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Models with heterogeneous interacting agents explain macro phenomena through
interactions at the micro level. We propose genetic algorithms as a model for individual
expectations to explain aggregate market phenomena. The model explains all stylized
facts observed in aggregate price fluctuations and individual forecasting behaviour in
recent learning-to-forecast laboratory experiments with human subjects (Hommes et al.
2007), simultaneously and across different treatments.
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1. INTRODUCTION

An important feature of models with heterogeneous, interacting agents is that they
can explain macro phenomena through simple interactions at the micro level [e.g.,
Kirman (1993, 2006), Lux (1995)]. Agent-based models have been particularly
successful in explaining the main stylized facts of financial markets, such as fat
tails and clustered volatility in asset returns [Arthur et al. (1997), Lux and Marchesi
(1999), and Hommes (2002), among others]. Duffy (2006) presents an overview
of how recent agent-based models can explain individual behavior and aggregate
phenomena in macroeconomics. The main purpose of our paper is to explain
aggregate price behavior through interactions of individual learning. In particular,
we provide a simple theory of individual learning through genetic algorithms
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(GAs) explaining all stylized facts of aggregate price fluctuations in the recent
learning-to-forecast laboratory experiments of Hommes et al. (2007).

Laboratory experiments with human subjects have become an important tool
in economic analysis, complementing theoretical, computational, and empirical
work. A recurring observation from experiments is that individuals often do not
behave fully rationally, but tend to use simple heuristics, possibly biased, in mak-
ing decisions under uncertainty [Tversky and Kahneman (1974)]. An extensive
bounded rationality research program is developing [e.g., Sargent (1993)], and
laboratory experiments are particularly suited to identify behavioral rules that in-
dividuals use in economic decision making out of an ocean of potential alternatives
[e.g., Kahneman (2003)].

Individual expectations, their interaction, and the aggregate outcomes they cre-
ate are at the heart of economics. Duffy (2008), for example, argues that laboratory
experiments are important to study the adaptive process by which individuals learn
and may or may not enforce convergence to a rational expectations (RE) outcome
at the macro level. Recently, a number of learning-to-forecast experiments have
been conducted to study individual expectation formation and aggregate outcomes,
e.g., in Marimon and Sunder (1994), Hommes et al. (2005), Sutan and Willinger
(2005), Adam (2007), and Heemeijer et al. (2009); see Hommes (2011) for an
overview. In these experiments, subjects must forecast the price of a good, which
is determined by market clearing with feedback from individual expectations.
Aggregate demand and supply are computerized, e.g., derived from profit and
utility maximization given subjects’ individual forecasts. An advantage of this
experimental setup is that it provides ‘clean data’ on expectations, ceteris paribus.
These experimental data can therefore be used to test various theories of bounded
rationality, individual expectations and learning at the micro level and test how
their interaction matches aggregate behavior.

Hommes et al. (2007) conducted learning-to-forecast experiments in what is
perhaps the simplest setting, the classical cobweb “hog cycle” model describing
a standard commodity market with a production lag. Historically, the cobweb
model has served as a simple framework to develop and test various expectations
hypotheses. Ezekiel (1938) started with naive expectations, Nerlove (1958) ad-
vocated adaptive expectations, Muth’s seminal paper (1961) used the cobweb
framework to introduce RE, and, more recently, Brock and Hommes (1997)
used it to introduce endogenous selection among heterogeneous expectations
rules.1

In their learning-to-forecast experiments, Hommes et al. (2007) considered
three different treatments, a stable, an unstable, and a strongly unstable treatment.
“Stable” here refers to the stability of the classical cobweb model under naive
expectations.2 They observed the following three stylized facts:

(1) the sample mean of realized prices was very close to the RE benchmark in all three
treatments;

(2) the sample variance of realized prices, however, depended on the treatment:
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(a) it was close to the theoretical variance of the RE benchmark in the stable treatment,
whereas

(b) it was significantly higher than the RE benchmark (excess volatility) in the unstable
and strongly unstable treatments;

(3) in all treatments, realized market prices exhibited no significant linear autocorrelation.

These stylized facts were quite robust over a series of experiments, but they ap-
peared hard to explain by standard learning mechanisms offered by the theoretical
literature. Although many adaptive learning rules lead to eventual convergence
to RE and some other learning rules may generate unstable dynamics and excess
volatility, homogeneous expectations models are unable to explain the full set
of stylized facts simultaneously [Hommes (2009)], suggesting that heterogeneity
of forecasting rules plays a key role in explaining observed aggregate behavior.
Hommes (2009) considers some simple examples with two different forecasting
rules (e.g., fundamentalists versus naive expectations) and evolutionary competi-
tion between them. Although the results in these simple two-type heterogeneous
expectations examples are improved compared to the homogeneous case, they are
not capable of explaining all stylized facts simultaneously.

In this paper we propose a simple model for micro behavior in order to explain
the observed experimental results at the macro level. We model individual learning
through GAs.3 As it turns out, GA experiments with a small population of agents
match all stylized facts simultaneously across different treatments within a market
setting that exactly corresponds to that of the laboratory experiments. Although it
is certainly hard to imagine GAs as an accurate description of human learning in
the literal sense, we argue that they may share key properties of the adaptations
of human subjects when exposed to a new situation that they cannot penetrate
theoretically.

We also investigate the degree of heterogeneity in individual forecasting be-
havior. Heterogeneity in forecasting future asset prices is supported by evidence
from stock market survey data, e.g., Shiller (2000) and Vissing-Jorgensen (2003),
and inflation expectations survey data, e.g., Mankiw et al. (2003) and Branch
(2004). Moreover, in these survey data heterogeneity shows substantial variation
through time. Consistent with the findings in the laboratory experiments in our
GA learning simulations, heterogeneity decreases over time and disappears in the
stable treatment, but heterogeneity persists in the (strongly) unstable treatment.

Using the GAs for individual learning, our paper makes another contribution that
goes beyond the limitations of laboratory experiments. Laboratory experiments are
costly, because subjects must be paid according to their performance, and typically
experimental markets are small because of capacity limitations. After fitting our
GA model to individual learning, we can easily investigate price behavior in
alternative, more realistic market scenarios through numerical simulations. In
particular, we investigate the occurrence of excess volatility when the number
of subjects in the market becomes large and/or when the number of rules per
individual becomes large. We also investigate how excess volatility depends on a
continuum of parameters such as the ratio of marginal supply and demand.
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The paper is organized as follows. Section 2 recalls the learning-to-forecast
experiments, whereas Section 3 recalls some basic facts of GA learning. Sec-
tions 4 and 5 compare the stylized facts of the GA simulations with the laboratory
experiments, and Section 6 presents simulations of GA learning in more realistic
market scenarios. Finally, Section 7 concludes.

2. THE FORECASTING EXPERIMENT

Hommes et al. (2007) report on a set of cobweb experiments with K = 6 partic-
ipants per session. The participants were asked to predict the next period’s price
with very limited information on the structural characteristics of the market. The
realized price pt in the experiments was determined by the (unknown) market
equilibrium between demand and supply,

D(pt) = 1
K

K∑

i=1
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pe

i,t

)
, (1)
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whereas demand was formalized via a simple linear schedule,

D(pt) = a − dpt + ηt , (3)

with ηt a small stochastic shock drawn from a Normal distribution. Both demand
and supply can be derived from profit and utility maximization, and are thus
consistent with rational behavior. The resulting equilibrium price is obtained as

pt =
a − 1

K
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)

d
+ εt , (4)

where εt = ηt/d. Given the parameters a, d, and λ, the aggregate realized price pt

depends on individual price expectations as well as the realization of the stochastic
shocks.

