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Abstract

We tested the hypothesis that early bilinguals use language-control brain areas more than monolinguals when performing
non-linguistic executive control tasks. We do so by exploring the brain activity of early bilinguals and monolinguals in a task-
switching paradigm using an embedded critical trial design. Crucially, the task was designed such that the behavioural
performance of the two groups was comparable, allowing then to have a safer comparison between the corresponding
brain activity in the two groups. Despite the lack of behavioural differences between both groups, early bilinguals used
language-control areas – such as left caudate, and left inferior and middle frontal gyri – more than monolinguals, when
performing the switching task. Results offer direct support for the notion that, early bilingualism exerts an effect in the
neural circuitry responsible for executive control. This effect partially involves the recruitment of brain areas involved in
language control when performing domain-general executive control tasks, highlighting the cross-talk between these two
domains.
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Introduction

It is now well-accepted that the continuous and extensive

training of language-control abilities in bilingual speakers affects

the development and functioning of executive control (EC)

systems. For example, bilinguals tend to outperform monolinguals

in tasks that involve conflict resolution and monitoring, set shifting,

etc. [1], [2], [3]. At present, however, much less is known about

the impact of bilingualism on the brain organization of EC

functions. Indeed, the few studies that have addressed this issue

suggest that bilingualism does not only affect the efficiency of the

EC functioning, but also the brain structures recruited when

performing EC tasks [4], [5], [6], [7]. The main aim of the present

study is to further advance in our knowledge of the impact of

bilingualism on the brain networks involved in EC. In particular,

we put to test the hypothesis that bilinguals will recruit language

related areas when performing EC tasks to a larger extent than

monolinguals.

It is widely accepted that the two languages of a bilingual are

constantly active both when comprehending and producing

language. Despite this co-activation, language control failures that

lead to cross-language intrusions are scarce, at least in high-

proficient bilinguals, revealing the excellent language control

abilities develop by bilinguals. This language control system is

sustained by a set of left lateralized brain areas [8]. Concretely, a

brain network that involves the left inferior frontal gyrus, the left

caudate, the left inferior parietal lobe and the anterior cingulate

has been proposed as the main areas involved in language control.

Therefore, as a result of the acquisition of two languages during

early age, bilingual speakers continuously and extensively train this

language control network.

Language control may be considered a special case of executive

control. The mechanisms of executive control recruited to resolve

competition between linguistic representations may be similar to

those recruited when resolving competition between representa-

tions in perception and attention [9]. In fact, brain areas related to

the control of executive processes are the bilateral inferior and

medial frontal cortex, the caudate and the anterior cingulate [10],

[11], and include those related to language control. In this context,

it seems reasonable to hypothesise a cross-talk between the

processes engaged in domain general executive control and those

involved in language control. Indeed, such cross-talk is at the basis

of current explanations of the observed bilingual advantage in

executive control tasks that minimally involve language such as

switching tasks and conflict resolution tasks [12]. A recent review

of this behavioral evidence has served to outline the specific

differences between monolinguals and bilinguals in executive

processes [3]. They concluded that both groups did not differ in

inhibitory processes, but bilinguals showed domain-general

executive functioning advantages manifested in a more efficient

processing when performed interference task. Importantly, these
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advantages are observed when the monitoring or attentional

resources required to perform the task are high [2], [13].

Beyond the presence of such a cross-talk, our knowledge about

the specific way in which bilingual language control alters the

brain networks of individuals when performing non-linguistic

executive control tasks is rather limited. One appealing possibility

is that bilingual language control may impact in a qualitative (and

not just in a quantitative) way the organization of cognitive control

network, leading to the involvement of language-control brain

areas in non-linguistic switching tasks [5]. In the present study, we

intended to further test this original hypothesis by comparing the

neural substrates of task switching in bilinguals and monolinguals

in the absence of any group differences in task performance. This

last feature is important, since any difference in the neural

activation between these two groups could not be attributed to

differences in behavioral performance, hence allowing a cleaner

attribution to such brain modulation to the bilingual status of the

participant.

