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Abstract

This paper is concerned with apparel sizing system design. One of the most
important issues in the apparel development process is to define a sizing
system that provides a good fit to the majority of the population. A siz-
ing system classifies a specific population into homogeneous subgroups based
on some key body dimensions. Standard sizing systems range linearly from
very small to very large. However, anthropometric measures do not grow
linearly with size, so they can not accommodate all body types. It is impor-
tant to determine each class in the sizing system based on a real prototype
that is as representative as possible of each class. In this paper we propose
a methodology to develop an efficient apparel sizing system based on clus-
tering techniques jointly with OWA operators. Our approach is a natural
extension and improvement of the methodology proposed by McCulloch et
al in 1998 [22],and we apply it to the anthropometric database obtained from
a anthropometric survey of the Spanish female population, performed during
2006.

Keywords: Anthropometric data, Sizing systems, Trimmed k-medoids,
OWA operators.

Email address: mibanez®@mat.uji.es, guillermo.vinue@uv.es,
sandra.alemany@ibv.upv.es, simo@mat.uji.es, epifanio@mat.uji.es,
juan.domingo@uv.es, guillermo.ayala@uv.es (M. V. Ibdiez"), G. Vinué®, S.
Alemany®), A. Simé™ | 1. Epifanio(*), J. Domingo®, G. Ayala(Q))

Preprint submitted to Ezpert Systems with Applications November 4, 2011



1. Introduction

The development of Ready To Wear (RTW) cloth requires an estimation
of body measures of the target population to generate sizing charts, patterns
on a basic size and grading parameters. However, most apparel manufac-
turers create and adjust their own size charts by trial and error using small
customer surveys, mainly models representing the basic size, plus analysis of
sales and returned merchandising reports [5]. The growing relocation of the
pattern and production activities and the poor level of application of sizing
standards also produce that one of the main clothing complaints is the lack
of fitting.

There are several local and international standards proposing a regulation
of the sizing system based on key anthropometric measures, but the lack of
common rules and criteria is one of the drawbacks for their implementation.
In this context, ’vanity sizing’ grows as a common practice among cloth-
ing companies. With this strategy, companies often adjust the measurement
specifications for each size based on a sale strategy designed to make con-
sumers, especially women, feel better about fitting into smaller sizes [8, 1],
and therefore prompting them to buy more. This system contributes to
difficult customers to find the correct size in different companies. In fact,
nowadays, the correct size selection is the main obstacle to large scale online
garment sales because it is difficult to find the fit garment from the general
size information.

A sizing system classifies a specific population into homogeneous sub-
groups based on some key body dimensions [6]. The major dilemma is to
decide into how many size groups should the population be divided, in or-
der to optimize benefits and user satisfaction. Most of the standard sizing
charts propose sizes based on intervals over just one anthropometric dimen-
sion. Current standards consider the low correlation between some key di-
mensions and use bivariate distributions to define a sizing chart and cross
tabulation to select the sizes covering the highest percentage of population.
For lower limb garments European standards [7] propose the combination of
three anthropometric dimensions (waist girth, hip girth and stature) lead-
ing to a significant increase of the number of sizes which are low profitable
for the companies since there are very far from the current offer. More-
over, correlations between anthropometric measures show a great variability
on body proportion. It is not possible to cover these different body mor-
phologies with these kind of models. That is why, multivariate approaches



have been proposed to develop sizing systems. Principal components are of-
ten used to reduce the dimension of our anthropometric data set, and the
two first principal components are used to generate bivariate distributions
[4, 13, 20, 12, 14, 27]. As an alternative to bivariate distributions, cluster-
ing techniques using partitioning methods, like k-means algorithms, group
the population into morphologies using the complete set of anthropometric
variables as input [6, 32, 23]). A large scale implementation of this statisti-
cal approach using data mining and decision trees was proposed in [15] and
2]. Different alternative approaches, based on optimization algorithms, were
first proposed by Tryfos [30], who used integer programming to partition the
body dimension space into a discrete set of sizes by choosing the size system
to optimize the sales of garment. Later on, McCulloch et al. [22] modified
this approach by focusing the problem on the quality of fit instead on of the
sales. The sizes were determined by means of a nonlinear optimization prob-
lem. The objective function measured the misfit between a person and the
prototype, using a particular dissimilarity measure and removing from the
data set a prefixed proportion of the sample. In this paper, we are going to
follow with this idea. In fact, our paper has been conceived as an extension
of the work of McCulloch et al. [22].