Participants were only informed about the basic principles of the cobweb-
type market. They were advisors to producers, whose only job was to accurately
forecast the price of the good for 50 subsequent periods. Payoffs were defined as
a quadratic function of squared forecasting errors, truncated at 0:4

E = Max
{

1300 − 260
(
pe

i,t − p∗
t

)2
, 0

}
. (5)

Participants were informed that the price would be determined by market clearing
and that it would have to be within the range [0, 10]. Furthermore, they knew
that there was (negative) feedback from individual price forecasts to realized
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market price in the sense that if their forecast increased, the supply would increase
and consequently the market price would decrease. Subjects, however, did not
know how large these feedback effects would be, as they had no knowledge of
the underlying market equilibrium equations. One could say that subjects had
qualitative information about the market, but no quantitative details.

Participants thus solely had to rely on time series observations and their own
behavior vis-à-vis their predictions. Because of the nonlinear aggregation of
expectations, the superimposed noise, and the ignorance of agents concerning
the structural form and parameters, conscious coordination to some kind of RE
equilibrium would be extremely demanding if not impossible. This setting is close
to the informational assumptions of various theoretical models in the literature on
learning and bounded rationality [e.g., Sargent (1993) and Evans and Honkapohja
(2001)] so that the experimental subjects’ behavior could be contrasted with
various learning rules.

Following the classification of cobweb scenarios under naive expectations,
Hommes et al. (2007) distinguished three treatments. Although the parameters
of the demand function and the parameters of the noise component remained
unchanged across all treatments at a = 2.3, d = 0.25, and εt = ηt/d ∼ N(0, 0.5),
the slope parameter of the supply function was varied over a relatively wide range.
Treatment 1 had λ = 0.22, which, under naive expectations, would guarantee
convergence to the homogeneous RE equilibrium (stable case); treatment 2 had
a marginally unstable supply parameter λ = 0.5 (unstable case); and treatment
3 had a strongly unstable supply parameter λ = 2 (strongly unstable case). Both
the unstable and the strongly unstable treatment lead to a 2-cycle under naive
expectations. In all treatments in Hommes et al. (2007), the number of subjects
was K = 6, but van de Velden (2001) also ran the same experiments in the strongly
unstable treatment with K = 12 subjects.

Under RE, all individuals would predict pe
t = p∗; that is, they would predict

the price at which demand and supply intersected. Given that all individuals have
RE, realized prices will be given by

pt = p∗ + εt . (6)

Given the limited market information, one cannot expect that all individuals have
RE at the outset, but one can hope that in such a simple, stationary environment
individuals would learn to have RE. The stylized facts of these cobweb experi-
ments have already been summarized in the Introduction. We briefly recall them
here:

(1) the sample mean of realized prices is close to the RE benchmark p∗ in all three
treatments;

(2) the sample variance of realized prices depends on the treatment: it is close to the
RE benchmark in the stable treatment, but significantly higher in the unstable and
strongly unstable treatments;

(3) realized market prices do not exhibit significant linear autocorrelations.



378 CARS HOMMES AND THOMAS LUX

Item (3) indicates that even in the unstable and strongly unstable cases, agents
did not leave any linear predictability unexploited. Apparently, the interaction of
agents’ individual forecasting rules washes out linear predictability in aggregate
price behavior. Although this points to a certain efficiency of their dispersed effects
to predict market prices, market prices did fluctuate “excessively” in the unstable
and strongly unstable treatments. In these cases, price fluctuations exceeded those
warranted by the exogenous noise component by more than one order of mag-
nitude, so that participants’ attempts at learning about the market’s behavior did
apparently intensify price fluctuations. Although these results were quite robust
over a series of experiments, they appeared hard to explain by standard learning
mechanisms offered by the theoretical literature.

Our goal here is to model individual learning via GAs, so that the interaction of
these rules produces the stylized facts observed in the experiments simultaneously
and across treatments.

3. LEARNING THROUGH GENETIC ALGORITHMS

GAs were introduced in the 1970s as a stochastic learning algorithm [Holland
(1975)]. To solve complex optimization problems with multiple maxima or minima
and possible noncontinuities, this approach mimics evolutionary operations in
nature. One typically starts out with a randomly initialized population of candidate
solutions. These initial blind trials are typically encoded as chromosomes (strings)
using a binary alphabet.5 After evaluation of the fitness of the members of the
initial population (in terms of the objective function), one applies the genetic
operations of reproduction, crossover, and mutation. Economic applications have
mostly added the election operator [Arifovic (1996)] as an additional step in the
loop of genetic operations between successive generations of individuals. In the
following we provide details of these operators and their implementation in the
present setting:

(1) Reproduction: In the transition from one generation to the next, the first step consists
in sampling copies of strings from the old generation depending on their fitness. In
conformity with the payoff function used in the laboratory experiments, fitness was
defined as a negative quadratic function of forecast errors with truncation at zero:

fi(t) = Max{1300 − 260
(
pe

i,t − p∗
t

)2
, 0}. (7)

The most common reproduction operator is reproduction depending on relative fit-
ness; i.e., copies are sampled from the old population with probabilities fi/

∑
j fj ,

biasing the population of new agents toward strategies with higher fitness. Other
algorithms in the literature are rank-dependent reproduction or tournament selection,
in which one repeatedly draws n1 individuals from the pool with replacement and
accepts the n2 < n1 with the highest fitness from the subsample until the new gen-
eration is complete. Throughout the present study we use fitness-based probabilities
to mimic the incentives of the human subjects as closely as possible. To be concrete,
we select new individuals with probabilities equal to the relative fitness of a strategy
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until the population is complete. Thus, a small difference in fitness would only
lead to a similarly small evolutionary advantage of a strategy, whereas rank-based
reproduction would be insensitive to the size of fitness differentials.6

(2) Crossover: When the pool of members of a new generation is complete, genetic
material is exchanged between them in order to find new (possibly better) candidate
solutions by recombination of the old ones. The simplest version is random selection
of a pair of parent strings, determining a cut-off value within the string and sweeping
part of the genetic material of the parents when creating their off-spring. We follow
this approach and take the genetic material of each of both offspring from the left
(right)-hand side of their “father” and the right (left)-hand side of their “mother.”
This operation takes place with a probability pcross, whereas with 1 −pcross the parent
strings are transferred unchanged into the new generation. We note that both more
involved crossover schemes, as well as versions with more than two parents, can be
found in the literature as well.7

(3) Mutation: This means that any position (bit) within a chromosome might be flipped
into another value (from “0” to “1” or vice versa in the binary alphabet). This happens
with a probability pmut once the reproduction and crossover operations are finished.

(4) Election: In most economic applications, the usual range of genetic operators has
been extended by the election algorithm. This compares new chromosomes that have
emerged from crossover and mutation with their parents and only admits them to the
population if their virtual fitness (measured with respect to the environment in which
their parents had to compete) is at least as high as their parents’ fitness. This operator
serves to prevent agents from adopting clearly inferior strategies. Most new strategies
that emerge in a genetic process are far off the mark, and conscious agents would
not voluntarily adopt these new strategies if their trial performance ranked them far
below the previous ones.

In many applications of GAs, the qualitative outcome is largely independent
of the particular version of an operator that one adopts [cf. Lux and Schornstein
(2005) for a detailed comparison of various setups within a learning context]. One
may even skip one or the other of the operators (e.g., crossover or election) without
changing the overall qualitative results. In our simulations, as in various previous
economic applications, the results appear to be quite robust under variation of GA
parameters and implementations of operators. Unfortunately, one has to rely ex-
clusively on simulations, because theoretical results for GAs within an interactive
context seem to be essentially out of reach. In our setting with artificially intelligent
agents, we tried to reproduce the design of the experiments as closely as possible.
This applies not only to the parameterization of demand and supply functions and
the choice of a fitness function identical to the payoff function in the laboratory
experiments, but also to the number of agents. Hence we report here experiments
conducted with K = 6 agents using GAs to evolve forecasting strategies.

