which is set to avoid cutting-tool breakage or unsafely
operations. These constraints can be written as:
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0 ≤ V ϕ
τ,k ≤ V maxϕ

τ,k , (15)
∆lDmin ≤ ∆lDj,k ≤ ∆lDmax, (16)

for k = 1, . . . , N , j = 1, . . . , 6, τ = 1, . . . , κk and ϕ = 1, . . . , µτ,k.

3.4.3. Part quality constraints
Process tolerances will be set in order to ensure part design specifications. For this purpose, any

part design specification should be mathematically expressed by constraint equations. A widely ac-
cepted approach is transforming the GD&T specifications shown in part design drawings into VD&T
specifications [4, 30, 31], defining the maximum values of the DMVs for the toleranced feature. For
position tolerance zones on planar surfaces, the following methodology to translate a GD&T specifi-
cation into constraints of DMVs can be applied:

• Step 1: Identify the controlled feature (Sq), themeasurement datum feature (SD) and theGD&T
reference datum feature (Sm). A controlled feature is defined as the toleranced feature whose
position tolerance needs to be translated into constraints. A measurement datum feature refers
to the feature used as a datum in the inspection station where the inspection of part quality is
conducted. A GD&T reference datum feature is the datum feature applied in the toleranced
feature definition.

• Step 2: Identify the boundary points {P Sq

1 , . . . , P
Sq

P } that define the controlled feature. For a
plane, its P extreme points are considered as the boundary points since they are most likely to
be out of specifications due to orientation deviations.

• Step 3: Determine the quality constraints according to the type of measurement conducted to
verify the specifications. These measurements can be direct, when the GD&T reference datum
feature and the measurement datum feature are the same, or indirect, when they are different.
For each type of measurements, the constraints are defined as follows:

(a) Specification verified by direct measurements. According to the SoV model in Eq. (3), if
we assume that measurement and linearization errors in comparison with part dimension
deviations are negligible, the variability of the LCS of the controlled feature Sq is defined
by the covariance matrix:

ΣYSq
= ΓSq · ΣU · Γ

T
Sq
, (17)

where ΣU is the covariance matrix of the s independent process variables defined by the
vector U (e.g. the locator deviation due to its initial precision and its degradation, cutting-
tool wear, etc.), and it has the form diag{V ar(u1), ...., V ar(us)} where V ar(•) is the
variance of •; and ΓSq is a block matrix of Γ that corresponds to the deviation of feature
Sq, obtained from Eq. (3). From Eq. (17), the variability of the boundary point Pp in the
controlled feature Sq can be defined as:

ΣYSq
Pp

= (CPp · ΓSq) · ΣU · (CPp · ΓSq)
T (18)
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where matrix CPp is defined in Appendix B. According to the assumptions in Section 3.1
and the Lindeberg’s central limit theorem [32, 33], the variability of the KPCs can be
approximated to a normal distribution if a large number of process variables is considered.
Thus, the variability constraints of each boundary point at the direction where the tolerance
applies can be defined as follows:

ΣYSq
Pp

(ρ, ρ) = (CPp · ΓSq) · ΣU · (CPp · ΓSq)
T (ρ, ρ) ≤

(

T

6

)2

, ∀Pp ∈ Sq, (19)

where Σ(·)(ρ, ρ) refers to the (ρ, ρ) element of the covariance matrix Σ(·); ρ = 1, 2, 3
according to the direction where the position tolerance applies (e.g. ρ = 1 for x direction,
etc.); and T is the tolerance for this position tolerance specification.

(b) Specification verified by indirect measurements. For this case, the variability of the bound-
ary point Pp in the controlled feature Sq is defined by the covariance matrix:

ΣYSq
Pp

= (CPp ·K · [ΓSq ΓSm ]
T ) · ΣU · (CPp ·K · [ΓSq ΓSm ]

T )T , (20)

where matrixK is defined in Appendix C. Thus, the variability constraints of each bound-
ary point at the direction where the tolerance applies can be defined as follows:

ΣYSq
Pp

(ρ, ρ) = (CPp ·K · [ΓSq ΓSm ]
T ) · ΣU · (CPp ·K · [ΓSq ΓSm]

