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Effect of denoising in band selection for regression
tasks in hyperspectral datasets

Pedro Latorre Carmona, Jose Martı́nez Sotoca, Filiberto Pla, José Bioucas Dias, Carme Julià Ferré

Abstract—This paper presents a comparative analysis of six
band selection methods applied to hyperspectral datasets for
biophysical variable estimation problems, where the effect of
denoising on band selection performance has also been analyzed.
In particular, we consider four hyperspectral datasets and three
regressors of different nature (ε−SVR, Regression Trees, and
Kernel Ridge Regression). Results show that the denoising
approach improves the band selection quality of all the tested
methods. We show that noise filtering is more beneficial for
the selection methods that use an estimator based on the whole
dataset for the prediction of the output than for methods that
use strategies based on local information (neighboring points).

Index Terms—Feature Selection, Regression, Noise, hyperspec-
tral datasets

I. INTRODUCTION

HYPERSPECTRAL sensors usually operate in the por-
tion of the spectrum extending from the visible region

through the nearinfrared and midinfrared range (wavelengths
between 0.3 and 2.5 µm) acquiring hundreds of narrow bands.
This very high spectral resolution has fostered applications in
many areas such as remote sensing, medical imaging, product
quality inspection, fine arts, just to cite a few. A special effort
has been made in the use of hyperspectral imaging for remote
sensing, and in particular: (a) to infer the value of biological
or chemical variables related to the health status of forests
and vegetation zones, as well as others that impact their life
cycle [2], [13], (b) to analyze the production capability of
crops [29], (c) to estimate surface temperature (for instance,
[21]), and (d) to determine the health status of oceans and seas
[15]. One important issue in hyperspectral data classification
and regression is band redundancy [8], [27], [12], [28]. In this
work, we consider the band selection problem in the sense of
dimensionality reduction.

In regression problems, some covariates may be measured
indirectly, and/or under some imprecision or uncertainty. Mod-
els dealing with these problems are called errors-in-variables
models and have been extensively studied in the last thirty
to fourty years [1], [4]. However, only recently this analysis
has shifted to the feature selection problem for these models,
despite the fact of the concurrent negative effect given by
noise and the detection of irrelevant or redundant features.
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Superior Técnico, Technical University of Lisbon, 1049-001 Lisbon, Portugal.
E-mail: bioucas@lx.it.pt
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For the best of our knowledge, only the work of Ma et al
[18] analyzes the effect of measurement errors in the feature
selection capability of generally non-linear feature selection
methods for regression, from a theoretical point of view, using
penalized estimating equations. Shah et al [25] and Liang
et al [17] consider the case of the analysis of the stability
of the selection of variables when the variables are affected
by measurement errors. Fuchs et al [9] developed a variable
selection method that accounted for errors in the predictor as
well as in the regressor variables. However, only the linear
regressor case is considered. Zhao et al [30] analyzed the
consistency of the Lasso method in its ability to select the
correct prediction model when measurement errors are also
present. Finally, Byeon et al [6] proposed a feature selection
method that accounted for the detection of noisy samples in
general classification and regression datasets. Other simple
linear or partially linear models have also analyzed the effect
of noise of feature selection [31], [32].

From a practical point of view, noise elimination in hyper-
spectral remote sensing is usually made using multiple regres-
sion theory-based approaches. The high correlation between
neighboring spectral bands is the main reason underlying the
good performance of the multiple regression theory in this
field. Furthermore, the high spectral correlation means that the
hyperspectral vectors belong to low dimensional subspaces,
which is beneficial to noise reduction [7].

The work presented in this paper is, for the best of our
knowledge, the first one that conducts an experimental study
about the denoising effect on the selection capability of
different band selection techniques for regression tasks applied
to real hyperspectral datasets. The denoising method applied
is the HySime method proposed by Bioucas-Dias et al. in
[5], which detects the regions of the spectrum that are more
affected by noise. Most noise reduction methods applied to
remote sensing use the spatial distribution of the image pixels.
However, HySime does not use this kind of information. This
strategy allows to solve those cases where only information
about a few (non necessarily spatially related) number of
pixels in the image is available. The main objectives and
contributions of this paper are:

• To analyze the effect of data denoising on band selection
performance.