Economic applications of GAs as a learning device have mostly applied them
in the sense of “social learning”: the number of agents in these papers equals the
number of chromosomes and each agent’s chromosome type determines his or
her strategic behavior in the market place [e.g., Arifovic (1996); Dawid (1999);
Arifovic and Gencay (2000); Lux and Schornstein (2005)]. When the genetic
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operations are applied to this pool of trader-chromosomes, information is effec-
tively shared and incorporated into the entire new generation via the evolutionary
dynamics. This design is certainly at odds with the setup of the experimental
market, in which subjects are separated from each other and are not allowed
to actively exchange information. We therefore assumed that each agent in our
computer experiment had his or her own pool of strategies or forecasting rules,
which underwent genetic evolution independent of the rules of other agents [cf.
LeBaron et al. (1999), for a similar approach].8 In our experiments reported here,
we endowed each agent with M = 10 different chromosomes encoding pairs (αi ,
βi) of the first-order autoregressive forecasting rule detailed here. The active rule
of each agent, i.e., the rule on which the actual forecast was based, was determined
by random draws with probabilities equal to the relative fitness obtained in the
last round (which is a monotonic function of the proximity of the forecast to the
realized price; cf. equation (7)).

GAs require a functional specification of the forecasting rule, whose fitness-
maximizing parameter values would then be searched for via the evolutionary
algorithm.9 The simplest specification of a rule would be a constant-price forecast.
A slightly more complex version would use a constant together with a first-order
autoregressive component:

pe
i,t+1 = αi + βi(pt − αi). (8)

This first-order autoregressive (AR1) rule seems a natural forecasting scheme, as
agents could simply implement it via a linear autoregression using the sample
average as their estimate of αi and the first-order sample autocorrelation as the
estimate of βi . Moreover, the AR1 forecasting rule (8) has a simple behavioral in-
terpretation, with αi representing an anchor or observed average price level around
which the market price fluctuates, and βi representing the observed persistence or
anti-persistence of price fluctuations.10

As discussed by Hommes (2009), a representative agent model where all agents
employ the same fixed rule, e.g., the rule (8), or where all agents adopt the same
adaptive learning scheme, e.g., sample autocorrelation or least-squares learning,
as a uniform learning mechanism for the whole population cannot explain all
stylized facts of the experiments simultaneously. A homogenous adaptive learning
rule either always enforces convergence to RE (i.e., does not explain the second
observed stylized fact, the excess volatility in the strongly unstable case) or, in
cases where the adaptive learning rule leads to excess volatility, it generates anti-
persistent price behavior with significantly negative first-order autocorrelation,
violating the third stylized fact in the laboratory experiments. In our GA model,
we apply the same functional scheme in a heterogenous agent framework with
genetically evolved sets of parameters αi, βi that could differ across individuals.
The key question then is whether the interaction of individual forecasting rules (8)
can explain all stylized facts observed in aggregate price behavior simultaneously.
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In our simulations the two parameters αi and βi are encoded in one string
of length l = 40, the first and last 20 bits representing the parameters αi and βi ,
respectively (the number of bits is quite arbitrary and only needs to be large enough
for a sufficiently fine-grained structure of the resulting real-valued strategies). αi

is restricted to the interval [0,10] just as in the instructions to participants in the
laboratory experiments. The interval for βi is more arbitrary and had been set
symmetrically around zero, βi ∈ [−1, 1], allowing quite strong serial correlation
or anti-correlation, up to the point where individual rules would lead to an unstable
dynamics, |βi | = 1. We have also tried wider intervals such as [−2, 2] for the au-
toregressive coefficients. Results were qualitatively similar, but not quantitatively
as close to the laboratory experiment as the ones to be reported here. The transition
from the binary-coded evolutionary process to the real-valued forecasts requires
computation of

αi,t = 10
20∑

j=1

a
j
i,t

2j−1

220 − 1
, βi,t = −1 + 2

40∑

j=21

a
j
i,t

2j−21

220 − 1
, (9)

with a
j
i,t ∈ {0, 1} the bits at position j (j = 1, . . . , 40) of chromosome i at time

t .11

It is well known that short-run GA simulations may be sensitive to the initial-
ization of the GAs. Therefore, in our (short-run) simulations we have chosen an
initialization in line with individual forecasts in the first and the second period of
the experiment, as will be discussed in more detail.

4. EXPERIMENTS WITH GENETIC ALGORITHMS

In this section we report the results from GA simulations. Unless reported oth-
erwise, each of the six agents will be endowed with M = 10 chromosomes and
the crossover probability pcross = 0.6 (but different values yield similar results).
Genetic learning would converge to the RE equilibrium if uniformly across the
population all βi,t tended to zero and the αi,t converged to the RE price p∗. Because
the experiments run over a limited number of rounds, an appropriate alignment
of our GA simulation with the lab settings is required. Note that in order to start
the evaluation of the fitness of agents’ strategies, we need two realizations of the
market price: the first one serves as the anchor value for the AC strategies in
equation (8) and the subsequent realization serves to evaluate the quality of the
AC forecast using equation (7). As a consequence, evolutionary strategies could
be evaluated for the first time at t = 3. To align the GAs to the lab experiments,
we therefore choose forecasts and prices from the experiments for periods 1 and 2,
whereas the GA population of each agent is initialized randomly.12 In this way, the
“initial conditions” of the GAs are set equal to those of the lab experiments and our
artificial agents initially are subject to the same incentives as the human subjects.
As it turns out, this alignment typically guarantees greater similarity than, say, a
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FIGURE 1. Snapshots from simulations of GA learning: realized prices (solid) and RE
benchmarks (broken lines) for all three treatments (stable, unstable, and strongly unstable)
and three different values of the mutation probability σmut.

randomized choice of forecasts at t = 1 and t = 2 (although qualitative results
are still much the same under different initialization schemes). Obtaining closer
proximity by accurate alignment should be seen as an encouraging finding: It is
worth emphasizing that this is not a fine tuning of our algorithm but rather an
attempt to match the experimental scenario as closely as possible.

In our simulations, consistent with the laboratory experiments, we find that
the market price fluctuates around the RE benchmark with a sample mean very
close to the RE benchmark, but that the level of volatility depends strongly on the
treatment. In the stable case, the sample variance is close to its RE benchmark,
but it increases significantly beyond the RE benchmark if we proceed to the
“unstable” and “strongly unstable” scenarios. Figure 1 shows snapshots from
longer simulation runs and Table 1 summarizes some key statistics, for all three
treatments, averaged over 1,000 simulations of 50 periods each. The sample mean
of individual forecasts (Mean(pe)) was obtained by averaging the individual fore-
casts over all subjects (K = 6) and all experiments (J = 6) for each treatment.
The sample variance of individual forecasts [Var(pe)] was computed as follows.
Let p̂

j
t,k be the price forecast for time period t , by subject k, in experiment j ; then

the mean forecast for period t in experiment j is µ
j
t = 1

K

∑
k p̂

j
t,k , with K = 6
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TABLE 1. Sample means and sample variances of individual
expectations and realized market prices

Mean(pe) Mean(p) Var(pe) Var(p)

Stable case (K = 6)
RE 5.57 5.57 0.042 0.25
Experiments 5.56 5.64 0.087 0.36
pmut = 0.01 5.576 5.565 0.100 0.326
pmut = 0.025 5.572 5.569 0.095 0.320
pmut = 0.05 5.571 5.568 0.096 0.319

Unstable case (K = 6)
RE 5.73 5.73 0.042 0.25
Experiments 5.67 5.85 0.101 0.63
pmut = 0.01 5.645 5.817 0.169 0.647
pmut = 0.025 5.662 5.791 0.155 0.618
pmut = 0.05 5.675 5.773 0.151 0.611