All these multivariate approaches based on optimization algorithms, need
the previous definition of an objective function. These functions basically
measure the misfit between a feature vector from a given person and a model
or prototype by combining the misfit observed for each feature. It is clear that
discrepancies in certain features (or dimensions) are more critical than others.
It is important to get a meaningful combination of these discrepancies. In this
sense, the Analytic Hierarchy Process (AHP) proposed in [26], tries to convert
subjective assessments of relative importance into a set of overall scores or
weights. AHP is one of the more widely applied multi-attribute decision
making methods. Applied to the customized garment design process, Chen
et al. [5] propose ordered weighted averaging operators (OWA) jointly with
fuzzy methods, to model the easy allowance of the 2D patterns. The weights
of the OWA operators can be used to adjust the compromise between the
style of garments and the general comfort sensation of wearers.

Fitting RTW clothes is a problem for both customer and apparel indus-
try [8]. For this reason during last years both national administrations and
industrial groups of the clothing sector have been fostering national anthro-
pometric surveys in different countries: USA, UK, France, Australia, Spain
and Germany among others. These studies show that there is a high percent-



age of population with difficulties to find proper fit cloth. Anthropometric
studies carried out up to date show high percentages of population with fit-
ting problems. Studies carried out in UK [29] and Germany [6], show a 60%
and 50% respectively of customers with difficulty to find proper clothes. In
the same way, an anthropometric study performed in USA [9] to update the
sizing ASTM standards also concluded that a 54% of the population was not
satisfied with the fitting of the ready to wear (RTW) cloth [3]. Addition-
ally, from the technological point of view, new 3D body scanning techniques
constitute a step forward in the way of conducting and analyzing anthropo-
metric data and contribute to promote new anthropometric surveys. As a
result, broad anthropometric databases are available and constitute valuable
information to improve garment fitting adapted to the body shape of the
population starting from the definition of an optimized sizing system.

In this way, a national 3D anthropometric survey of the female popula-
tion was conducted in Spain in 2006 by the Spanish Ministry of Health. The
aim of this survey was to generate anthropometric data from the female pop-
ulation addressed to the clothing industry. In this study, a sample of 10.415
Spanish females from 12 to 70 years old randomly selected was measured
using a 3D body scanner and 95 anthropometric measures were obtained
(Anthropometric survey).

In this paper, we propose a methodology that combines some of these
approaches in order to develop a more efficient apparel sizing system that
can increase accommodation of the population. We apply it to the anthropo-
metric survey data of the Spanish female population (Anthropometric sur-
vey). Our approach is close to that of McCulloch et al. [22]. However,
there are two main differences. First, when looking for the k£ prototypes,
we use a trimmed k-medoid clustering method i.e. a trimmed version of the
Partitioning Around Medoids (PAM) algorithm, instead of the continuous
optimization problem proposed by McCulloch et al. [22]. So, our aim is to
look for medoids i.e. for typical persons within the sample, which means
that our final prototypes will be real persons of the data set. Additionally,
we take into account that an apparel sizing system is intended to cover only
what we could call standard population, leaving out those individuals who
might be considered outliers respect to a set of measurements. For this rea-
son we propose the use of a trimmed version of PAM procedure. Second, the
dissimilarity measure proposed by McCulloch et al. [22], is merely based on
the sum of squared discrepancies over each individual feature. We propose
to modify this dissimilarity measure by taking into account to the user, using
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an OWA operator.

The outline of the paper is as follows. Section 2 proposes the methodology.
The description of our data set is given in Section 3. The application of
our procedure to the anthropometric database of Spanish women is given
in Section 4 . Conclusions and possible further developments conclude the
paper in Section 5 .

2. Methodology

When we talk about an apparel sizing system, our target population is
not the whole population. An apparel sizing system is intended to cover only
that we could call standard population, leaving out those individuals who
might be considered as outliers regarding to a set of measurements.