With this purpose in mind, participants were submitted to a

non-linguistic task-switching paradigm with low-monitoring de-

mands [14]. Manipulation of the task’s monitoring demands is

relevant here because it has already been shown that the

behavioural impact of bilingualism on EC tasks is reduced (or

even absent) when the task at hand does not involve a high

magnitude of the conflict effect [13]. However, given the early

experience of bilinguals in managing two languages, we expected

to find brain differences between groups even in absence of

behavioral differences. In the sense, we hypothesize that language-

control areas (i.e., left inferior frontal gyrus, left inferior parietal,

left caudate and left ACC [15]) would be more activated in

bilinguals than in monolinguals in the low-monitoring task

switching of the present study. Comparing the two groups in a

task that does not lead to differences in performance, as this will

ease the interpretation of any potential brain differences between

groups.

Materials and Methods

1. Participants
The study was approved by Universitat Jaume I’s ethics

committee. Also, in accordance with the Universitat Jaume I’s

ethical protocol, each participant handed in a written informed

consent to participating in the experiment and received a

monetary reward for his participation.Thirty-six healthy right-

handed undergraduates, including 18 early and high proficient

Catalan-Spanish bilinguals (11 females, mean age = 23.06,

standard deviation (SD) = 3.04) and 18 Spanish monolinguals (9

females, mean age = 23.67, SD = 4.28) gave written informed

consent to participate in the study. There were no statistically

significant between-group differences in age and gender. All

participants had normal or corrected-to-normal vision, and were

screened by self-report to exclude any subjects reporting previous

or current neurological or psychiatric conditions, and current

psychotropic medication use.

All participants were subjected to a preliminary interview about

their use of languages, and their personal and familiar language

history, after which they were assigned to the bilingual or

monolingual groups. Age of acquisition was derived from a self-

report questionnaire that contained questions about the frequency

of use of each language at various ages from early life (1 = only

Spanish, 7 = only Catalan). This questionnaire was structured into

four main categories and three sub-categories: before primary

school, primary school age (at school, home, free time), secondary

school age (at school, home, free time), adult age (at work/

university, home, free time), and the corresponding questions

intended to assess the extent of early and continuous practice in

Catalan and Spanish. All the bilingual participants had learned

both languages and had sufficient experience with them for the

first four years of life: 13 bilinguals learned both languages at home

and at school, whereas the 5 remaining bilinguals learned Spanish

at home and Catalan at school. All bilinguals reported a

continuous use of both languages since they were 4 years old.

Despite this early and continuous exposure, some participants

showed preferences for one of their languages. We took their

preferences to establish the participant’s L1 (or dominant) and L2

(or non-dominant) (10 participants preferred Catalan, 3 Spanish,

and 5 had no preference for either language).

Participants self-rated their language proficiency on a 4-point

scale (1 = ‘‘very low proficiency,’’ 4 = ‘‘very proficient’’) in four

different domains: listening, reading, speaking and writing. Given

the very extensive and early experience, all bilingual participants

rated 4 (‘‘very proficient’’) in all these domains in both Spanish

and Catalan. It is important to note that these participants

received bilingual schooling for at least 13 years. This bilingual

schooling does not mean that Catalan or Spanish was taught as a

foreign language. Instead, different courses of the syllabus (e.g.,

maths, social sciences, etc.) were taught in different languages.

Thus, all bilinguals had a perfect command of both languages at

all levels and self-reported the need for making continuous changes

between Spanish and Catalan depending on the interlocutor

present. Noteworthy, subjective measures of self-reported language

proficiency appear to provide an effective measure of bilingual

ability [16] (Marian et al. 2007). This is probably even more so for

very homogeneous samples like the one tested in this study.

Bilinguals also self-reported an actual active use of both languages

throughout their life (mean 59% use of Catalan and 41% use of

Spanish), and that they frequently switch between languages

depending on environment rules.

The monolingual group was formed by Spanish participants

coming from monolingual regions of Spain who had moved to

Figure 1. Task. Schematic of the serial visual presentation of stimulus
displayed during the scan session.
doi:10.1371/journal.pone.0073028.g001
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Table 1. Brain activations for bilinguals and monolinguals in the comparison between the switch and repeat trials.