• To evaluate the performance of different band selection
techniques.

II. METHODOLOGY

This section summarizes the basic concepts of the band
selection for regression techniques applied in the compara-
tive analysis. The first four techniques correspond to filter
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approaches while the last two ones are wrapper approaches.
A brief description of the methods follows below:

• CMIDist: This method is based on the application of a
hierarchical clustering strategy based on Ward’s linkage
to find clusters of bands using a conditional mutual
information distance [16]. For each cluster Ci, it selects
the variable with the highest mutual information with
respect to the output variable.

• CMIKras: This method uses a similar strategy to the
previous technique (CMIDist), but using another mutual
information estimator proposed by Kraskov et al in [14].
This method is based on the use of the digamma function
on the k-nearest neighbours for each point in the dataset.

• Rossi [22]: This method adds variables using a sequential
forward selection technique. Selection of variables is
based on the estimation of the mutual information using
the estimator of [14].

• FSR: Forward Stepwise Regression is a classical linear
regression model. The significance of each variable is
determined from its t-statistics with the null hypothesis
that the correlation between the regressor and the predic-
tor variable is 0. The significance of variables is sorted
calculating the p-values of the t-statistic.

• Elastic Net (EN) [33]: It proposes the use of a regular-
ization which is a weighted sum of the l1-norm and the
square of the l2-norm of the coefficient vector formed by
the weights of each variable.

• PS-FS: It is based on a Particle Swarm Optimization
(PSO) strategy (Particle-Swarm Feature Selection, PS-FS,
[20]). It uses a Neural Network regressor which makes
band selection using two particle swarms, one to select
a fixed number of variables, and the other to select the
best variable set size.

III. DATASET DESCRIPTION

A synthetic hyperspectral regression dataset was generated
using the PROSAIL radiative transfer code [11]. This code
combines the PROSPECT code to generate the reflectance
curve at leaf level of vegetation, with the SAIL code, that
generates the Bidirectional Reflectance Function (BRF) [24] at
canopy level as a function of the leaf biochemical constituent
values. 4000 BRF curves were generated by PROSAIL, vary-
ing the leaf chlorophyll content in the range [20, 80] µg

cm2 . Af-
terwards, gaussian noise with σ = {0.005, 0.01, 0.015, 0.02}
was added to the spectral curves of the dataset.

On the other hand, four real hyperspectral datasets were
considered: three of them correspond to data points acquired
from hyperspectral images obtained from a field campaign
(SEN2FLEX2005 [19]) carried out in Barrax, Albacete, Spain,
in 2005. The last dataset is a problem related to fruit quality
assessment.

• AHS. The dataset consists of the radiance values of image
pixels that were taken by the Airbone Hyperspectral
Scanner (AHS) sensor, during five days in June and July
2005. Corresponding thermal measurements for these
pixels were also acquired. This dataset only uses the AHS
last 10 bands, which are in the infrared/thermal range.

Band 71 is centered at 8.02µm, and band 80, at 12.85µm.
Since the number of points in the dataset was comparable
to the number of input bands, its number was increased
using also the points of a 9 × 9 window around each
experimental point. The final training and test datasets
are formed by 971 data points each.

• CASI-AHS-CHLOR. It consists of the reflectance values
of image pixels that were taken by the CASI and the AHS
sensors, on July 13, 2005 during the SEN2FLEX2005
campaign. The Compact Airborne Spectrographic Imager
(CASI) sensor images are formed by 144 bands between
0.37 and 1.05µm. For the AHS sensor, the first 63 bands,
between 0.46 and 2.49µm were considered. Therefore,
the input dimensionality of this dataset is 207 bands. The
training and test sets are formed by 2205 and 2139 data
points, respectively. Corresponding chlorophyll measure-
ments for these pixels were also acquired. The training
dataset contained chlorophyll measurements from 7 dif-
ferent crop areas, but there were only of two different
crop types (alfalfa and corn) at different growth stages.