T )T (ρ, ρ) ≤

(

T

6

)2

,

∀Pp ∈ Sq (21)

Eq. (19) and Eq. (21) are quality constraints for a boundary point Pp in the controlled feature Sq in
case that the inspection is conducted by a direct or indirect measurement respectively. If the controlled
feature is defined with p = 1, . . . , P boundary points, then P quality constraints will be defined. As
a general form, the quality constraints are defined by the inequality:

Dq
p ≤

(

Tq

6

)2

, ∀Pp ∈ Sq, (22)

where Tq is the tolerance specification of the controlled feature Sq, and the term Dq
p is defined as

shown above according to the type of measurement conducted to verify the part specification.

3.5. Optimization model
As presented above, the process-oriented tolerancing becomes the generic optimization problem

defined in Eq. (4). Its resolution assigns the tolerances of the maintainable KCCs in order to make
the manufacturing cost minimum and keep the parts within specifications. Based on the set of various
costs defined in previous subsections, this optimization problem can be re-formulated as:

min
∆lDj,k,∆lwk ,V ϕ

τ,k







N
∑

k=1

wM
k ·

(
∑6

j=1

wD
j,k

∆lDj,k
) + Cf

k

tak
+

+
N
∑

k=1

κk
∑

τ=1

wτ
k ·

(

wresτ
k · min

ϕ=1,...,µτ,k

(

(V maxϕ

τ,k − V ϕ
τ,k)

V maxϕ

τ,k

)

/tbτ,k +
wrepτ

k

tbτ,k

)

+
M
∑

i=1

I0 · y2i
(Tyi/2)2

]

,(23)
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subjected to:

−3 · σT s
k
≤ ∆T s

k ≤ +3 · σT s
k
,

0 ≤ V ϕ
τ,k ≤ V maxϕ

τ,k ,

∆lDmin ≤ ∆lDj,k ≤ ∆lDmax,

Dq
p ≤

(

Tq

6

)2

, (24)

where j = 1, . . . , 6; k = 1, . . . , N ; i = 1, . . . ,M ; q = 1, . . . , Q; p = 1, . . . , P ; ϕ refers to the cutting
edge of the τ th cutting-tool at the kth station with ϕ = 1, . . . , µτ,k and τ = 1, . . . , κk;Dq

p refers to the
constraints due to position tolerance specifications; Tq the tolerance value applied to the controlled
feature; and wM

k and wτ
k are weighting coefficients for the costs related to fixture maintenance actions

and cutting-tool replacements respectively. The optimization problem is summarized in Fig. 3.
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Figure 3: Process-oriented tolerancing.

4. Case Study

4.1. Problem description
To demonstrate the proposed process-oriented tolerancing methodology, we conducted a case study

that manufactures parts, as shown in Fig. 4, with a 3-station machining process, as illustrated in Fig.
5. The datum features and the surfaces to be machined are summarized in Table 1. The position
of fixture locators at each machining station are defined in Table 2. The KPCs of the part are the
normal distance between S3 and S0, denoted as KPC1, and the normal distance between S8 and S6,
denoted as KPC2. The position tolerance requirements for both KPCs are ±0.05 mm. The extended
SoV model presented in [11] is applied to model the variation propagation along this MMP. In this
extended model, the KCCs modeled are the deviation of the fixture locators, the wear of the cutting-
tools and the spindle thermal expansion of the machine-tools. For this case study, the process-oriented
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Table 1: Process planning. Features machined at each station and datum features based on the 3-2-1 fixture schemes
Datum Features

Station features machined Cutting-tool
1 S0 − S4 − S5 S2 ADHX 110305, PVD TiAlN φ = 24.856 mm, L = 111.322 mm
2 S2 − S6 − S5 S1 ADHX 110305, PVD TiAlN φ = 24.856 mm, L = 111.322 mm
3 S1 − S4 − S5 S3,S8 ADHX 110305, PVD TiAlN φ = 24.856 mm, L = 111.322 mm
4 S0 − S4 − S5 Inspection station

φ: Tool diameter; L: Tool length

Figure 4: Final machined part for the case study (unit: mm).

Figure 5: Case study. Part to be machined through 3 machining stations.