As it has been stated in the introduction, the methodology that we pro-
pose is based on two basic ideas: the use of a trimmed version of the k-
medoids algorithm and the use of OWA operators to combine the individual
discrepancies proposed by McCulloch et al. [22]. Our aim in this section is
to explain these ideas in a detailed way.

2.1. Trimmed k-medoids

A classical partitioning cluster method is the well-known k-means method.
However, the k-means method is not a robust procedure, and their results
can be influenced by outliers and extreme data, or bridging points between
clusters. Trimmed k-means is one way of increasing robustness of the k-
means which combines the k-means main idea with a impartial trimming
procedure [10] in such a way that a proportion a (between 0 and 1) of ob-
servations are trimmed. Trimmed k-means is analogous to k-means but a
proportion « of observations is discarded by the own procedure where the
trimmed observations are self-determined by the data.

Let x1, ..., x, be n observations of dimension p. Let k be the number of
groups. The k-means method searches for a set of k points, mj, ..., mj, the
centroids, verifying

4 1~ . 2
{m3,...m;} = argminm, ...m, Z inf ||z, —m;||%, (1)

1<5<k
i=1 =I=

and each point ; is assigned to its closest center mj. Given k and the



trimming size «, trimmed k-means searches k points, mj, ..., mj such that

{ml, ...,mk} = argmzny,{m17.,,7mk}m Z H;f sz - ij2: (2>
€Yy ~

T

where Y ranges on subsets of z1, ..., x, containing [n(1 — «)] data points,
and [-]| denotes the integer part of a given value. Each non-trimmed point z;
is assigned to its closest centroid m;. An algorithm for computing trimmed
k — means can be found in [11], and it is available at the R [25] package
tclust [16].

Instead of using trimmed k-means, we will use a modified version, the
trimmed k-medoids, joining the best of the k-medoids and trimmed k-means.
The k-medoids algorithm is based on finding k representative subjects (also
known as medoids [17]) from the data set in such a way that the sum of the
within cluster dissimilarities is minimized, instead of minimizing the squared
distances as in k-means. Methods based on the minimization of sums (or av-
erages) of dissimilarities (the so-called L' methods) are much more robust to
outliers than methods based on sums of squares, such as k-means. Note also
that the centroids from the k-means do not have to be one of the subjects
in the original data set. This has been one of our principal motivation for
selecting the trimmed k-medoid method, because medoids are representative
subjects in the clusters, very useful in our application. Another reason was
the possibility of applying the k-medoid to data described only by dissimi-
larities. The medoids always exist, even when the data can by related only
by a collection of dissimilarities. We just have to compute the dissimilar-
ities between our subjects, there is no need to calculate cluster centers or
centroids.

Trimmed k-medoids is analogous to k-medoids but a proportion « of
observations is discarded by the own procedure (the trimmed observations
are self-determined by the data as before). Furthermore, trimmed k-medoids
are analogous to trimmed k-means. Let d(z;, z;) be the dissimilarity between
subjects ¢ and j. For a given k and the trimming proportion «, trimmed k-

medoids searches k subjects of the data, z] , ..., ] such that
{LL‘il, ey Ly = ATGMATYY xq,.xiy m Z 1%131;@ d(fI)i, xij), (3)
x;
where Y ranges on subsets of z1, ..., x, containing [n(1 — «)] data points,

and [-] denotes the integer part of a given value. Each non-trimmed point
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x; is assigned to its closest medoid z7. The algorithm of [11] can be easily
adapted for computing trimmed k-medoids. The detailed algorithm is given
inl.

Note that the medoid of a group can be computed with function pam
(with k=1 for each group) from the R package cluster [21].

In short, we can describe the algorithm as

1. Select k starting points that will serve as seed medoids.
2. Assume that z;,, ..., x;, are the k medoids obtained in the previous

1teration:

k
(a) Assign each observation to its nearest medoid:

di = min d(z;, z4,), i=1,..,n,
j=1,..k

and keep the set H having the [n(1—«)] observations with lowest
d/S.