• FGVC. It consists of the reflectance values of image
pixels that were taken by the CASI and the AHS sensors
on July 13, 2005 during the SEN2FLEX2005 campaign.
Output values consist of the Fraction of Green Vegetation
Cover (FGVC), defined as the fraction of horizontal
area associated with the photosynthetically active green
vegetation. Digital Hemispherical Photographs (DHPs)
were adquired at Nadir over eight different places in the
test site, consisting of sugarbeet, corn and onion crops.
The training and test sets are formed by 1347 and 1309
data points, respectively. The input dimensionality is 207
bands.

• Orange Juice [3]. It is divided into 150 points for training
and 68 points for testing obtained in the near-infrared
spectra (from 1.10µm to 2.50µm, acquiring 700 bands
in total), and the corresponding level of saccharose of
different orange juice samples. This dataset was provided
by Prof. Marc Meurens1. Since the number of input
variables is higher than the input space dimensionality,
a piecewise cubic spline interpolation was applied on the
training and testing datasets which allowed a reduction
in the number of bands to 100.

IV. EXPERIMENTAL RESULTS

In order to analyze the quality of the band selection algo-
rithms, regardless of the type of regressor used, three different
regression methods were applied: Support Vector Regression
(ε− SVR) with a radial basis function, Regression Trees
(RT) and Kernel Ridge Regression (KRR)[23]. The regression
schemes were trained using the same training set. In each case,
the subset of selected bands is validated using the Root Mean
Square Error (RMSE) value given by the regressor. For SVR,
the selection of its working parameters (C, σ, ε), for each one
of the datasets, with and without noise, was made applying
an exhaustive grid search using equally spaced steps in the
logarithmic space of these parameters. In the case of Kernel

1http://www.ucl.ac.be/mlg
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Fig. 1. Denoising results on one hyperspectral curve of the CASI-AHS-
CHLOR dataset. Blue: noisy reflectance curve obtained by the CASI and AHS
sensors; Red: result given by HySime. Green: reconstruction of the projected
spectral signal
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Fig. 2. Denoising effect on the RMSE error for the the CASI−AHS−
CHLOR dataset and the EN and CMIDist feature selection methods.

ridge Regression, the same strategy as the one used for SVR
was applied, i. e., a grid search over the logarithmic scale
space of the (λ, σ) parameters, where λ is the regularization
parameter, and σ is the kernel parameter. Figure 1 shows,
in blue, the atmospherically corrected curve obtained by the
CASI and AHS sensors, and in red the result given by HySime,
for one pixel of the CASI-AHS-CHLOR dataset. In this case,
the denoising effect is stronger in bands above 160. HySime
[5] starts by estimating the signal and the noise correlation
matrices and then it selects the subset of eigenvectors that
best represents the signal subspace in the minimum mean
square error sense. It works minimizing the power of the signal
projection error and the power of the noise projection.

Table I shows the accumulated RMSE results for the first 10
and 20 selected bands for two of the feature selection methods
(CMIDist and CMIKras) for the synthetic dataset with
different gaussian noise levels, using SVR as regressor. We

considered these two methods because they use the same band
grouping strategy, but they use a different mutual information
estimator. The idea is to analyse the behaviour of the estimator
in relation to the noise when a denoising algorithm is applied
to a synthetic problem.

The statistical significance of the difference in performance
of the two feature selection methods was assessed using a
nonparametric Wilcoxon Rank-Sum test [26]. In this test, we
consider that the difference in the results is statistically signif-
icant if the (two-sided) p-value is < 0.01. We also use the (+)
sign to indicate a statistically significant difference (and the
(−) sign otherwise). We can see from Table I that CMIKras
works better, compared to CMIDist for the synthetic dataset,
before the application of the Hysime denoising method. On the
other hand, we can also see that denoising improves RMSE
error for both methods and that denoising gives better results
for CMIDist compared to CMIKras.