BILINGUALS

Activated regions Brodman Area Talairach coordinates T-value Cluster Size(mm3)

x y z

L, Superior Frontal Gyrus 6 221 11 52 6.91 8802

L, Middle Frontal Gyrus 6 218 6 58 6.61

L, Middle Frontal Gyrus 9 227 42 34 6.11 2106

L, Middle Frontal Gyrus 9 224 34 34 5.35

L, Middle Frontal Gyrus 9 233 42 26 5.29

L, Middle Frontal Gyrus 46 242 44 6 4.26

L, Medial Frontal Gyrus 6 212 223 56 5.98 1998

L, Medial Frontal Gyrus 6 26 211 67 3.88

L, Inferior Frontal Gyrus 46 250 35 9 5.52 648

L, Precentral Gyrus 6 242 21 47 6.65

L, Precentral Gyrus 6 215 217 62 5.92

L, Inferior Parietal Lobule 40 245 248 25 7.82 945

L, Middle Temporal Gyrus 39 242 257 22 3.72

L, Middle Temporal Gyrus 39 250 266 23 5.98 621

L, Middle Temporal Gyrus 39 245 274 26 4.66

L, Middle Temporal Gyrus 21 256 250 23 5.47 621

L, Cingulate Gyrus 32 26 22 40 5.24

L, Caudate Head 26 12 5 6.84

R, Middle Frontal Gyrus 6 18 6 61 6.28 783

R, Precuneus 7 18 265 36 9.73 39960

R, Precuneus 31 18 260 22 7.13

R, Precuneus 7 36 271 42 6.03 729

R, Middle Occipital Gyrus 19 48 276 4 6.06 621

R, Middle Occipital Gyrus 19 48 273 24 4.17

R, Anterior Cingulate 32 3 33 23 6.78 4995

R, Cingulate Gyrus 32 15 11 38 5.19

R, Posterior Cingulate 30 3 246 19 6.83

R, Caudate Head 6 9 2 8.14 10962

R, Putamen 12 9 23 7.29

MONOLINGUALS

L, Inferior Frontal Gyrus 47 224 23 29 4.49

L, Paracentral Lobe 31 23 230 43 5.02 756

L, Precuneus 31 227 271 28 5.31 918

L, Precuneus 7 29 271 37 5.22 1215

L, Precuneus 7 29 259 53 4.43

L, Inferior Parietal Lobule 40 250 233 40 4.90 999

L, Temporal Lobe 37 248 247 25 5.37 1215

L, Middle Occipital Gyrus 19 250 256 27 5.29

L, Middle Occipital Gyrus 19 227 278 20 5.26

L, Caudate Head 26 9 2 7.29 3105

L,Medial Globus Pallidus 215 26 3 6.29

R,Precuneus 7 12 259 50 4.95 1350

R,Lateral Globus Pallidus 12 3 5 6.10 999

R, Caudate Body 15 1 17 3.87

Note: One-sample t-test at p,0.05, FWE cluster-corrected.
doi:10.1371/journal.pone.0073028.t001
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Castelló or Valencia less than a year before the experiment started

and who stated that they had a very low proficiency in Catalan. It

is important to remind that in the Comunidad Valenciana Catalan

is used by 30% of the population, while Spanish is used by all the

population. Moreover, although all the bilingual and monolingual

participants had studied English as a second (or third) language at

school, none of them showed good proficiency in English

according to self-reported questionnaires.

2. Task
A non-linguistic switching task devised by Barceló [14] was

adapted to the fMRI scanner using an embedded critical trial

design [17] based on an intermittently-instructed task-cueing

paradigm (switching task). Visual stimuli consisted in four

equiprobable coloured shapes (red and blue circles and squares;

p = 0.225 each) that were embedded within two infrequent black

shapes that were the events of interest (vertical dollar symbol and

horizontal dollar symbol; p = 0.05 each). The inter-stimulus

interval (ISI) was set at 1500 ms and each stimulus lasted

500 ms. Each event of interest (i.e. a dollar symbol) was separated

by a varying number of coloured shapes (from 6 to 9) with a

temporal mean duration of 14.5 seconds (SD = 4.04) to

adequately observe the hemodynamic response for each event

and to ensure that event-related responses did not overlap.

Before the scan session, subjects completed a 5-minute practice

session to ensure they understood the instructions. In the

experimental session, each subject performed a total of 70 trial

sequences distributed into five runs (each run consisted of 14

sequences, 98 volume acquisitions and lasting 4:05 minutes). The

speed and accuracy of each behavioural response were registered.