Strongly unstable case (K = 6)
RE 5.91 5.91 0.042 0.25
Experiments 5.73 5.93 0.429 2.62
pmut = 0.01 5.434 6.200 0.769 2.161
pmut = 0.025 5.587 6.027 0.625 2.241
pmut = 0.05 5.653 5.914 0.614 2.472

Strongly unstable case (K = 12)
RE 5.91 5.91 0.021 0.25
Experiments 5.781 5.937 0.204 1.783
pmut = 0.01 5.515 6.183 0.500 1.571
pmut = 0.025 5.637 6.031 0.401 1.576
pmut = 0.05 5.695 5.931 0.368 1.643

Notes: All parameters have been chosen exactly as in Hommes et al. (2007), i.e., there are
K = 6 GA agents whose task is to forecast the next period’s price. Crossover probability
is 0.6 and the election operator is applied. The first and second moments are computed
from 1,000 runs of 50 periods each (i.e., using 50,000 observations). The last five rows
of the table correspond to the experiments with K = 12 in van de Velden (2001) and
simulations with K = 12 GA agents.

in the experiments. The sample variance of this mean forecast over all rounds
(T = 50) of experiment j is given by

Varj (pe) = 1
T − 1

∑

t

(
µ

j
t − 1

T

∑
µ

j
t

)2

. (10)

The sample average of individual forecasts can then be obtained by averaging over
all experiments (J = 6) or over all simulations (J = 1,000), respectively, within
each treatment:13

Var(pe) = 1
J

∑

j

Varj (pe). (11)
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FIGURE 2. Autocorrelations of realized prices under GA learning: the process shows
only slight negative correlations over one or two lags (consistent with the laboratory
experiments). The plots show the means and 95% confidence intervals from 1,000 GA
simulations, each extending over 50 periods.

In a similar vein, the variance of realized prices, Var(p), has been computed
according to (11), averaging over J = 1,000 simulations. Table 1 shows the
statistics for the GA simulations, the laboratory experiments, and the RE bench-
mark.14 The table shows that the GA simulations are surprisingly close to the labo-
ratory experiments across all treatments. Besides the three treatments of the labo-
ratory experiments, we also distinguish between different settings for the mutation
probability, pmut = 0.01, 0.025, and 0.05, as this appears to be the more inter-
esting aspect of the GA design. As can be seen, price fluctuations also increase
ceteris paribus with higher mutation probability because of the higher rate of new
forecasting rules entering the population. As in other applications of GAs [cf. Lux
and Schornstein (2005)], varying other parameters as well as choosing different
specifications of the operators appears to cause no major changes in the overall
outcome.

Figure 2 shows the autocorrelations of prices for the nine scenarios under inves-
tigation. All autocorrelations are small, with the first one or two lags exhibiting
small negative values, in nice agreement with the laboratory findings [cf. the
autocorrelation plots of realized prices in the experiments, Hommes et al. (2007,
Figure 5, pp. 21–22)]. The slight increase of the autocorrelation at the first few lags
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FIGURE 3. Snapshots of the development of average AR1 parameters αi and βi , together
with their RE benchmarks αi = p∗, βi = 0 (broken lines), under GA learning in the
“strongly unstable” treatment.

for a higher mutation probability is simply due to the mechanics of a population
with a high rate of change, as the random elements invoke a mean reversion
tendency toward the average of the population.

Figure 3 shows that even in the strongly unstable scenario, the population mean
values of the AR1 parameters αi and βi are close to their benchmark values under
RE: αi fluctuates in the vicinity of the RE equilibrium price (p∗ = 5.91) whereas
the average βi is close to zero. The same applies in the other cases. However,
fluctuations around the RE benchmark are stronger for the unstable and strongly
unstable cases, which leads to stronger fluctuations and excess volatility of market
prices, consistent with the laboratory experiments.

Overall, the GA experiments with the same parameter setting and incentive
structure as in the laboratory experiments appear to closely mimic the set of
stylized facts discussed in the Introduction. We note that the qualitative outcome
was quite robust under various modifications of the GA learning mechanism. For
example, we get similar results from dispensing with the election operator. The
main difference in this setting is that fluctuations in the “unstable” and “strongly
unstable” treatment become more pronounced and that we see somewhat more
significant negative autocorrelation in the first few lags: as mentioned previously,
this feature can be explained easily by the mean-reverting nature of the dynamics,
with more random mutations admitted to the population. On economic grounds
we might, however, argue that agents should not allow obviously unsuccessful
strategies to enter their set of forecast functions (which is why the election operator
had been introduced in economic settings), so that we would not place too much
weight on these results.
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Interestingly, adopting a simpler concept of learning, which dispenses with the
autocorrelation parameter βi and restricts forecast rules to a constant αi , also leads
to results that share some of the stylized facts. Although this scenario leads to sim-
ilar outcomes for volatility in the three treatments, it is also characterized by anti-
persistent price behavior and more significant zigzag patterns of autocorrelations
in the strongly unstable case. The simplest GA with only constant rules, therefore,
seems to inherit at least part of the oscillating dynamics of the benchmark case of
homogenous naive or adaptive expectations. A more intelligent type of forecast
rules, such as our AR1 rules, taking into account both the average price level and
first-order autocorrelation, is needed to remove linear forecastability. Stated dif-
ferently, individual learning of the mean alone is not consistent with the laboratory
experiments, but some more sophisticated form of individual learning taking into
account whether prices are persistent or anti-persistent is needed to remove auto-
correlations in aggregate prices. The interaction of individual rules, which learn
both the price level and the first-order autocorrelation, leads to the correct aggregate
price level and washes out all autocorrelations in aggregate price fluctuations.

Why do the GA experiments reproduce the experimental results so well? Our
conjecture is that GAs and human subjects share the tendency to “learn by ex-
perience” and to shift their strategies toward a specification that would have
performed well in the recent past. This is actually the consequence of the built-in
genetic operators of GAs. Although this leads to an optimal solution for static
problems (at least, if the evolutionary process is allowed to run long enough), with
the changing objective functions of an interactive environment it could also lead
to repetitive patterns [cf. Lux and Schornstein (2005)]. In the absence of structural
knowledge about the underlying mechanisms of a decision problem, humans can
also still determine what actions or decisions would have performed well in the
past. Quite clearly, the laboratory experiments with their unknown forms of the
underlying market functions and added stochasticity could not have been fully
penetrated by the experimental subjects. However, they could easily focus on
the past success and failure of their forecasts and learn to maintain successful
strategies. Exploiting the mean together with short-run autocorrelations seems to
be one of the simplest strategies that could be pursued in a rule-of-thumb manner
without computing the sample autocorrelation exactly (which would normally not
be possible given the time pressure of most experimental settings). These rough
computations lead to stochastic fluctuations that are similar to the fluctuations
caused by the evolutionary dynamics of the GA. The latter feature distinguishes
our heterogenous learning scenario from homogenous learning models [Hommes
(2009)], which seem unable to explain the full set of stylized facts. Heterogeneity
in individual forecasting thus seems to be a key element in explaining all stylized
facts at the aggregate level simultaneously.

In summary, our conjecture is that the orientation at successful performance
in the past within a reasonable class of forecasting heuristics together with the
heterogeneity of the GA design, explains its proximity to human behaviour in
the lab. We may note that such conformity has also been found in a number of
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FIGURE 4. Top panel: Six individual forecasts in one group of the laboratory experiments in
the stable (left), unstable (middle) and strongly unstable (right) treatments. Bottom panel:
Time development of the average degree of heterogeneity, i.e., the standard deviations of
individual forecasts (six individuals), averaged over all (six) groups in the stable treatment
(left), the unstable treatment (middle), and the strongly unstable treatment (right).

other cases, e.g., in an experimental foreign exchange market [Arifovic (1996)]
and in public good experiments [Casari (2004)]. It is also related to the work
of Erev and Roth (1999) on reinforcement learning (RL) to explain experiments
with repeated games.15 Anufriev and Hommes (2009, in press) have recently used
another form of RL to explain learning-to-forecast experiments in a different,
asset-pricing framework.