Table II summarizes the performance results over the differ-
ent band selection approaches, where the HySime method was
applied for the four real hyperspectral datasets. Results in rows
K = 5, K = 10, K = 15 and K = 20 show the accumulated
RMSE (approximate area under the RMSE curve) in the ranges
from 1 to 5, from 1 to 10, from 1 to 15, and from 1 to 20
bands, respectively. These four intervals of subsets of bands
have been considered to be the approximated transitory period
to reach a stable reduction of error for most of the datasets and
regression algorithms used. Results obtained with the best of
the band selection methods for 20 bands are similar to those
obtained with the total amount of bands.

In order to analyze the statistical significance of the results,
Friedman and Quade Tests [10] were applied on the results
with a confidence level p = 0.005. This kind of technique
measures the significance of the statistical difference of the
results of the algorithms, using rankings of results obtained
by them. Both statistical methods use the Fisher distribution
to discern the statistical significance for the six methods and
over the first K = 5, 10, 15, 20 variables.

This distribution follows (NM−1) and (NM−1) ·(NB−1)
degrees of freedom, where NM is the number of methods,
and NB the number of feature subsets on which the ranking
is applied. Therefore, for the different rows in the table
(K = 5, 10, 15, 20), we obtain the values: F (5, 20) = 4.76,
F (5, 45) = 3.91, F (5, 70) = 3.70, and F (5, 95) = 3.61. The
table shows the statistical significance being positive (+) when
the value of the test is greater than the Fisher distribution and
negative (−) otherwise.

Table II shows that the CMIDist method has the best
performance in all cases except for the KRR and RT regressors
on the AHS and Orange Juice datasets. The EN method is the
second best one.

Analyzing the Rossi method in relation to the CMIkras
method, we can see that although both methods use the
same nearest-neighbour information estimator, the CMIkras
method estimates the conditional mutual information which
allows to analyze the relationships of information between
features. This in theory should make it superior to the Rossi
method. Nevertheless, looking at the results we see that this
is accomplished when validated with the ε−SVR and KRR
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regression algorithms, but not when using RT.
PS-FS is a wrapper type method based on a Neural Network

regressor to make an optimal search, and where the error of
the regressor acts as the search criteria. It obtains good results
for all the datasets when using ε−SVR and RT as regressors.
FSR gives the worst results in most of the cases.

Figure 2 shows the denoising effect on the RMSE error for
the CASI-AHS-CHLOR dataset for two of the feature selection
methods used (CMIDist and EN). We can see that the error
decreases for the first 20 selected bands for both methods. This
behaviour is also observed for the other methods (though not
shown in the plot). Figure 2 also shows that denoising effect
is higher for the EN method, allowing the performance for the
denoised case and both methods to be similar.

Figure 3 shows the distribution of crops for a part of
the Barrax test site during the SEN2FLEX campaign. This
figure also includes the chlorophyll values measured in situ (in
µg
cm2 ). Chlorophyll measurements were made in seven different
locations of the Barrax test site during this campaign. The test
data set was formed by the rest of the points in the image.
A manual labeling of different crops (alfalfa, bare soil, corn,
barley, garlic, wheat, forest, onion and opium poppy) was
made during the field campaign. This information was used
to identify the image pixels that corresponded to these labeled
crops. With these pixels we built a training and a validation
set with 3000 data points each one. An analysis of the quality
of the samples was performed by classifying the validation
set from the training set with the Nearest Neighbor classifier
(NN) obtaining an accuracy of 97.5%. Later, we gathered both
sets and the NN classifier was used to assign the labels to the
rest of the image pixels with spectral information from both
sensors (138541 pixels).
Figure 4(a)-(d) shows the regression results for the whole
Barrax test site image, for the case where all bands have
been used (Figure 4(a)), and for three of the feature selection
methods considered, i. e., FSR, EN and CMIDist (Figure 4(b)-
(d)). In order to obtain these images, first a validation with
the Regression Tree technique was performed with all bands,
estimating the values of chlorophyll in the validation set (2139
data points) from the training set (2205 points), with a RMSE
error of 1.81. Then, both sets were gathered, and Regression
Trees technique was trained with the data points corresponding
to the in situ measured chlorophyll values (Figure 3).