14



Table 2: Fixture layout.

Station (w◦D
Fk

)T (-rad-) (t◦DFk
)T (-mm-) Locators w.r.t. FCSk (-mm-)

1 [−π/2, π, 0] [0, 0, 0] L1x = 10, L1y = 30, L2x = 50, L2y = 70, L3x = 90, L3y = 30
p1y = 30, p1z = −35, p2y = 70, p2z = −35, p3x = 50, p3z = −20

2 [π/2, 0, 0] [0, 95, 45] L1x = 10, L1y = 30, L2x = 50, L2y = 70, L3x = 90, L3y = 30
p1y = 30, p1z = −35, p2y = 70, p2z = −35, p3x = 50, p3z = −20

3 [−π/2, π, 0] [0, 0, 2.5] L1x = 10, L1y = 30, L2x = 50, L2y = 70, L3x = 90, L3y = 30
p1y = 30, p1z = −35, p2y = 70, p2z = −35, p3x = 50, p3z = −20

Table 3: Nominal location and orientation of each feature.
Feature (w◦D

Si
)T (-rad-) (t◦DSi

)T (-mm-)
S0 [0, π, 0] [47.5, 47.5, 0]
S1 [0, π, 0] [47.5, 47.5, 2.5]
S2 [0, 0, 0] [47.5, 42.5, 45]
S3 [0, 0, 0] [47.5, 90, 40]
S4 [π/2, π/2,−π/2] [47.5, 0, 22.5]
S5 [0, π/2, 0] [0, 47.5, 22.5]
S6 [π/2,−π/2,−π/2] [47.5, 95, 20]
S7 [−π/2,−π/2, 0] [95, 47.5, 22.5]
S8 [π/2,−π/2,−π/2] [47.5, 85, 42.5]

tolerancing is formulated as:

min
∆lDj,k,∆lwk ,V ϕ

1,k







3
∑

k=1

wM
k ·

(
∑6

j=1

wD
j,k

∆lDj,k
) + Cf

k

tak

+
3

∑

k=1

w1
k ·

(

wres1
k · min

ϕ=1,2

(

(V maxϕ

1,k − V ϕ
1,k)

V maxϕ

1,k

)

/tb1,k +
wrep1

k

tb1,k

)

+
2

∑

i=1

I0 · y2i
(Tyi/2)

2

]

, (25)

for j = 1, . . . , 6; k = 1, 2, 3; i = 1, 2 and ϕ = 1, 2. We use one cutting-tool at each station, and
each cutting-tool has two cutting edges (ϕ = 1, 2). Furthermore, the two edges of the cutting-tool are
only used at station 3 (end milling operation), while in the first two stations, only one cutting edge is
used (face milling operations). This cost function should be minimized subjected to the following 15
constraints:

• 3 constraints on the admissible thermal variation of the machine-tool spindle at each station.
As these process variables are non-maintainable KCCs, it is assumed that the specific thermal
variation range at each station in normal conditions is known from the shop-floor knowledge.

• 4 constraints on the maximum cutting-tool wear, one for each cutting-tool edge used. Note that
in the third station, primary and secondary cutting-tool edges are used to machine the features
S8 and S3. Thus, two constraints should be defined at that station.

• 4 constraints on the position tolerance of the KPC1, one constraint for each point that defines
the boundaries of the S3 plane (points P1, P2, P3, P4).
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Table 4: Numerical values for manufacturing tolerance allocation in the case study.
STATION 1 & 2 (k = 1, 2) STATION 3 (k = 3)

Parameter Value Parameter Value Parameter Value Parameter Value
wD

j,k 3 u Cf
k 500 u wD

j,k 3 u Cf
k 500 u

wres1
k 20 u wrep1

k 10 u wres1
k 20 u wrep1

k 10 u
wM

k 1 w1
k 1 wM

k 1 w1
k 1

V max1

1,k 0.4 mm Gk 1.9 · 10−7 mm
hr2

V max1

1,k 0.4 mm V max2

1,k 0.4 mm
E1

1,k 0.0113 mm
hr

F 1
1,k 0.0019 mm

hr2
Gk 1.9 · 10−7 mm

hr2
E1

1,k & E2
1,k 0.0113 mm

hr

∆lDmin 0.010 mm ∆lDmax 0.4 mm F 1
1,k & F 2

1,k 0.0019 mm
hr2

±3σTs
k

±5◦C

±3σTs
k

±5◦C ∆lDmin 0.010 mm ∆lDmax 0.4 mm
Additionally, I0 = 9.45 u/hr

Table 5: Parameters applied in the GA and the MADS algorithm
Genetic Algorithm (GA)
Parameter Value Parameter Value
Variables to optimize 24 Initial Population 60
Initial Population Distributions Reproduction Options