5. THE DEGREE OF HETEROGENEITY

In the stable treatment of the laboratory experiments, it seems that prices converge
to RE and agents learn to coordinate on the RE forecast. In contrast, in the
(strongly) unstable treatment prices do not converge, but exhibit excess volatility.
Does forecast heterogeneity disappear in the stable treatment and does persistent
forecast heterogeneity explain the observed excess volatility in the (strongly) un-
stable treatment? Whether or not heterogeneity persists is important for economic
theory. If beliefs converge to a common rule, long-run aggregate price behavior can
be described by a representative agent model. If, on the other hand, beliefs do not
converge, heterogeneous-expectations models become relevant as a description of
short run as well as long run aggregate market behavior. See Hommes (2006) for
an extensive discussion of heterogeneous-expectations models.

Figure 4 (top panel) shows some typical examples of time series of the six
individual forecasts in one group for each of the three treatments. These examples
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already suggest that heterogeneity quickly disappears in the stable treatment,
whereas heterogeneity is highly persistent in the strongly unstable treatment.
Figure 4 (bottom panel) also shows the average degree of heterogeneity, that is,
the time development of the standard deviations of individual forecasts (K = 6
individuals per group) averaged over all groups in each treatment. More precisely,
let p̂

j
t,k be the price forecast for time period t , by subject k, in experiment j ; then

the mean forecast for period t in experiment j is µ
j
t = 1

K

∑
k p̂

j
t,k . The standard

deviation of the mean forecast at date t , over K = 6 subjects of experiment j ,
is

σ
j
t =

√
1

K − 1

∑

k

(
p̂

j
t,k − µ

j
t

)2
. (12)

The average degree of heterogeneity at date t over all experiments (J = 6) within
a treatment is then defined as the average standard deviation:

σt (p
e) = 1

J

∑

j

σ
j
t . (13)

The time development of the average degree of heterogeneity in Figure 4
(bottom panel) exhibits two important features: (1) for all treatments fore-
cast heterogeneity decreases over time, and (2) forecast heterogeneity is per-
sistent in the unstable treatment and highly persistent in the strongly unstable
treatment.

Figure 5 shows the time development of the average degree of heterogeneity
in GA learning simulations in the first 50 periods, averaged over 1000 runs,
in the stable, the unstable, and the strongly unstable treatments. This figure
shows that GA learning simulations reproduce the patterns of the average de-
gree of heterogeneity in the laboratory experiments quite nicely: a quick de-
crease of forecasting heterogeneity in the stable treatment and a much slower
decrease in the (strongly) unstable treatment. In fact, both in the experiments
and in the GA learning simulations, the unstable and strongly unstable treatments
exhibit a nonmonotonic development of forecasting heterogeneity with an in-
crease in heterogeneity in the early stage of the experiment/simulations because
of overshooting and a decrease in heterogeneity after periods 5–7 because of
learning.

6. BEYOND THE LABORATORY SETTING

In contrast to experiments with human subjects, additional experiments with
GAs can be conducted at essentially zero cost. In this section we expand
our previous experiments in various directions not covered by the laboratory
experiments. Among others, we investigate long-run price behavior, and how
price behavior depends on parameter values, in particular the parameter tun-
ing the nonlinearity of the supply curve, and we investigate the consequences
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FIGURE 5. Time development of the average degree of heterogeneity, i.e., the standard
deviations of the six individual forecasts in GA learning simulations (dark line) averaged
over 1,000 runs, in the stable (left), the unstable (middle), and the strongly unstable treatment
(right) for different values of the mutation probability pmut. The time series of the average
degree of heterogeneity in the corresponding experiments (light line) as well as the RE
benchmark (dotted line) are also shown.

of an increase of the number of agents and forecasting strategies in the GA
populations.

6.1. Long-Run Behavior

Table 2 summarizes the long-run statistics for all three treatments and three dif-
ferent mutation probabilities, pmut = 0.01, 0.025, and 0.05. As can be seen, in
the stable case the long-run average degree of heterogeneity, Var(pe), is small and
price volatility is quite close to the RE benchmark 0.25. In the unstable treatment
price volatility is slightly greater than the RE variance, whereas in the strongly
unstable treatment the long-run price variance is significantly higher than the
RE benchmark because of a higher average degree of heterogeneity. The strongly
unstable treatment thus exhibits persistent heterogeneity and long-run excess price
volatility. Moreover, both the average degree of heterogeneity and the excess price
volatility increase with the mutation probability. This seems intuitively clear,
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TABLE 2. Long-run simulations

Mean(pe) Mean(p) Var(pe) Var(p)

Stable case (K = 6)
RE — 5.57 — 0.25
Experiments 5.56 5.64 0.087 0.36
pmut = 0.01 5.580 5.567 0.012 0.257
pmut = 0.025 5.585 5.564 0.018 0.262
pmut = 0.05 5.589 5.557 0.030 0.274

Unstable case (K = 6)
RE — 5.73 — 0.25
Experiments 5.67 5.85 0.101 0.63
pmut = 0.01 5.728 5.731 0.009 0.283
pmut = 0.025 5.734 5.724 0.016 0.306
pmut = 0.05 5.737 5.708 0.028 0.343

Strongly unstable case (K = 6)
RE — 5.91 — 0.25
Experiments 5.73 5.93 0.429 2.62
pmut = 0.01 5.889 5.869 0.012 0.475
pmut = 0.025 5.881 5.826 0.050 0.824
pmut = 0.05 5.848 5.768 0.173 1.516

Notes: Long-run simulations with K = 6 GA agents and different mutation probabili-
ties pmut. The first and second moments for market prices, Mean(pe) and Var(pe), are
computed from simulations over 50,000 time steps after the first 10,000 observations are
discarded as a transient sample. Mean(pe) is the mean over the whole simulation of the
average forecast across the 6 “agents” in each period. The average degree of heterogeneity,
Var(pe), has been computed according to equation 10, averaged over T = 50,000 periods
after a transient of 10,000 periods.

because a higher mutation probability leads to a higher rate of new forecasting
rules entering the population.

6.2. Parameter Sensitivity

In the next set of simulations we explore the transition between the “nice” price
behavior of the “stable” treatment and the excessive price volatility of the unstable
treatments. Recall that the difference between these treatments is the parameter
λ tuning the nonlinearity of the supply curve. We ran the same type of GA
experiments with 800 different values of the slope parameter λ ranging from 0.005
to 4 (with increments of 0.005). Figure 6 reports the mean values and variances of
realized prices over 50,000 rounds, together with their RE benchmark. It turns out
that the variance of realized prices is close to its RE benchmark of 0.25 only for very
small values of λ with an almost perfectly linear increase with λ thereafter.16 In
contrast, the average price stays close to its RE benchmark over the whole range
of our experiments. Although there appears to be a slightly increasing wedge
between the average price and the RE solution for increasing λ, the deviation
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FIGURE 6. Mean prices (bottom panel) and variances (top panel) from GA simulations of
markets with λ ranging from 0.005 to 4. Except for the variation of λ, all parameters are
the same as before. Results are sample moments over simulations of 50,000 rounds (after
a transient period of 10,000 rounds is discarded).

is always very small compared to the difference between the realization of the
second moment and its RE benchmark. We conjecture that this increasing wedge
might be more an artifact of our simulation design than a true indication of (small)
deviations of the mean price from the RE price. Because pRE is slightly higher
than the center of the admissible range [0, 10], larger fluctuations would generate
some asymmetries in realized prices with a slight dominance of lower rather than
higher prices. The slight deviation from RE in the first moment (which remains
smaller than 2% in all scenarios) would then be a numerical consequence of the
large deviation in the second moment from its RE benchmark.