(b) Split H into H = {Hy, ..., H,} where the points in H; are those
closer to x;; than to any of the other medoids.

(c) The medoid z;; for the next iteration will be the medoid of obser-
vations belonging to group Hj.

3. Repeat the step 2 a few times. After these iterations, compute the final
evaluation function.

This algorithm is repeated a few times and the best solution is preserved, see
1.
Next section comments the dissimilarity used.

2.2. Dissimilarity measure

As was said before, the dissimilarity used to quantify the misfit between
an individual and the prototype is a key ingredient to obtain an efficient
sizing system. Let us start by introducing some notation. Each individual
in the data set is represented by a feature vector of size p of their body
measurements, r = (z1,...,2,), and d;(z,y) denotes the dissimilarity in the



Algorithm 1 An algorithm for trimmed k-medoids

Set k, number of groups; ns, (for instance, ns = 10) and nr (for instance, nr = 100).
Select k starting points that will serve as seed medoids (e.g., draw at random k subjects
from the whole dataset).
for r=1— nr do
for s=1— ns do
Assume that z;,, ..., z;, are the k medoids obtained in the previous iteration.
Assign each observation to its nearest medoid:

di:jf}?_r_l_kD(Ii’Iii)’ i=1,...,n,
and keep the set H having the [n(1 — a)] observations with lowest d;’s.
Split H into H = {Hy, ..., H} where the points in H; are those closer to z;; than
to any of the other medoids.
The medoid z;; for the next iteration will be the medoid of observations belonging
to group H;.
Compute

1 k
o ey 2 2, Do) N

if s ==1 then
P = Fy.
Set M the set of medoids associated to Fj.
else
if F; > F, then
F, = Fy.
Set M the set of medoids associated to Fjy.
end if
end if
end for
if r ==1 then
Fy, = F.
Set M the set of medoids associated to F.
else
if F, > F} then
F, = F.
Set M the set of medoids associated to FY.
end if
end if
end for

return M and F5.




1th feature between individuals x and y.

slope - a slope + a!

. | - In(xa)

In(ys;) - b} In(ys;) In(ys;) + bl

Figure 1. This plot, based on [22], illustrates the defined dissimilarity and
represents the degree of misfit between the medoids and each individual for
the ith dimension.

We propose to take into account the basic ideas stated in [22] to define
the distance functions. First, they argue that fit is better predicted by pro-
portional rather than absolute differences between individual and prototype
features. Second, that there is an interval where there is no difference between
the values x; and y; probably because the fit is perfect although the values
could be different. Third, that the distance is not symmetric (a garment
wich is too small may not affect fit in the same way as one wich is too large).
In particular, for a given value of | x; — y; |, the distance may be smaller if
x; < y; than if x; > y;. Finally, that dissimilarities in certain dimensions are
more critical to fit than others. As McCulloch et al. [22] state, there are a
wide variety of functional forms which satisfy the above requirements, but
we will continue using the one that they propose, and define:

at(In(y;) — bt — In(x;)), if In(z;) < In(y;) — b

di(z,y) =< 0, if In(y;) — b} < In(x;) < In(y;) + bF
al(In(x;) — b — In(yxy)), if In(x;) > In(y;) + OF

(5)

where a!, b, a" and b" are constants for each dimension. In this specification,
the b; represents the range in which fit is judged to be perfect and the a;



reflects the rate at which fit deteriorates outside this range. This distance
function, illustrated in fig 1, satisfies the criteria before mentioned, and allows
a great deal of flexibility through the choice of parameter values.

Once defined the dissimilarity for each feature, McCulloch et al. [22]
propose to define the global dissimilarity between individuals x and y as a
sum of squared discrepancies over each of the p measurements.

p

d(x,y) = Z (di(xia yz))z (6)

=1

Although it could be more natural to consider

because we would consider the worse fit from the point of view of each fea-
ture. When the distance is defined as in eq (6), the different dissimilari-
ties d;(x;,y;)’s are being aggregated, and in our opinion, a lot of possibil-
ities can be opened by looking at the problem under this point of view.
In particular, an Ordered Weighted Average operator can be used. An
OWA operator of dimension n is a mapping f : R® — R with an associ-
ated weighting vector W = (wy,...,w,) such that 37, w; = 1 and where
flay, ... a,) =377 w;b; where b; is the j-th largest element of the collec-
tion of aggregated objects ay, ..., a,. In our case the values to aggregate are
a; = dz‘(%‘, yz)

Appendix A: Ordered weighted averages, contains a brief introduction to
OWA operators.