∆lwk , (∀k) Unif(0.002, 0.040) Elite count 10
∆lDj,k, (∀j, ∀k) Unif(0.010, 0.040) Crossover fraction 0.8
V ϕ
1,k, (∀ϕ, ∀k) Unif(0, 0.4) Crossover function Heuristic (ratio= 1.2)

Scaling Function Rank Mutation function Uniform (P=0.05)
Selection Options Roulette Stop criterium Generations: 15

Mesh Adaptive Direct Search Algorithm (MADS)
Parameter Value Parameter Value
Variables to optimise 24 Contraction 0.5
Initial Mesh Size 1 Poll Method Positive Basis 2N
Max. Mesh Size Inf Polling order Consecutive
Max. Func. Eval. Inf Stop criterium Tol. mesh: 8 · 10−3

Expansion 2

• 4 constraints on the position tolerance of the KPC2, one constraint for each point that defines
the boundaries of the S8 plane (points P1, P4, P5, P6).

For the sake of simplicity, it is assumed that all locators are degraded identically along the manu-
facturing process.

4.2. Numerical analysis
A numerical case study was conducted with the values presented in Table 4. The optimization

problem with 24 variables (18 variables for locator design tolerances, i.e. {∆lDj,k}; 3 variables for ad-
missible maximum wear of fixture locators, i.e. {∆lwk }; and 3 variables for the admissible maximum
wear of each cutting-tool edge, i.e. {V ϕ

1,k}) and 15 constraints is difficult to be solved using tradi-
tional optimization techniques, requiring other non-traditional techniques [34]. For this case study,
two algorithms were applied sequentially. Firstly, a genetic algorithm (GA) was run in Matlab c© from
an initial population of 60 individuals for 15 generations in order to find a region close to the opti-
mal solution. The initial population was created randomly by uniform distributions. Secondly, the
solution provided by the GA algorithm was used as the initial point in a mesh adaptive direct search
(MADS) algorithm for tuning the optimal result. The MADS algorithm was run until the tolerance
mesh reached a value of 8 · 10−3. The optimization procedure was repeated five times to ensure the
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convergence of the solution. Table 5 shows the parameters applied for both optimization algorithms
according to the recommendations of the optimization toolbox user’s guide from Matlab c© [35].

4.3. Comparison with a conventional process-oriented tolerancing methodology
The case study was analyzed comparing two process-oriented approaches: i) the proposed method-

ology considering additional process variables such as cutting-tool wear and thermal spindle expan-
sion; and ii) a process-oriented tolerancing methodology based on the conventional SoV model (with-
out machining process variables). The latter will be named conventional methodology hereafter. In
the conventional methodology, the effects of other KCCs such as the cutting-tool wear and the thermal
spindle expansion on part quality are not considered. The results of both methodologies are shown in
Figs. 7-9. Note that tolerances of locators p1, p2 and p3 at stations 2 and 3 and locator p3 at station
3 are not shown since they do not affect any of the KPCs analyzed in this study and thus, they are
set to the maximum tolerance range (∆lDmax). In terms of costs, the proposed methodology estimates
a manufacturing cost of 52.3 u/hr, where the fixture maintenance cost, the cutting-tool replacement
cost and the expected part quality loss cost are 24.4 u/hr, 17.3 u/hr and 10.6 u/hr, respectively. On
the other hand, the conventional methodology estimates a manufacturing cost of 21.0 u/hr, where
the fixture maintenance cost, cutting-tool replacement cost and the expected part quality loss cost are
11.2 u/hr, 2.7 u/hr and 7.1 u/hr, respectively. Note that these results refer to estimations, but since
it will be explained below, the estimations from the conventional methodology can be far away from
the actual ones due to overlooking the effect of machining-induced variations on part quality.