6.3. Simulations with Many Agents

Another set of Monte Carlo runs investigates what happens if we increase the pool
of participants in our forecasting experiments. Although laboratory settings are
typically restricted to small numbers of agents for technical reasons, the availability
of subjects, and the costs of running large experiments, we can easily extend our
previous GA setting to much larger numbers of artificial agents. Because we have
normalized supply by dividing through the number of firms in equation (1), the
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TABLE 3. Short-run simulations for increasing number of subjects

Mean(pe) Mean(p) Var(pe) Var(p)

Stable case
K = 6 5.558 5.581 0.100 0.325
K = 12 5.557 5.584 0.075 0.308
K = 30 5.559 5.584 0.061 0.302
K = 100 5.558 5.583 0.054 0.292
K = 150 5.557 5.580 0.053 0.293
K = 600 5.558 5.583 0.051 0.293

Unstable case
K = 6 5.665 5.784 0.159 0.629
K = 12 5.679 5.774 0.085 0.474
K = 30 5.685 5.766 0.059 0.416
K = 100 5.691 5.764 0.047 0.386
K = 150 5.694 5.763 0.044 0.376
K = 600 5.694 5.764 0.043 0.373

Strongly unstable case
K = 6 5.605 6.011 0.625 2.297
K = 12 5.623 6.046 0.445 1.716
K = 30 5.643 6.055 0.361 1.429
K = 100 5.660 6.046 0.314 1.264
K = 150 5.659 6.047 0.313 1.260
K = 600 5.663 6.044 0.301 1.235

Notes: Effects of the variation of the number of agents, K . Other parameters are M = 10 and pmut = 0.025.
Increasing K leads to convergence toward the RE benchmark in the stable and unstable treatments, but
excess volatility persists in the strongly unstable treatment. The first and second moments are computed
from 1,000 runs with 50 periods each (i.e., using 50,000 observations).

RE benchmarks for first and second moments remain the same for all population
sizes K .

Table 3 compares the results for population numbers K ∈ {6, 12, 30, 100, 150,

600}. Initialization of the GA simulation is done based on the first- and second-
period individual forecasts in the experiments with K = 6 subjects in Hommes
et al. (2007) as well as the experiments with K = 12 subjects in the strongly un-
stable treatment in van de Velden (2001). For the first period, all experiments (with
6 or 12 subjects and with stable, unstable, and strongly unstable treatments) have
been pooled and the resulting distribution has been fitted with a Normal N (5.271,
1.393). Second-period forecasts in the experiments differ between treatments, but
are very similar for the 6- and 12-subject cases in the strongly unstable treat-
ment. We therefore pooled the forecasts of period 2 over all experiments of each
treatment and fitted Normal distributions N (5.279, 1.698) for the stable treatment
(only cases with 6 subjects), N (5.952, 1.266) for the unstable treatment (only cases
with 6 subjects), and N (6.885, 1.225) for the strongly unstable treatment (pooled
over all experiments with 6 or 12 subjects). The experiments with K = 6 to
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K = 600 agents have been initialized by random draws from the pertinent Normal
distribution, i.e., the same overall settings in period 1 but the treatment-dependent
ones for period 2.

Apparently, larger numbers of agents have a tendency to dampen fluctuations.
Although there is not much difference in the experiments with stable slope pa-
rameter λ = 0.22, the effect is more pronounced in the unstable and strongly
unstable scenarios. The stable case stays close to the RE benchmark for all sizes
of the population, with the variance of price fluctuations close to the variance of
the random term. In the other cases, the excess fluctuations are clearly reduced
when the size of the population increases. In the “unstable” case (λ = 0.5), price
volatility decreases from Var(p) = 0.629 for K = 6 to Var(p) = 0.373 for
K = 600. In the strongly unstable case (λ = 2) price volatility is reduced by
about 40% for K = 600, but is still significantly higher than the RE benchmark
(Var(p) = 1.235). In the strongly unstable treatment in the short run, i.e., for the
first 50 periods, excess volatility thus persists when the number of agents increases
to K = 600.

Another striking feature of these GA simulations is that an increase of the
number of agents beyond N = 30 has little effect upon aggregate behavior.
In all treatments, price volatility and the average degree of heterogeneity drop
significantly when the number of agents is increased from N = 6 to N = 30,
but hardly drop when the number of agents is further increased from N = 30
to N = 600. This suggests that it may be possible to study macro phenomena
in relatively small laboratory experiments with about 30 subjects, a size that is
manageable in most experimental laboratories. See also the discussion of the
relevance of laboratory experiments in macro in Duffy (2008).

Table 4 gives an overview of the same statistics in long-run simulations, based
on 50,000 periods, after a transient of 10,000 periods. Both the stable and the
unstable treatments converge closely to the RE benchmark, with price volatility
of Var(p) = 0.256 and Var(p) = 0.271, respectively, for K = 600. Also, the
strongly unstable treatment approaches the RE benchmark relatively closely in the
long run, although price volatility Var(p) = 0.399 for K = 30 and Var(p) = 0.346
for K = 600, respectively, is still more than 35% higher than the RE benchmark.

The laboratory experiments provide a simple and stylized framework that is
stationary for 50 periods. In real markets with fluctuating prices, one would perhaps
expect larger exogenous shocks to occur occasionally. From this perspective, what
we have called the short run; i.e., the first 50 periods, could be more relevant to
real markets than the long run, where the market is stationary for a very long
time.

The decrease of volatility with increasing population is probably easy to explain:
adding more agents evokes a law of large numbers. Because our GA agents are
effectively independent stochastic processes, their individual fluctuations should
be averaged out by aggregating over more and more individuals.17 This is what
seems to happen in our experiments. Note, in particular, the strong decrease of
the variance of average price expectations in all settings. Of course, if price
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TABLE 4. Long-run simulations for increasing number of subjects

Mean(pe) Mean(p) Var(pe) Var(p)

Stable case
K = 6 5.587 5.564 0.019 0.265
K = 12 5.582 5.566 0.014 0.262
K = 30 5.582 5.566 0.011 0.257
K = 100 5.581 5.562 0.009 0.255
K = 150 5.582 5.564 0.010 0.256
K = 600 5.583 5.565 0.010 0.256

Unstable case
K = 6 5.733 5.721 0.016 0.307
K = 12 5.732 5.722 0.010 0.285
K = 30 5.734 5.722 0.007 0.277
K = 100 5.732 5.723 0.006 0.273
K = 150 5.733 5.720 0.006 0.270
K = 600 5.732 5.721 0.006 0.271

Strongly unstable case
K = 6 5.882 5.834 0.047 0.797
K = 12 5.892 5.868 0.014 0.513
K = 30 5.895 5.876 0.006 0.399
K = 100 5.896 5.883 0.004 0.354
K = 150 5.896 5.882 0.004 0.353
K = 600 5.896 5.882 0.003 0.346

Notes: Long-run statistics when the number of agents, K , increases. Other parameters are M = 10 and
pmut = 0.025. Increasing K leads to convergence toward the RE benchmark in all three treatments. Even in
the strongly unstable treatment long-run market volatility decreases with K , to a value fairly close to the RE
benchmark of 0.25. The first and second moments are computed using 50,000 observations, after the first
10,000 observations are disregarded as transient.

expectations converged to the RE benchmark, realized prices would only fluctuate
because of the exogenous random noise component.

6.4. Simulations with Many Rules

Finally, Table 5 reports results of GA-learning simulations where the number of
agents has again been fixed to K = 6, whereas the number of rules, M , available
to each agent increases from M = 4 to M = 60.