3. Our data

A sample of 10.415 Spanish females from 12 to 70 years old randomly
selected from the official Postcode Address File was measured using The
Vitus Smart 3D body scanner from Human Solutions, a non-intrusive laser
system formed by four columns allocating the optic system, which moves from
the head to the feet in ten seconds performing a sweep of the body. From the
3D mesh, 95 anthropometric measures were calculated semi-automatically
combining automatic measures based on geometric characteristic points with
a manual review. Women were asked to wear a standard white garment, a
swimming hut, a top and a short that were designed and scaled in 5 sizes, in
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order to harmonize the measurements. The design of the garment was based
on the standard ISO 20685.

In addition to physical measurements other qualitative measures were
collected such as women satisfaction with their bodies. They were also asked
about their size in the current Spanish sizing system. Because of the lack of
consistency and rigor in the current sizing system in Spain, the answers of
this question were in some cases numerical and in other qualitative: small,
large, etc. and in all the cases were considered as an approximation to the
real size.

Not all of the anthropometric variables are useful for establishing the
sizing system. From these 95 body measurements the five most relevant
features in the garment development were obtained. They were chosen for
different reasons. First, we follow the recommendations of experts. Second,
they are commonly used in the literature about sizing system design. Finally,
they appear in the European Normative to sizing system [7]. These variable
are: Bust circumference, Chest circumference, Neck to ground length, Waist
circumference and Hip circumference. Taking into account the European
normative, we will consider Bust circumference as the principal dimension to
define the size and the other four measures as secondary dimensions. Jointly
to these main features, other additional features will be used to describe each
size.

Finally, a selection of 6013 women was done. Pregnant women; those who
declare to be breast feeding at the time; who have undergone any type of
cosmetic surgery (breast augmentation, liposuction, breast reduction, etc),
and the ones younger of 20 or older than 65 ,were deleted from the data
set for this study. So, our data set contained finally 5 anthropometric body
measurements of 6013 spanish women. The summary statistic of these five
variables can be seen in table 1.

Measurement (cm) Minimum | First Quantile | Median | Mean | Third Quantile | Maximum
Neck to ground length | 116.4 132.9 136.8 137 140.8 161.9
Bust circumference 73 87.4 93.3 95.02 | 100.7 145.7
Chest circumference 45.91 90.78 96.37 97.92 | 103.7 150.30
Waist circumference 58.60 75.6 83.10 84.98 | 92.40 167.6

Hip circumference 72.8 98.3 103.3 104.9 | 109.9 170.8

Table 1. Summary statistics for the five variables considered.
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4. Results

The data set was firstly segmented in twelve subsets (classes), taking
into account bust circumference values according to the sizes defined in the
European Normative to sizing system [7].The trimmed k-medoids algorithm
(section 2.1), was applied to each segment with k& = 3 clusters, and a total
of 36 sizes were obtained.

The number of random initializations was 600, with 7 steps per initial-
ization. The proportion of trimmed sample was prefixed to a = 0.01 per
segment. Regarding to the constants that define the metric (eq. 5), their
values were chosen taking into account:

a As in [22], a person’s feature being larger than the prototype one was
penalized three times more than that being smaller (b} = 30! and a! =
3al).

b The dissimilarity consistent with a perfect fit (b}) was chosen within each
segment to cover all the range of values of each measurement in such
a way that all the individuals would be perfectly fitted in exactly one

. . . 3-Range({Tj, 4, jpi .
size, i.e. for each segment j, b = g ({421 ! }), where k = 3 is the
number of clusters.

¢ The values of a' were chosen, as in [22], to reflect our judgment about the
relative rate at which increasing discrepancies in these measurements
deteriorate fit, they are given in table 2 .

a; | a}
Chest circumference 7.5 1225
Bust circumference 8.3 125
Neck to ground length | 9.5 | 28.5
Waist circumference 6.7 | 20
Hip circumference 8.3 | 25

Table 2. Constants that define the distance function in equation 5 .