As aforementioned, the objective of the proposed process-oriented tolerancing is to optimally as-
sign the tolerance to the three components: (i) the fixture locators (∆lDj,k’s), (ii) the fixture maintenance
threshold (∆lwk ’s), and (iii) the cutting tool replacement threshold (V

maxϕ

τ,k ’s). The optimization is to
achieve an overall minimum cost since these three components are directly related to four types of
cost, i.e., the fixture precision cost, the fixture maintenance cost, the cutting-tool replacement cost
and the part quality loss cost. Although both conventional and the proposed method for process-
oriented tolerancing consider these four cost components, subjected to the same quality constraints,
the conventional method does not consider the impacts of the the cutting tool replacement threshold
and the thermal expansion of the spindle on the part quality, since such impacts are not explicitly
included in the SoV model. Thus, the quality loss cost and the quality constraints calculated by con-
ventional methods may not be accurate enough to reflect the real part dimensional variation. Such
model inaccuracy will result in two miscalculations in the conventional methodology. First, the part
quality predicted by the conventional method would be better than the actual one, then the quality
loss cost -Eq.(13)- would be lower and, therefore, looser tolerances than the required ones would be
allocated. Second, the quality constraints -Eq.(22)- defined by the conventional method would not
be restrictive enough since important machining-induced errors are not explicitly modeled. Thus,
given a design tolerance from the design drawing, the tolerances allocated would be incorrectly wider
than that should be since the tolerance will be assigned to less variables. The wider tolerance and
mis-assigned contraints lead to lower cost of fixture maintenance and cutting-tool replacement. How-
ever, one can forsee that, according to this miscalculated process-oriented tolerance, the process will
generate more non-conforming (out-of-specifications) parts than expected. Conversely, the proposed
methodology are based on the SoV model that includes not only the fixture-induced variations but
also machining-induced variation sources such as ∆T s

k and V
ϕ
τ,k defined in U of the model -Eq.(3)-.

Thus, the quality loss costs and the quality constraints are closer to the actual ones. Therefore, given
a design tolerance from a design drawing, the proposed methodology tends to assign more tightened
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tolerances for all contributors (∆lDj,k’s, ∆lwk ’s and V
maxϕ

τ,k ’s) since the manufacturing process should
ensure that the parts are within specifications.

According to this theoretical elaboration, the proposed methodology will have higher fixture main-
tenance costs and cutting-tool replacement costs than the conventional methodology. However, the
neglection of the machining-induced variation in the conventional methodology will result in more
non-conforming parts, incurring a significantly higher part quality loss cost and thus, higher overall
manufacturing cost.