Note that in a GA setting, the rules for an individual need not necessarily
be different from each other. In fact, convergence of the GA would imply that
the population of rules for an agent becomes fully homogeneous. Increasing M

thus does not necessarily mean that an individual has more different rules in each
period, but it only increases the potential sophistication of the set of rules. We have
again performed a comprehensive series of experiments varying the rules available
to each individual from a low of M = 4 to a maximum of M = 60. Over the short
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TABLE 5. Long-run simulations for increasing number of rules per agent

Mean(pe) Mean(p) Var(pe) Var(p)

Stable case (K = 6)
M = 4 5.576 5.569 0.034 0.277
M = 6 5.585 5.563 0.025 0.269
M = 10 5.579 5.567 0.020 0.266
M = 20 5.586 5.564 0.016 0.261
M = 30 5.582 5.568 0.015 0.261
M = 40 5.579 5.568 0.015 0.264
M = 50 5.576 5.574 0.015 0.260
M = 60 5.575 5.571 0.015 0.266

Unstable case (K = 6)
M = 4 5.731 5.714 0.024 0.327
M = 6 5.735 5.713 0.018 0.312
M = 10 5.731 5.725 0.016 0.305
M = 20 5.732 5.724 0.014 0.299
M = 30 5.732 5.724 0.013 0.295
M = 40 5.735 5.720 0.014 0.302
M = 50 5.736 5.719 0.013 0.296
M = 60 5.737 5.718 0.013 0.293

Strongly unstable case (K = 6)
M = 4 5.850 5.815 0.063 0.867
M = 6 5.870 5.821 0.046 0.783
M = 10 5.881 5.833 0.047 0.798
M = 20 5.874 5.834 0.083 0.962
M = 30 5.871 5.831 0.110 1.070
M = 40 5.862 5.827 0.144 1.194
M = 50 5.863 5.820 0.172 1.299
M = 60 5.850 5.817 0.213 1.433

Notes: Effects of the variation of the number of rules, M , per GA agent. Other parameters are K = 6 and
pmut = 0.025. Increasing M seems to leave the results practically unchanged in the stable and unstable
cases, but increases the volatility of both predicted prices and realized market prices in the strongly unstable
scenario. The moments are extracted from simulations over 50,000 periods after a transient of 10,000 steps.

run, results are completely insensitive to the number of rules. Monte Carlo results
along the lines of Table 1 yield practically no differences in first and second
moments over this wide range of variation of M (detailed results are available
upon request). However, notable differences show up if we look at the long-
run results, replicating our forecasting exercise with the GA agents over 50,000
periods, cf. Table 5. As it turns out, at least in the strongly unstable treatment,
this higher sophistication leads to an increase of the volatility of realized (as well
as expected) prices. With M = 60 rules per agent, price volatility has almost
doubled from Var(p) = 0.867 to Var(p) = 1.433. In contrast, variation of the
number of rules M seems to leave the results of the stable and unstable treatments
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almost unchanged. We conjecture that the larger number of chromosomes allows
agents to react more easily to price fluctuations around the RE benchmark. With
a high λ, under naive expectations, a small deviation from pRE would lead to a
stepwise increase or decrease of the price for some time. Autocorrelation detection
by some agents could reinforce this tendency, as they would already forestall the
direction of the subsequent price changes. With a large number of chromosomes,
chances to evolve such momentarily advantageous rules are increasing. If such
rules were admitted to the population, they would enhance fluctuations. It might,
therefore, be a mixture of “naive” adaptation of some agents (modifications of αi)
and trend chasing of others (adapting αi and βi) that generates the higher volatility
in this case. Unfortunately, a systematic analysis of the interplay between the
number of agents and their behavior in experimental settings is beyond the limit
of available laboratory resources. Given the autonomous adaptation of human
subjects to different environments, it is not clear whether their learning behavior
would remain unchanged in groups of different sizes. Our simulations suggest
that, at least in the strongly unstable treatment, an increase of the number of
learning rules per agent may be a potentially destabilizing force counterbalancing
the stabilizing force of an increase in the number of agents in the market. It
therefore seems possible that changes of behavior might compensate for the law-
of-large-numbers tendency in larger groups.

7. CONCLUDING REMARKS

GA learning of simple forecasting strategies provides an accurate description of
individual expectations at the micro level and, at the same time, the interaction
of these individual rules matches observed aggregate price behavior at the macro
level surprisingly well. In the simple framework of the classical cobweb model,
the interaction of individual GA learning rules is able to reproduce all stylized
facts in aggregate prices—correct sample mean, excess volatility depending on
demand/supply characteristics, and no linear predictability—observed in recent
learning to forecast laboratory experiments with human subjects. In contrast to
homogeneous learning rules, the interaction of heterogeneous GA learning rules
explains all stylized facts simultaneously and across various treatments. It should
be emphasized that these results are robust and not sensitive to the GA specifica-
tion or the two GA parameters (the mutation probability pmut and the crossover
probability pcross). The GAs attempt to learn two parameters—the sample mean
and the first-order autocorrelation coefficient—in a simple AR(1) forecasting rule.
Evolutionary selection within a simple class of individual forecasting heuristics,
which take into account both the observed sample mean and the first-order sample
autocorrelation, thus explains aggregate price behavior surprisingly well.

We have also looked at the average degree of heterogeneity of individual fore-
casting behavior. In all treatments, heterogeneity decreases over time. In the sta-
ble treatment, heterogeneity quickly disappears and the price settles down to
its RE benchmark. In the (strongly) unstable treatment, heterogeneity decreases
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somewhat because of learning, but heterogeneity persists, even in the long run.
These results suggest that economic theory needs to go beyond representative
agent models with homogeneous expectations. The matching of our GA simula-
tion results with laboratory experiments is consistent with a theory of endogenous
selection of heterogeneous expectations, for example, as in Evans and Ramey
(1992), in Brock and Hommes (1997) and, more recently, in Reis (2006).

Fitting a GA learning model to the laboratory experiments allows one to go
beyond experiments and simulate alternative and more realistic market environ-
ments. Through GA simulations, we have seen that adding more agents to the
market has a stabilizing effect; that is, price volatility decreases as the number
of agents increases. However, in the strongly unstable treatment, excess price
volatility persists when the number of agents becomes large. On the other hand,
increasing the potential sophistication by allowing more strategies per individual
has a destabilizing effect and makes price behavior more volatile. Additional lab-
oratory experiments could reveal more information about the number of strategies
subjects are using, in order to explore which of these two forces will dominate.

We have also seen that an increase in the number of agents beyond thirty has
relatively little impact on aggregate price behavior. This suggests that laboratory
experiments with thirty interacting subjects may reveal useful information about
macro phenomena. Such larger macro experiments, as well as applying GA’s to
other laboratory experiments, in particular, other learning-to-forecast experiments,
are a challenge for future work and may shed more light on formation of individ-
ual expectations, their interaction, and aggregate outcomes in alternative market
settings.

NOTES

1. The cobweb model has been used in many different applications, ranging from markets for
lawyers [Freeman (1975)], engineers [Freeman (1976)], and public school teachers [Zarkin (1985)] to
those for oil [Krugman (2001)], cattle [Rosen et al. (1994)], and beef [Chavas (2000)].

2. The stability condition states that the ratio between marginal supply and marginal demand at
steady state must be smaller than 1 in absolute value [Ezekiel (1938)].