The task consisted in classifying four coloured shapes (red and

blue circles and squares; 185 of each kind of shape in the five runs)

according to two classification rules (either colour or shape) by

pressing a response button with their right index and thumb (370

responses with each finger in the five runs). When sorting by the

colour rule, subjects pressed the index button for ‘‘red’’ and the

thumb button for ‘‘blue’’. When sorting by the shape rule, subjects

pressed the index button for ‘‘circle’’ and the thumb button for

‘‘square’’. At the beginning of a run, a written cue was presented to

indicate the initial response rule (‘‘COLOR’’ for colour and

‘‘FORMA’’ for shape). Next, two black symbols (dollar symbol

horizontally or vertically) instructed subjects to either ‘‘switch’’ or

‘‘repeat’’ the previous response rule, respectively. So, there were

two events of interest: switch and repeat (See Figure 1).

In order to avoid an inaccurate scoring of task-switching errors

at rule transition points (after a black symbol), the first and last

shapes in a trial sequence always consisted in either a red square or

a blue circle. This allowed for an unambiguous assignment of

motor responses with the correct or incorrect classification rules.

Besides, the manual response was counterbalanced (the same

number of manual responses were done with both fingers) for the

first and the second response after a black figure, and the same was

done for the previous and the following response also in the case

that the participant used the incorrect response rule. Moreover, in

order to keep perceptual priming effects constant across condi-

tions, the sequential probabilities between each pair of stimuli

were controlled. The global probability of two successive repeat

cues was the same as that of two successive switch cues. Likewise,

the global probability of alternations between switch-repeat cues

equalled the probability of repeat-switch alternations. Finally, both

black symbols instructed the same number of switch and repeat

trials (35 of each in the five runs).

Figure 2. Magnitude of switch costs in errors (A) and RTs (B).
Magnitude of switch costs for bilinguals and monolinguals in a
percentage of errors (A) and mean RTs in milliseconds (B). Switch costs
were analysed by comparing the responses in the first target trial
following repeat and switch cues. As expected, the ANOVAs did not
reveal any significant difference between bilinguals and monolinguals
(p.0.10).
doi:10.1371/journal.pone.0073028.g002

Table 2. Region of interest showing increased activation for bilinguals compared with monolinguals.

Region of interest Talairach coordinates T-value Significance

x y z

L, Inferior Frontal Gyrus 254 6 21 3.17 p,0.05, FWE-corrected

L, Anterior Cingulate Cortex 3 18 24 1.15 ns

L, Caudate 29 9 9 3.41 p,0.05, FWE-corrected

R, Caudate 6 9 0 1.62 ns

doi:10.1371/journal.pone.0073028.t002
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The stimulus material in this task was chosen to keep working

memory demands and novelty effects at a minimum. In particular,

the six perceptual items employed in the task could be easily

memorized and discriminated from each other, and they were

selected to meet the theoretical limits of human capacity for

selecting and holding information in working memory [18]. The

task was programmed and presented using the Presentation

software (Neurobehavioral System, Inc., Albany, CA), implement-

ed in Microsoft XP operating system. Visual stimuli were

displayed inside the scanner using Visuastim goggles (Resonance

Technologies, Inc.), their presentation was synchronized with a

scan through a SyncBox (Nordic NeuroLab AS, Bergen, Norway),

and responses were registered with a recording device Response-

Grip (Nordic Neurolab AS, Bergen, Norway).

Figure 3. Brain activations for each group in the comparison between switch and repeat trials. Brain activations for bilinguals (top) and
monolinguals (bottom) in the comparison between the switch and repeat trials (one-sample t-test at p,0.05, FWE cluster-corrected). Results for both
groups showed the participation of both caudates, and the inferior frontal gyrus.
doi:10.1371/journal.pone.0073028.g003

Figure 4. ROIs used for the two-sample t-test. Axial and sagittal sections showing the four ROIs used for the two-sample t-test analyses: left and
right caudate (A), left inferior frontal gyrus (B) and the ACC (C). These ROIs (spheres of 5 mm radius) were centered on the areas identified in a one
sample t-test performed for all the participants (see Table S1 and Figure S1). Results of the two-sample comparison of bilinguals and monolinguals
appear on Table 2.
doi:10.1371/journal.pone.0073028.g004
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3. Behavioural measures
The percentage of errors was calculated for each task condition

and reaction times (RTs) were obtained from correct trials only.