In order to demonstrate the improvements of the proposed methodology over its conventional coun-
terpart (i.e. the process-oriented tolerancing problem without considering machining-induced varia-
tions), 10, 000 Monte Carlo simulations were run for two MMPs. The first and second MMP were
defined according to the tolerances allocated using the conventional and the proposed approach, re-
spectively. The model used to run the simulations is the extended SoV model derived experimentally
in [11]. For each simulation, a random value for each KCC is calculated according to its pdf. For
this case study, the initial locator precision is assumed normally distributed with mean 0 and standard
deviation∆lDj,k/6; the fixture wear and cutting-tool wear are random variables with the pdf derived in
Appendix A. To simulate the effect of measurement noises and un-modeled sources of variation, a ran-
dom variable normally distributed with mean 0’s and standard deviation 0.005/6mm and 1.05·10−3/6
rad for dimensional and orientational noises, respectively, were added at each simulation. The simu-
lation results concluded that the number of conforming parts (within specifications) was notably dif-
ferent for the two methodologies, indicating the importance of the incorporation of process variations,
such as thermal and cutting-tool wear variations, in the process-oriented tolerancing. The proposed
methodology kept the 99.21% of the parts conforming to the position specifications of KPC1 and
KPC2. However, the conventional methodology can only ensure a rate of 82.45% within specifica-
tions since the methodology assumes that machining-induced variations do not influence part quality,
so looser tolerances are allocated while solving the optimization problem. Therefore, by including
the cutting-tool wear and spindle thermal expansion effects on part quality, the process-oriented tol-
erance allocation improve the number of parts within specifications by 16.76%. This result is also
shown in the actual cost related to part quality loss. Although the expected quality loss is 10.6 u/hr
and 7.1 u/hr for the proposed and conventional methodology respectively, both methodologies will
present a higher quality loss cost due to the components added in the Monte Carlo simulation to sim-
ulate the effect of measurement noise and un-modeled components of the variation propagation itself.
Besides these factors, the conventional methodology will present an additional component that will
increase the actual quality loss cost since its variation propagation model does not considers the ef-
fect of cutting-tool wear or thermal variations, so one can expect a higher number of non-conforming
parts (outside specifications). After Monte Carlo simulations, the actual quality loss for the proposed
and the conventional methodology was 17.63 u/hr and 52.23 u/hr, respectively. This means that the
final manufacturing cost by allocating the tolerances of the KCCs with the proposed methodology is
increased to 59.41 u/hr, and with the conventional methodology, the manufacturing cost is increased
to 66.16 u/hr, a 11.36% higher than the proposed one. Table 6 shows the results after Monte Carlo
simulations for both methodologies. Besides the comparison analysis, the Monte Carlo simulations
were also analyzed to confirm that, for the case study, the Lindeberg’s central limit theorem holds and
the variability of the KPCs can be approximated to a normal distribution despite that some KCCs are
not normally distributed. Fig. 6 shows the pdf of the deviation of feature S3 in Z direction according
to Monte Carlo simulations and according to the approximation used in the paper assuming that Lin-
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Table 6: Actual cost values and part quality after Monte Carlo simulations according to the process-oriented tolerancing
methodology applied

Fixture Cutting-tool Part quality Manufacturing % of parts
maintenance cost replacement cost loss cost cost within specifications

Proposed method. 24.4 u/hr 17.3 u/hr 17.63 u/hr 59.41 u/hr 99.21%
Conventional method. 11.2 u/hr 2.7 u/hr 52.23 u/hr 66.16 u/hr 82.45%

deberg’s central limit theorem holds.

In a further analysis, the results from both methodologies also show some interesting conclusions.
As it was expected, the conventional methodology underestimates the variability of the manufacturing
process, so it tends to loose the tolerances allocated in the optimization problem resulting in a lower
manufacturing cost. It expects a quality loss cost of 10.6 u/hr, however this result is misleading
since it overlooks other sources of variation, such as the thermal spindle expansion or the cutting-
tool wear effect on part dimensions. Thus, the conventionl methodology presents a locators design
with lower precision (wider initial tolerances -see Fig. 7-) with a lower frequency of maintenance
actions (larger operation times between fixture maintenance actions -see Fig. 8-) than the proposed
methodology. Another important difference of both methodologies is presented in the cutting-tool
replacement cost and thus, in the admissible cutting-tool wear values. The results show that the con-
ventional methodology replaces the cutting-tools when the maximum tool wear is reached (0.4 mm
of tool-wear according to vendor’s recommendations) since this methodology only takes into account
the admissible tool wear in the cost term of the optimization function (under-use cutting-tool cost
and replacement cost) and overlooks its effect on dimensional part quality. Instead, the proposed
methodology restricts the admissible tool wear (0.060, 0.057 and 0.057 mm in the first, second and
third station respectively, see Fig. 9) to ensure part quality but the cutting-tool replacement cost is
increased.

5. CONCLUSIONS AND FUTURE WORK

In this paper, a process-oriented tolerancing methodology has been developed to incorporate ad-
ditional process variables, cost functions and quality constraints that have not been included yet in
existing research. In order to add these additional elements, an extended SoV model was applied.
Through this process-oriented approach, process variables such as cutting-tool wear and machine-
tool thermal state, and fixture maintenance and cutting-tool replacement costs can be integrated, and
the resolution of the optimization problem through stochastic optimization algorithms such as GA
and MADS can lead to achieve a real minimum manufacturing cost. A case study was conducted
to demonstrate the potentials of the proposed process-oriented tolerancing methodology. The re-
sults revealed that, without including KCCs related to thermal state of the spindles or the allowable
cutting-tool wear, the tolerance allocation decisions may be misleading, increasing both the number
of non-conforming parts and the final manufacturing cost.