3. Arifovic (1994) used GA learning to explain the cobweb laboratory experiments of Wellford
(1989), but there are a number of important differences from our approach. Most importantly, subjects
assume the role of producers themselves, whereas the subjects of Hommes et al. (2007) have to forecast
next period’s market price. Besides this major difference in the focus of the experiments, a number
of additional differences exist. For example, Wellford used linear demand and supply curves in the
experimental setup, implying that the market is either stable or explosive (except for a hairline case).
Hommes et al. (2007) use a nonlinear supply curve, so that price dynamics remains bounded whereas
price cycles become a generic possibility. Moreover, Arifovic (1994) only tests for differences in
volatility between the stable and unstable treatments, whereas we match price volatility under GA
learning directly to the experiments. Furthermore, Arifovic (1994), for example, did not look at the
third stylized fact, the absence of linear predictability. Finally, we also study the average degree of
heterogeneity in individual forecasting and how it varies over time.

4. 1300 points corresponded to 0.45 euro, so that maximum earnings were 22.5 euro. Average
earnings ranged from about 10 euro in the strongly unstable to about 19 euro in the stable treatment
[in about 75 minutes; see Hommes et al. (2007, Table 2)].
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5. One could as well encode the population as real-coded chromosomes. However, this alternative
encounters certain technical problems even if the problem at hand is properly defined for real values
[Herrera et al. (1998)].

6. We have also experimented with a modification of the “election” operation that replaces its
built-in rank-based structure by a fitness-proportional choice among parents and offspring. However,
this modification had no remarkable effect on any of our results.

7. Crossover seems of fairly negligible influence, as even for extreme choices, pcross = 0 or
pcross = 1 results are virtually the same as with any intermediate choice. Similar findings are reported
in Lux and Schornstein (2005).

8. Vriend (2000) discusses differences between social learning and individual learning in agent-
based models. He shows that in the context of a cobweb model, social learning converges to a
competitive equilibrium because the Cournot strategy is not stable against deviations, which then
disseminate in the population. In contrast, with individual learning, the firms in the artificial cobweb
model converge to a Cournot equilibrium, as they only compete against other rules of the same
individual and do not interact with those of other firms. Although we agree with Vriend that this
difference might extend beyond the confines of the cobweb market structure, his considerations are
not applicable to our setting. The reason is the difference in incentive structures: profits in Vriend’s
case versus payoffs depending on forecast accuracy in our cases. Even though a spite effect would
be present for firms, this effect does not carry over to the agents, whose task is to predict aggregate
market prices. It is, therefore, separation of the task of forecasting from the production decision that
eliminates the tendency toward Cournot equilibria that was identified for individually learning firms
in Vriend’s (2000) paper. If we conduct our analyses with social learning by forecasters, we still get
convergence to the RE equilibrium in means, but higher volatility and more predictability (in the form
of zigzag patterns). The reasons are that (i) social learning amounts to an overall reduction of the pool
of available rules and (ii) social learning leads to strong correlations of the behavior of agents. If a
rule that was successful at time t is taken over by many agents at time t + 1, this easily generates a
tendendy toward zigzag patterns similar to the case of naive expectations in the textbook version of
the cobweb model.

9. Genetic programs, in contrast, would allow the evolution of arbitrary functional specifications
using a set of basic functional elements [Chen and Wang (2002)]. Because we are able to replicate the
experimental stylized facts already with the simpler concept of GAs, we abstain from using the more
intricate evolutionary dynamics of genetic programs.

10. In similar cobweb-type laboratory experiments, Heemeijer et al. (2009) recently estimated
individual forecasting rules, and many individuals actually used forecasting rules of the simple form
(8).

11. We have also checked the robustness of our results by running the experiments with real-coded
GAs. Although it might appear more plausible to encode an initially real-coded problem (such as
the present one) with real rather than binary “chromosomes,” the latter approach is more popular in
the literature. For real coded GAs the formulation of a sensible crossover operation is particularly
cumbersome [cf. Herrera et al. (1998)]. With two real-valued parents, say (α1,t , β1,t ) and (α2,t , β2,t ),
it seems straightforward to define crossover as random selection from the interval spanned by the two
parents. However, this approach would generate a strong mechanical tendency toward the mean of
the support and would often lead to a degenerate population. To compensate for this tendency, one
would have to extend the interval by a certain factor to the right and left of the parents’ strategic
values in order to give the offspring a chance to escape from this range. Mutation operators for real-
valued GAs typically use random draws from a Normal distribution with small variance to perturb the
values inherited from the parents. Although this leads to close proximity of the strategies of parents
and offspring, it also implies that the influence exercised by the mutation operator is typically much
smaller in real-valued than in binary GAs (where the mutation could be arbitrarily large depending
on what bit was modified). With these features in mind, we have replicated our experiments with a
real-coded GA with extended range for crossover. Again, results are fairly similar to those reported in
the main part of this paper. For initialization, we have used random draws from a Normal distribution
with the mean and standard deviation computed from the initial forecasts of the experiments.
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12. We have also conducted experiments with asymmetric initialization. As it turned out, results
were completely insensitive to the initial distribution up to extreme degrees of asymmetry. E.g., results
from a binary GA remained practically unchanged even if we fixed the first 16 (out of 20) digits for
αi and βi to zero or one. For the first 16 digits equal to zero that means that we drew αi and βi

from the reduced ranges [0, 0.00014] and [−1, −0.99997], respectively. Apparently, the evolutionary
forces exerted by the first two realizations (which are taken from the experiments) are strong enough to
overcome completely the influence of such a very biased distribution of initial forecast parameters. A
bit of an influence of the initial distribution can be seen for even larger numbers of fixed bits. However, it
seems perfectly plausible that evolution would need longer to modify an almost completely degenerate
set of initial conditions.

13. There are other ways of defining the sample mean and sample variance of individual forecasts.
For example, one can pool the forecasts for each period t over all individuals i and all experiments j ,
compute the variance of the pooled forecasts, and then average over all rounds. Alternatively, one can
start out with the variance over the individual forecasts for each experiment j and for each period t and
then average over all experiments and all rounds. The results for these alternative ways of averaging
of individual forecasts are very similar to those reported here. In particular, independent of the details
of the averaging method, the GA learning simulations match the laboratory experiments quite nicely.

14. For the RE benchmark, Var(pe) has been computed as the variance of the average of individual
forecasts drawn randomly from the RE stochastic process p∗ + εt in (6), yielding Var(pe) = σ 2

εt
/K ≈

0.042 for K = 6.
15. We also investigated a RL algorithm with strategy sets similar to those in our GA setting.

Individuals were endowed with AC strategies with parameter space αi ∈ [0, 10] and βi ∈ [−1, 1].
Initial parameters were drawn randomly from a uniform distribution and updated with probabilities
computed via relative fitness (as in the GA experiments), with fitness defined by the payoff function
(5). We distinguished between a myopic RL algorithm, only using the last payoff as a fitness function,
and a full-memory RL scheme that computed fitness as the arithmetic average of all previous payoffs.
Qualitative results of both settings were not too different, however. The basic outcome of these
RL experiments was as follows: (i) Agents never converged to the RE benchmark. In particular, the
variance was always above the RE benchmark, even in the “stable” scenario. Mean values were slightly
further away from RE prices than under GA learning. (ii) In all cases, realized market prices showed
pronounced cyclical patterns, indicating that RL agents were not able to exploit all linear structure.
(iii) Results seemed to be entirely insensitive to the number of strategies (we allowed the strategy set
of agents to vary from M = 50 over 500 up to 5,000). Detailed results are available upon request.

16. A regression of the variance of realized prices on the parameter λ over the second half of our
experiments produced a slope parameter 0.12 and a constant 0.25 with R2 of the regression equal to
0.94. Note that the constant is equal to the variance in RE equilibrium.

17. Although there should always be a quasi-deterministic limit for the dynamics of GA populations,
this need not necessarily lead to convergence towards some kind of steady state. Lux and Schornstein
(2005) provide an example of how adaptive GA agents could converge to perfectly oscillatory dynamics
because of their interactions in a large population.
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