The switch cost was computed as the difference in the mean RTs

between the first targets following switch and repeat cues [19],

[14]. Mean RTs and errors were subjected to repeated measures

analyses of variance (ANOVAs) with Trial Type (repeat vs. switch)

as the within-subject factor and Group (bilinguals vs. monolin-

guals) as the between-subjects factor. Only the first target after the

cue was included in the analyses as first target trials present

maximal effects of switch-specific local costs [19], [14].

4. FMRI parameters
All the experimental sessions were performed in a 1.5T scanner

(Siemens Avanto, Erlangen, Germany). Participants were placed

inside the scanner in the supine position. A sequence BOLD echo

planar imaging (BOLD-EPI) of 98 volumes per run was used for

fMRI (TE = 50 ms, TR = 2500 ms, FOV = 2246224, matrix

= 64664, voxel size = 3.563.564, 3.5-mm slice thickness, gap

= 0.5-mm, Flip = 90u). We acquired 28 interleaved axial slices

parallels to the anterior-posterior commissure (AC-PC) plane

covering the entire brain. Prior to the functional MR sequence, an

anatomical 3D volume was acquired by using a T1-weighted

gradient echo pulse sequence (TE = 4.9 ms, TR = 11 ms, FOV

= 24 cm, matrix = 25662246166, voxel size 16161, 1-mm slice

thickness).

5. Image analyses
Image processing and statistical analyses were carried out using

SPM5 (Wellcome Trust Centre for Neuroimaging, London, UK).

Each participant’s scans were first temporally aligned across the

brain volume by slice-timing correction, and then the images were

realigned and resliced to the mean image for head motion. Then

they were coregistered with the corresponding anatomical (T1-

weighted) image, and were normalized (voxels rescaled to 3 mm3)

with the normalization parameters obtained after anatomical

segmentation within a standard stereotactic space (the T1-

weighted template from the Montreal Neurological Institute,

MNI) to present functional images in the coordinates of a standard

stereotactic space. Finally, functional volumes were smoothed

using an 8-mm FWHM Gaussian kernel. Image analyses were

performed by means of a General Linear Model approach. In the

first-level analysis, the five runs were analyzed for each subject by

modelling switch events and repeat events separately after

convolving each event-related unit impulse with a canonical

haemodynamic response function and its first temporal derivative.

Realignment parameters were included for each subject as

regressors of non interest. A high-pass filter (128 s) was applied

to the functional data to eliminate low-frequency components.

From this first level, we computed con-images of the parameter

estimates to make a comparison between the switch and repeat

conditions (switch . repeat) at each voxel for each subject. The

resulting images of the parameter estimates were used in the

second-level random effect analysis to explore the average effects

within groups and the differences between them. At this second

level, we performed one sample t-test for each linguistic group

(bilinguals and monolinguals). In this analysis, correction for

multiple comparisons was done at the cluster level [20]. The

results were reported at a p,0.05 FWE correction at the cluster

level (a voxel-level threshold of p,0.001). A two-sample t-test was

done to compare between the two linguistic groups (bilinguals and

monolinguals). For this analysis, specific regions of interest (ROIs)

associated with both cognitive and language control, were studied

(see [21]): the right and left inferior frontal gyrus, the right and left

caudate and the ACC. These ROIs (spheres of 5 mm radius) were

centered on the areas identified in a one sample t-test performed

for all the participants (see Table S1 and Figure S1). The statistical

threshold was set at p,0.05 FWE corrected.

Results

1. Behavioural performance
Mean RTs (bilinguals: 387 ms (SD = 49); monolinguals:

420 ms (SD = 70)) and error rates (bilinguals: 7.6% (SD = 2.9);

monolinguals: 10.2% (SD = 6.1)) were not significantly different

between the two groups of participants.