This research work shows the potential benefits of using the extended SoV model for tolerance
allocation improving the rate of parts within specifications and the manufacturing cost. As future
work, the authors suggest two directions of research:
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Figure 6: Pdf of some of the KCCs for the case study and the resulting pdf of the deviation of feature S3.

Figure 7: Design tolerances for fixture locators.
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Figure 8: Time between two consecutive fixture maintenance actions (in hours) at each machining station.

Figure 9: Admissible cutting-tool wear at each cutting-tool edge before a cutting-tool replacement is conducted.
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• Increase the comprehensiveness of the extended SoV model in order to consider new variables
that can have an impact of costs or part quality. For instance, it could interesting to analyze how
cutting conditions (cutting speed, feed rate, etc.) can increase the productivity but, at the same
time, decrease the part quality due to deflexions or excesive cutting-tool wear rate. Therefore,
the process-oriented toleranced problem will also take into account cutting conditions through
the extended SoV model.

• Modify the proposed methodology in order to cover other GD&T specifications and other non-
punctual fixtures more common in industry such as jaws or similar.
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Appendix A: probability density functions of process variables

Fixture wear is assumed to follow a quadratic curve with operation time expressed by the equation

wl
k = Gk · (t

op
k )2, (A.1)

where wl
k is the locator wear at the operation time t

op
k (note that if t

op
k = tak, then the locator wear is the

admissible maximum wear and thus, wl
k = ∆lwk ), and t

op
k ∈ [0, tak]. As the part inspection is assumed

to be conducted uniformly along the production when a large number of parts are inspected, the pdf
of the variable topk can be considered as a uniform random distribution in the range [0, tak]. Thus, the
pdf of fixture wear in the k station can be obtained by the change of variable formula [32]. By this
formula, if y = r(x) where r is differentiable and fX(x) is the pdf of x, then the pdf of y is calculated
as:

g(y) = fX(r
−1(y)) ·

∣

∣

∣

∣

dr−1(y)

dy

∣

∣

∣

∣

. (A.2)

24



Applying this formula, the pdf of fixture wear is

g(wl
k) =

1

tak
·

∣

∣

∣

∣

∣

1
√

4Gk · wl
k

∣

∣

∣

∣

∣

, (A.3)

where wl
k ∈ [0,∆lwk ] and ∆lwk = Gk · (tak)

2. For the numerical values applied in the case study (Table
4), the mean and variance value of this process variable can be obtained as:

E(wl
k) = 0.169 · 10−9 · (tak)

3, (A.4)
V ar(wl

k) = 0.175 · 10−24 · (tak)
5
(

429 · (tak)
2 − 326000 · tak + 0.112 · 109

)

. (A.5)

The cutting-tool wear variable is assumed to follow a quadratic curve with the machining time in the
form:

wϕ
τ,k = Eϕ

τ,k · t
m
τ,k + F ϕ

τ,k · (t
m
τ,k)

2, (A.6)

where wϕ
τ,k is the cutting-tool wear at the machining time tmτ,k, and tmτ,k ∈

[

0, tbϕτ,k

]

. Following the same
procedure as shown above, the pdf of the cutting-tool wear variable is defined as:

h(wϕ
τ,k) =

1

tbϕτ,k
·

∣

∣

∣

∣

∣

∣

1
√

(Eϕ
τ,k)

2 + 4 · F ϕ
τ,k · w

ϕ
τ,k

∣

∣

∣

∣

∣

∣

, (A.7)

where wϕ
τ,k ∈ [0, V ϕ

τ,k] and V
ϕ
τ,k = Eϕ

τ,k · t
bϕ
τ,k + F ϕ

τ,k · (t
bϕ
τ,k)

2. For the numerical case study, the mean
and variance value of this process variable are defined as follows:

E
(

w
ϕ
τ,k

)

= 0.00322 +

(
√

12800 + 8590t
bϕ
τ,k

+ 1440(t
bϕ
τ,k

)2

)