On the other hand, the value of orness (see Appendix A) was 0.7.
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4.1. Visualizing of dissimilarities

We have summarized (and represented in fig. 2 ) the dissimilarities of
our data in two dimensions by means of Classical Multidimensional Scaling.
Multidimensional scaling takes a set of dissimilarities and returns a set of
points such that the Euclidean distances between the points are approxi-
mately equal to their dissimilarities. We have used the function cmdscale
from R ([25]). As can be seen in fig. 2, there are no separated groups, but a
distribution of points covering some area of the feature space. Note that this
figure summarizes a lot of information in only two dimension, and that the
dissimilarity proposed in Section 2.2 is not a metric, therefore this graphic
should be taken with caution, as an exploratory tool.

10

Dim 2

Dim 1

Figure 2. Two dimensional representation of woman dissimilarities (as ex-
plained in Section 2.2 ) by classical multidimensional scaling.
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Woman Code | Chest | Neck to ground | Waist | Hip | Bust | Hip - Waist | Bust - Waist
CANDEO021 | 88.6283 132.5 79.1 |99.1 | 85.3 20 6.2
SEVI132 88.6745 141.6 71.5 | 98.4 | 82.7 26.9 11.2
LLEIDO74 | 87.5182 135.1 71.1 | 96.1 | 84.5 20 13.4

Table 3. Medoids measurements for bust size [82,86].

Woman Code | Chest | Neck to ground | Waist | Hip | Bust | Hip - Waist | Bust - Waist
SILLE034 | 96.9951 134.4 83.5 | 102.5 | 94.7 19 11.2
JAENO75 101.129 139.3 90.8 | 108.5 | 97.8 17.7 7

CANDEO068 | 99.0432 139.4 85.3 | 104.5 | 95.7 19.2 10.4

Table 4. Medoids measurements for bust size [94, 98].

4.2. Ezxperimental results

In order to illustrate our results, figs. 3 and 4 show the scatterplots of
bust circumference against neck to ground (fig 3) and bust circumference
against waist (fig 4), jointly with the three medoids obtained for each class.
The distribution of medoids in both figures show different patterns for each
bust range. As an example, lets consider the medoids obtained for women
belonging to two particular bust circumference intervals: [82,86] and [94, 98].
Identification codes and main measurements of these medoids are detailed
in tables 3 and 4. As can be seen, medoids in range [94,98[ point out the
need of only two sizes for length (medoids JAENO75 and CANDEO068, have
similar neck to ground measures) while medoids in range [82,86] show a
greater dispersion along this variable, pointing out the adequacy of three
sizes with different lengths for this bust range. The same medoids, show an
opposite pattern regarding the waist measurements. For bust range [82, 86],
medoids SEVI132 and LLEID074, have similar waist circumference while the
three medoids of range [94, 98] show quite different values for this variable.
So, dissimilarity in range [94, 98| is more affected by waist, while in range
[82,86] the variability of neck to ground predominates.

14



Medoids
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© Medoids for bust & [74,78[
A Medoids for bust e [78,82[
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|

70 80 90 100 110 120 130 140 150

bust

Figure 3. Bust vs neck to ground for each one of medoids. [82,86] medoids
are represented with a green cross, while [94,98] medoids are represented with
a brown facing down triangle.
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Medoids
bust vs waist

—| o Medoids for bust e [74,78[
A Medoids for bust e [78,82]
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bust

Figure 4. Bust vs waist for each one of medoids. [82,86] medoids are
represented with a green cross, while [94,98] medoids are represented with a
brown facing down triangle.

Figs. 5 and 6 show the body shape of the medoids obtained for the
class defined by bust size [82,86]. As can also be seen in table 3, medoids
SEVI132 and LLEIDO074 have similar bust-waist proportion and similar waist
circumference, while their respective heights differ. In the same way, figs. 7
and 8 show the body shape of the three medoids for the bust sizes [94, 98|.
JAENO75 and CANDEO68 have similar neck to ground measurement (table
4), but show a different shape in the belly area affecting the measure of the
waist and therefore giving different proportions between bust and waist.
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Figure 5.  Front body shape of medoids for size [82,86] (left to right,
CANDEO021, SEVI132 and LLEID074).