Switch costs were analysed by comparing the responses in the

first target trial following repeat and switch cues. The main trial

effect was significant in both errors (F (1, 34) = 9.37, p,0.05) and

RTs (F (1, 34) = 16.92, p,0.001). That is, the target responses

following a switch cue elicited longer RTs and higher error rates

than the target responses following a repeat cue. It is important to

note, however, that the interaction between Trial and Group

variables was not significant; (F (1, 34) = 0.23, p.0.10 for errors;

and F (1, 34) = .91, p.0.10 for RTs); indicating that the

magnitude of the switch cost was similar for both groups of

participants (see Figure 2).

2. Imaging data
2.1 Within-group activations. In these analyses, we assessed

the differences in brain activation between the switch and repeat

trials as an index of switch costs for each group (see Table 1 and

Figure 3). In the bilingual group, the comparison made between

the switch and repeat trials showed a cluster of activation with a

peak in correspondence of the head of the left and right caudates,

the left and right cingulate gyri and the left inferior and middle

frontal gyri (p,0.05, FWE cluster-corrected). In the monolingual

group, the same comparison (switch vs. repeat trials) showed that

the areas mainly activated were in the basal ganglia (bilateral

caudate head and bilateral globus pallidus) and the left inferior

frontal gyrus (p,0.05, FWE cluster-corrected).

2.2Between-groups comparison. We selected from Ta-

ble S1 the coordinates for ROIs (see Figure 4). The between-

groups comparison using a two-sample t-test revealed that,

compared to monolinguals, bilinguals showed increased brain

activity in the left caudate (81 mm3), and the left inferior frontal

gyrus (135 mm3) (see Table 2). However, differences were not

significant for the ACC, the right inferior frontal gyrus and the

right caudate. When we lowered the threshold (p.0.005

uncorrected), whole brain analysis showed similar results (see

Table S2 and Figure S2). The inverse comparison (monolinguals

vs. bilinguals) yielded no significant brain differences in the areas

of interest.

Discussion

In the present study, early bilinguals and monolinguals

performed a non-linguistic switching task with low-monitoring

demands, which involved runs of target trials intermittently

interrupted by the presentation of instructional cues. That is, the

task cue was not presented in each trial. Arguably, this task

involved less monitoring demands than the task-switching

paradigms in which each target trial is preceded by a task cue.

Crucially, to minimize the involvement of verbal components,

non verbal symbols as cue and manual responses were used;

whereas that, main verbal components of the task use the same

word in Spanish and Catalan (Shape, Color, switch, repeat...).

Importantly, as the contrast of interest compared Switch and

Task Switching in Bilinguals
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Repeat trials, the possible role of language control, internal

verbalizations and L2 inhibition were also controlled.

Participants’ performance in this task showed a significant

switch cost in terms of RTs and error rates. It is noteworthy,

however, that the magnitude of the switch cost was comparable in

bilinguals and monolinguals. That is, with this task-switching

paradigm, in which monitoring demands are low, the magnitude

of the behavioural switch cost did not seem to be affected by

bilingualism. However, we observed differences between the

groups in brain activities associated with the switch cost, which

is precisely the crucial contribution of the present study. Bilinguals

displayed greater activation than monolinguals specifically associ-

ated with task switching in the left caudate and in the left inferior

frontal gyrus. Therefore, the present results are consistent with our

previous observations [5] in which early bilinguals used brain

areas involved in language control to a larger extent than

monolinguals during non-lingusitic task switching. The important

point here is that this observation was still present even in the

absence of statistically significant behavioural differences between

the two groups. Thus, neural differences observed in the previous

[5] and in the present study suggest that bilinguals use language

areas more than monolinguals to perform switching tasks.

Whether to not these brain differences between bilinguals and

monolinguals leads to behavioural differences in task switching

appears to depend on various properties of the specific task-

switching implementation. For example, when the task switch

requires high cognitive demands and the need of endogenous

rapid disengaging from irrelevant inputs ([2], [13], [3], [22]) then

it seems to be more likely to find these behavioral differences.

Bilinguals and monolinguals display greater activity in the

caudate nucleus bilaterally when processing switch vs. repeat trials.

This activity is in accordance with the notion that the caudate

nucleus is the main structure involved in shifting between already

established task sets, especially when the monitoring and inhibitory

demands of the task are low [10]. Indeed, damage to basal ganglia

structures leads to difficulties in task-switching paradigms, as

shown in Huntington’s disease [23] and Parkinson’s disease [24].