Figure 5 shows the corresponding regression results when
the HySime denoising method was used. The same strategy
was applied to infer the chlorophyll values for the whole
image. From both Figures, we can see that:

1) CMIDist gives the best overall results in comparison
with the other three feature selection methods, taking
into account the chlorophyll measures inferred using all
the sensor bands (Figures 4(a) and 5(a)).

2) The three methods correctly infer the chlorophyll values
for the regions that form the training dataset, for the
first 20 bands selected. However, all of them fail to give
correct chlorophyll estimation results for the rest of the
image.

3) The three feature selection methods and the regression
strategy used give chlorophyll estimation results that

seem homogeneous for the rest of the pixels in the
image. We think this is because we had samples of just
seven regions and of two types of crops. This makes
the regressor to obtain similar chlorophyll values for
all these pixels. To make a better estimation of the
chlorophyll values for the rest of the pixels, we should
have had chlorophyll information about other crop types.

On the other hand, tables III and IV show the performance
of the feature selection algorithms (averaged over the three
regression methods) on the original and denoised datasets,
respectively. Some interesting points deserve our attention:

1) Tables III and IV show that the application of a denois-
ing technique on all the hyperspectral datasets before
doing the band selection improves the regression error.
This improvement is highest for CMIDist, EN and PS-
FS. The behaviour observed in CMIDist is in agreement
with the results observed in Table I. In the case of
the wrapper techniques (EN and PS-FS), they use the
whole training dataset to do band selection. CMIDist
is a filter-type method that uses information measures
estimated using a Watson-Nadaraya kernel. This is a
parametric kernel that needs all the training dataset
samples in order to assess these parameters correctly.

2) The worse behavior for the CMIkras and Rossi methods
when the Hysime denoising method is applied may be
due in part to the strategy of the estimator used to
obtain the information measures. The estimator in both
cases is a local estimator based on a distance criterion
between sample neighbours [14]. Thus noise filtering
modifies the distance and the order of the neighbors in
the neighborhood, and this may not always be beneficial.

3) FSR performs the poorest, and it is also dataset and
regressor dependent. This may be partly because FSR
makes band selection considering a linear regression
model.

4) RMSE reduction due to noise filtering is not the same
for all the real datasets, being higher for CASI-AHS-
CHLOR and FGVC datasets. In the case of the Orange
Juice dataset, noise reduction effect in the band selection
methods is not so evident. This may be because the
number of samples is small for a high dimensional space,
which implies a high dispersion of the data. For the
AHS dataset, the number of bands is relatively small
and the noise reduction using the HySime method does
not significantly improve the regression error.

V. CONCLUSIONS

In this paper, the effect of denoising on the selection
capability of different band selection techniques for regression
tasks applied to one synthetic and four real hyperspectral
datasets has been investigated. Regression results on a Barrax
test site image, chlorophyll measures in this case, show the
capability to correctly estimate them, using several band
selection methods, with a reduced number of bands. This
seems to indicate the possibility to be able to reduce the
spectral range where the sensor would be really useful in order
to measure the biophysical parameters of the crops aimed at
being identified.
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Results for the original bands
σ = 0.005 σ = 0.010 σ = 0.015 σ = 0.020

CMIDist (K = 10) 29.69 42.51 53.03 61.08
CMIKras (K = 10) 29.42 40.33 51.57 58.16
Test (p-value) 1.0 (-) 0.364 (-) 0.427 (-) 0.879 (-)
CMIDist (K = 20) 55.08 78.22 97.08 101.25
CMIKras (K = 20) 53.13 71.32 84.33 97.75
Test (p-value) 0.310 (-) 0.035 (-) 0.007 (+) 0.330 (-)