(

2.85 · 10−5 + 0.959 · 10−5
t
bϕ
τ,k

+ 0.161 · 10−5

(

t
bϕ
τ,k

)

2
)

, (A.8)
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


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

(

0.857 · 10−6
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Appendix B: Derivation of matrix CPp
for direct measurements

The dimensional deviation of features inspected by a direct measurement can be estimated by Eq.
(3) (and their variance with Eq. (17)) if one can estimate the deviations of process variables. However,
this equation expresses the deviation of the LCS of the feature inspected w.r.t the GD&T reference
datum, and we are interested in evaluating the deviation of all boundary points of the feature inspected
in order to analyse if the feature is within the tolerance specification. Thus, we want to evaluate
the boundary point deviations w.r.t the GD&T reference datum knowing the LCS deviation of the
inspected feature. This relationship can be known applying the Corollary 1 presented in [9]. This
Corollary is defined as follows. Consider two features 1 and 2 and a global coordinate system R.
Given the deviation of the feature 1 w.r.t. R, xR1 , and the deviation of feature 2 w.r.t. feature 1, x12,
then:
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xR2 =

(

(

◦R1
2

)T
−(◦R1

2)
T ·

(

◦t̂12
)

I3×3 0
0 (◦R1

2)
T 0 I3×3

)

(

xR1
x12

)

, (B.1)

where ◦R1
2 is the nominal rotational matrix between feature 1 and 2; ◦t̂

1
2 is the skew symmetric matrix

obtained from the nominal location vector ◦t12 = [t12x, t
1
2y, t

1
2z]

T and it is defined as ◦t̂12 = [[0,−t12z, t
1
2y];

[t12z , 0,−t12x]; [−t12y, t
1
2x, 0]]; and I3×3 is a 3× 3 identity matrix.

Applying this corollary and assuming rigid parts, the deviation of the boundary points defined in
step 2 w.r.t. the GD&T reference datum (xSm

P
Sq
p

) is related to the deviation of the LCS attached to

the controlled feature w.r.t. the GD&T reference datum (xSm
Sq

) by the matrix CPp according to the
following equation:

xSm

P
Sq
p

= CPp · xSm

Sq
, ∀Pp ∈ Sq, (B.2)

where

CPp =

(

I3×3 −
(

◦t̂Sq

P
Sq
p

)

0 I3×3

)

. (B.3)

This result is obtained straight forward from Corollary 1 since by assuming rigid parts, the DMV xSq

P
Sq
p

is always zero.

Appendix C: Derivation of matrix K for indirect measurements

For indirect measurements, a controlled feature and a GD&T reference datum feature are measured
in the inspection station w.r.t the measurement datum. Thus, Eq. (3) gives us the deviation of the
LCS of both features w.r.t the measurement datum. However, we are interested in the deviation of the
boundary points of the controlled feature w.r.t the GD&T reference datum feature. Thus, we have to
express the deviation of the LCS of the controlled feature w.r.t the LCS of the GD&T reference datum
feature. For this purpose, the Corollary 2 presented in [9] can be applied. This Corollary is defined
as follows. Consider feature 1 and feature 2 and a global coordinate system R. Given the deviation of
feature 1 w.r.t. R, xR1 , and the deviation of feature 2 w.r.t. R, xR2 , then:

x12 =
(

−(◦R1
2)

T (◦R1
2)

T ·
(

◦t̂12
)

I3×3 0
0 −(◦R1

2)
T 0 I3×3

)

(

xR1
xR2

)

. (C.1)

Applying this corollary, the DMV of the controlled feature w.r.t the GD&T reference datum (xSm
Sq
) is

related to the DMVs of the GD&T reference datum and the controlled feature w.r.t. the measurement
datum feature (xSD

Sm
and xSD

Sq
respectively) by the matrix K as follows:

xSm
Sq

= K · [xSD
Sm

xSD
Sq

]T , (C.2)
where

K =





−
(

◦RSm
Sq

)T (

◦RSm
Sq

)T
·
(

◦t̂Sm

Sq

)

I3×3 0

0 −
(

◦RSm

Sq

)T

0 I3×3



 . (C.3)
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