Yet, on top of this bilateral activity associated with task-switching

in both groups, we also observed a difference between the groups.

Although both monolinguals and bilinguals recruit the left caudate

when switching, bilinguals do so to a greater extent than

monolinguals. The origin of such a bilingual effect probably lies

in the involvement of the left caudate nucleus in bilingual language

control. In other words, although the left caudate appears to be

involved in monolingual language processing [25], its involvement

in bilingual language control is even more fundamental [26], [27],

[28], [29], [30].For example, damage to this area leads to

pathological language switching [31], [32]. Hence given the

specific involvement of this area in bilingualism, it is reasonable to

expect functional differences also in task switching in accordance

with the participants’ bilingual status, and this is precisely what we

found. Consequently, a likely explanation for this greater left

caudate involvement in bilinguals could be its extension from the

linguistic function underlying language switching to also encom-

pass the attentional control required to select the correct response

set in a non-linguistic task-switching paradigm.

Further evidence for linguistically related areas being more

recruited by bilinguals than monolinguals during task switching

originates from the pattern of activity observed in the left inferior

frontal gyri. This area is activated to a greater extent in switch

than in repeat trials both in bilinguals and monolinguals. This

observation is congruent with previous neuropsychological studies

reporting that damage to this area leads to reduced endogenous

control in task switching which, in turn, leads to exaggerated

sensitivity to the exogenous cueing of the task set [10]. Confirming

our previous result [5], we found that the left inferior frontal gyrus

is more activated in bilinguals than in monolinguals. As for the left

caudate, this area is involved in language processing in both

monolinguals and bilinguals, and it also plays a key role in

bilingual language control [21]. Hence, the fact that bilinguals

recruit the left inferior frontal gyrus more than monolinguals

suggests that continuous bilingual language control has an effect

on the extent to which linguistically dedicated areas are involved in

task switching.

There are, however, certain limitations in our study that should

be addressed in further studies. First, our sample is formed by early

and highly proficient of bilinguals that live in a society with

frequents demands of language switching. Future research should

determine if our conclusions can be generalized to other kind of

bilinguals with different characteristics. Second, the monolingual

sample used in this study was formed by undergraduates coming

from other parts of Spain. The lack of control of sociodemographic

variables should not be discarded a possible bias of the results [33],

although previous studies offer strong support for the claim that

bilingualism acts independently of variables such as language

similarity, cultural background, and language of schooling in

influencing nonverbal outcomes [34,35]. Third, even although the

task could be carried out without using linguistic representations,

we cannot completely rule out that participants engaged in some

sort of implicit linguistic behaviour. If so, then brain differences

between monolinguals and bilinguals in this experiment may be

driven by a different implicit use of these strategies.

Overall, these results suggest that bilinguals and monolinguals

recruit largely similar brain areas to perform non-linguistic task-

switching. However, there are relevant differences associated with

bilingualism. It appears that bilinguals engage to a greater extent

than monolinguals the brain areas associated with language

control, in switching tasks where language is not involved. This

suggests that there is some cross-talk between the brain areas

housing language control and those involved in the general-

purpose cognitive control system [36]. This is likely to happen as a

result of bilinguals’ very early experience in managing and

controlling two languages. Furthermore, the fact that these brain

differences are observed even in the absence of behavioural

differences between the two groups suggests that the functional

brain dynamics associated with bilingualism do not necessarily

lead to more efficient behavioural performance. In other words,

we herein describe how bilinguals and monolinguals attain

comparable performance levels in a low-monitoring demand task,

even though they recruit the same brain areas to a different extent.

In fact, we may even argue that the brain control exerted by

monolinguals in the present task is even more efficient than for

bilinguals. Future studies should determine if this functional

reorganization depends on factors such as age of acquisition or the

amount of previous experience in language switching [29].

Supporting Information

Figure S1 Brain activations for all participants in the
comparison between switch and repeat trials (one-
sample t-test at p,0.05, FWE cluster-corrected).

(TIF)

Figure S2 Brain activations for bilinguals compared
with monolinguals in the comparison between switch
and repeat trials (two-sample t-test at p,0.005 uncor-
rected).

(TIF)
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