Results for the corresponding denoised bands
σ = 0.005 σ = 0.010 σ = 0.015 σ = 0.020

CMIDist (K = 10) 19.01 24.85 35.21 43.83
CMIKras (K = 10) 30.00 26.90 36.23 44.71
Test (p-value) 0.002 (+) 0.003 (+) 0.241 (-) 0.364 (-)
CMIDist (K = 20) 36.51 49.86 68.86 86.77
CMIKras (K = 20) 56.11 52.28 72.40 87.42
Test (p-value) 6.8 10−8 (+) 2.9 10−5 (+) 5.1 10−4 (+) 0.956 (-)

TABLE I
ACCUMULATED RMSE ERROR FOR THE CMIDist AND CMIKras METHODS FOR THE PROSAIL SYNTHETIC DATASET, FOR DIFFERENT LEVEL OF

GAUSSIAN NOISE ADDED
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Fig. 3. Distribution of crops and points where in situ chlorophyll measurement were made.

From the other observed results, we can also conclude
that the application of the HySime denoising technique on
the datasets before performing the band selection, reduces
the regression error. This also applies when using regressors
of different nature (ε−SVR, Regression Trees, and Kernel
Ridge Regression). This improvement is highest for three
of the feature selection methods used in the experiments
(CMIDist, EN and PS-FS). Their selection criterion uses the
information given by the whole dataset for the prediction of
the output. Noise elimination improves their prediction. The
worse behavior when Hysime is applied, for the CMIkras and
Rossi methods may be because the estimator in both cases
is based on a distance criterion between sample neighbors.

This does not always improve the selection performance after
noise filtering. We have also seen that the degree of RMSE
reduction due to noise filtering is dependent on the complexity
and structure of the dataset.
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CASI-AHS-CHLOR dataset
ε−SVR CMIDist CMIKras Rossi FSR EN PS−FS Friedman Test Quade Test
K = 5 13.67 18.55 19.20 25.80 15.27 13.55 22.92 (+) 10.51 (+)
K = 10 22.75 30.21 29.24 40.94 25.50 23.13 35.37 (+) 18.22 (+)
K = 15 30.49 41.26 37.62 52.72 33.78 31.54 53.31 (+) 21.74 (+)
K = 20 37.57 50.68 45.07 63.02 41.12 39.29 72.16 (+) 28.95 (+)
RT CMIDist CMIKras Rossi FSR EN PS−FS Friedman Test Quade Test
K = 5 11.34 14.88 15.03 24.69 12.84 12.70 13.77 (+) 7.16 (+)
K = 10 19.20 25.16 25.39 42.99 22.42 23.17 23.37 (+) 12.12 (+)
K = 15 27.86 32.98 34.52 59.84 31.26 32.62 23.41 (+) 13.05 (+)
K = 20 35.37 41.04 43.67 75.09 40.53 41.89 35.88 (+) 18.27(+)
KRR CMIDist CMIKras Rossi FSR EN PS−FS Friedman Test Quade Test
K = 5 12.18 15.71 14.52 23.97 14.47 13.46 11.02 (+) 7.70 (+)
K = 10 20.04 23.61 21.35 38.95 23.73 21.89 17.49 (+) 8.86 (+)
K = 15 26.92 30.44 27.13 52.14 32.77 29.86 34.42 (+) 13.41 (+)
K = 20 33.19 36.84 32.94 63.43 41.11 37.35 52.64 (+) 19.82 (+)

AHS dataset
ε−SVR CMIDist CMIKras Rossi FSR EN PS−FS Friedman Test Quade Test
K = 5 10.43 10.71 11.57 13.30 14.57 11.01 8.11 (+) 6.60 (+)
K = 10 22.71 22.97 24.13 25.42 27.90 23.58 5.52 (+) 6.14 (+)
RT CMIDist CMIkras Rossi FSR EN PS−FS Friedman Test Quade Test
K = 5 22.08 22.04 24.81 24.41 24.96 23.94 0.42 (-) 0.37 (-)
K = 10 49.19 50.68 52.97 55.89 53.84 52.83 1.07 (-) 1.37 (-)
KRR CMIDist CMIkras Rossi FSR EN PS−FS Friedman Test Quade Test
K = 5 13.18 13.60 13.51 14.92 15.07 12.96 3.94 (-) 5.85 (+)
K = 10 21.59 22.37 22.37 23.80 24.82 21.58 7.84 (+) 9.14 (+)

FGVC dataset
ε−SVR CMIDist CMIKras Rossi FSR EN PS−FS Friedman Test Quade Test
K = 5 0.32 0.53 0.55 0.57 0.36 0.32 19.65 (+) 7.54 (+)
K = 10 0.54 0.80 0.87 0.88 0.55 0.55 53.75 (+) 16.64 (+)
K = 15 0.72 1.01 1.08 1.14 0.73 0.75 71.20 (+) 25.12 (+)
K = 20 0.87 1.19 1.25 1.37 0.90 0.92 52.08 (+) 27.10 (+)
RT CMIDist CMIKras Rossi FSR EN PS−FS Friedman Test Quade Test
K = 5 0.21 0.43 0.38 0.44 0.25 0.27 15.13 (+) 7.53 (+)
K = 10 0.32 0.74 0.56 0.73 0.39 0.49 50.55 (+) 15.86 (+)
K = 15 0.40 1.04 0.73 1.02 0.54 0.69 107.82 (+) 26.75 (+)
K = 20 0.48 1.33 0.89 1.30 0.69 0.89 154.97 (+) 37.14 (+)
KRR CMIDist CMIKras Rossi FSR EN PS−FS Friedman Test Quade Test
K = 5 0.42 0.60 0.63 0.73 0.44 0.46 28.71 (+) 9.56 (+)
K = 10 0.76 1.01 1.09 1.25 0.74 0.88 81.78 (+) 19.58 (+)
K = 15 1.09 1.37 1.47 1.71 1.02 1.26 109.74 (+) 30.17 (+)
K = 20 1.40 1.70 1.83 2.14 1.31 1.62 162.57 (+) 40.11 (+)

Orange Juice dataset
ε−SVR CMIDist CMIKras Rossi FSR EN PS−FS Friedman Test Quade Test
K = 5 53.92 51.83 52.32 48.86 48.74 48.47 5.67 (+) 3.70 (-)
K = 10 92.97 100.77 103.11 94.33 94.91 96.59 11.51 (+) 5.50 (+)
K = 15 133.80 148.83 154.24 141.48 140.35 144.13 23.89 (+) 10.09 (+)
K = 20 175.14 197.37 205.38 188.55 186.02 191.94 40.90 (+) 16.45 (+)
RT CMIDist CMIKras Rossi FSR EN PS−FS Friedman Test Quade Test
K = 5 54.09 45.04 43.40 56.51 47.59 53.43 14.82 (+) 10.16 (+)
K = 10 106.15 96.14 91.10 110.29 98.22 105.78 16.65 (+) 11.50 (+)
K = 15 159.44 147.64 142.86 163.93 149.94 157.98 18.35 (+) 13.21 (+)
K = 20 217.76 200.71 194.02 219.80 201.39 210.93 22.46 (+) 14.95 (+)
KRR CMIDist CMIKras Rossi FSR EN PS−FS Friedman Test Quade Test
K = 5 41.63 41.05 40.07 42.02 42.04 42.05 1.65 (-) 2.09 (-)
K = 10 79.40 78.28 78.68 78.01 77.67 79.94 1.12 (-) 0.77 (-)
K = 15 107.96 107.58 109.01 107.28 106.01 108.88 2.10 (-) 0.66 (-)
K = 20 150.96 151.09 154.25 151.67 148.19 152.47 4.96 (+) 2.07 (-)

TABLE II
ACCUMULATED RMSE OVER DIFFERENT SUBSETS OF DENOISED BANDS OBTAINED BY SV R, RT AND KRR WITH DIFFERENT BAND SELECTION

ALGORITHMS IN REGRESSION TASKS.

Science and Technology Foundation, under project PEst −
OE/EEI/LA0008/2011.
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Fig. 4. Regression Trees (RT) results for chlorophyll for the Barrax image acquired by the CASI and AHS sensors. No denoising was applied
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Fig. 5. Regression Trees (RT) results for chlorophyll for the Barrax image acquired by the CASI and AHS sensors. Hysime denoising was applied
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CASI-AHS-CHLOR dataset
CMIDist CMIKras Rossi FSR EN PS−FS

K = 5 14.14 16.41 15.95 22.36 15.72 15.24
K = 10 23.58 26.98 26.68 39.76 26.82 25.40
K = 15 32.70 36.93 35.99 55.19 37.09 35.16
K = 20 41.24 46.22 44.74 68.62 46.60 44.30

AHS dataset
CMIDist CMIKras Rossi FSR EN PS−FS

K = 5 16.25 18.15 18.40 16.64 16.89 17.19
K = 10 31.77 33.72 33.55 32.20 32.46 32.75

FGVC dataset
CMIDist CMIKras Rossi FSR EN PS−FS

K = 5 0.33 0.53 0.50 0.54 0.36 0.34
K = 10 0.57 0.89 0.85 0.88 0.59 0.64
K = 15 0.80 1.18 1.12 1.18 0.81 0.90
K = 20 1.01 1.45 1.35 1.45 1.02 1.14

Orange Juice dataset
CMIDist CMIKras Rossi FSR EN PS−FS

K = 5 49.64 46.54 45.25 49.64 45.88 47.09
K = 10 93.29 91.73 90.61 99.15 90.16 94.25
K = 15 137.02 137.25 136.33 147.76 134.45 140.64
K = 20 182.58 182.33 181.93 197.24 178.29 186.76

TABLE III
AVERAGE RMSE OVER DIFFERENT SUBSETS OF ORIGINAL BANDS OBTAINED BY AVERAGE OVER THE THREE REGRESSION ALGORITHMS.

CASI-AHS-CHLOR dataset
CMIDist CMIKras Rossi FSR EN PS−FS

K = 5 12.40 16.38 16.25 24.82 14.19 13.24
K = 10 20.66 26.33 25.33 40.96 23.88 22.73
K = 15 28.42 34.89 33.09 54.89 32.60 31.34
K = 20 35.38 42.85 40.56 67.18 40.92 39.51

AHS dataset
CMIDist CMIKras Rossi FSR EN PS−FS

K = 5 15.23 15.45 16.63 17.55 18.20 15.97
K = 10 31.16 32.00 33.16 35.04 35.52 32.66

FGVC dataset
CMIDist CMIKras Rossi FSR EN PS−FS

K = 5 0.23 0.38 0.37 0.43 0.25 0.26
K = 10 0.54 0.85 0.84 0.95 0.56 0.64
K = 15 0.74 1.14 1.09 1.29 0.76 0.90
K = 20 0.92 1.41 1.32 1.60 0.97 1.14

Orange Juice dataset
CMIDist CMIKras Rossi FSR EN PS−FS

K = 5 49.88 45.97 45.26 49.13 46.12 47.98
K = 10 92.84 91.73 90.96 94.21 90.27 94.10
K = 15 133.73 134.68 135.37 137.56 132.10 137.00
K = 20 181.29 183.06 184.55 186.67 178.53 185.11

TABLE IV
AVERAGE RMSE OVER DIFFERENT SUBSETS OF DENOISED BANDS OBTAINED BY AVERAGE OVER THE THREE REGRESSION ALGORITHMS.
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