Figure 6. Lateral body shape of medoids for size [82,86[ (left to right,
CANDEO021, SEVI132 and LLEID074).
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Figure 7. Front body shape of medoids for size [94,98 (left to right,
SILLEO034, JAEN0O75 and CANDEOQGS).

Figure 8.  Lateral body shape of medoids for size [94,98 (left to right,
SILLE034, JAEN(075 and CANDEO06S).

Finally, we would like to check the goodness of our methodology and the
improvement in the garment fit, if the 36 sizes defined by our medoids were
considered instead of the defined by the European Normative to sizing system
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Bust 76 80 84 88 92 96 100 104 116 122 128 134

Waist 60 64 68 72 76 80 84 88 94 100 106 112

Hip 84 88 92 96 100 104 108 112 117 122 127 132

Chest 79.50 83.38 87.26 91.14 95.02 98.90 102.78 106.66 112.46 118.30 124.12 129.94

Table 5. Measurement to define the sizes on the European Normative to
sizing system.

[7]. This normative, establish 12 sizes according with the combinations of
the bust, waist and hip measurements detailed in table 5, and does not
fix chest neither height standard measurements. Anyway, given the high
correlation existent between the bust and chest measurements in the women
of our data set, we can approximate the chest measures through a linear
regression analysis, taking the bust measures as independent variable. So,
from the bust measurements detailed in the Normative, the chest measures
can be approximated. The obtained values are also shown in table 5. On the
other hand, as the measurement form neck to ground shows no correlation
with the other variables, we considered as neck to ground measures for the
standard sizing system, the values 132, 136 and 140 cm because those are
the most repeated measurements, and in our opinion are the measurements
which best cover our data set (se fig 9). So our aim at this point is to compare
the adequacy of the sizing system defined from the medoids obtained in our
work, with that defined by 36 prototypes with the measurements detailed in
table 5 and three different neck to ground measurements per combination.
Figs 9 and 10 show two different scatterplots jointly with our medoids and
the sizes obtained following the considerations of the European Normative.

19



Medoids
bust vs neck to ground

o © Medoids for bust & [74,78[
~ 4 Medoids for bust c [78,82
-~ + Medoids for bust  [82,86]
x Medoids for bust  [86,90[
v Medoids for bust  [94,98]
* Medoids for bust & [102,107(
o
© - @ Medoids for bust e [113,119]
-
o
D -
-
2
3 ®
o
=
o i
g X 0 AV * 2
Lo -~
x a 3
[53
5] o & +K L %
c O
o 3 ®
» -
-~ A
o
-
-
o
- -
-
T T T T T T T T T
70 80 90 100 110 120 130 140 150

bust

Figure 9. Bust vs Neck to ground, jointly with our medoids and the defined
by the European Normative.

20



Medoids
bust vs waist
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Figure 10. Bust vs waist, jointly with our medoids and the defined by the

European Normative.

Finally, fig. 11 shows the cumulative distribution functions for the dissim-
ilarities between all the women and the medoids obtained with our method
and for the dissimilarities between all the women and the standard medoids
defined by the European Normative to sizing system. In both cases, distances
and dissimilarities have been computed by using the dissimilarity function

stated in section

2.2

90 100 110 120 130 140

bust

21

150




Comparison between sizing methods
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Figure 11. Cumulative distribution function for the dissimilarities between
women and computed medoids and for the dissimilarities between women
and standard medoids.

As we can seen in fig. 11, there is a percentage of population (rounding the
60%), which gets a good fit in both sizing systems. With our sizing system,
this percentage increases until the 80%. Women measurements are closer to
those of the medoids computed with our method, because the corresponding
cumulative distribution function increases faster than the cumulative distri-
bution function for the standard system.

This type of plot can also be used to identify the expected range of the
dissimilarities, that is to say, the values between the 10 and 90th percentiles.
In this case, the range for the dissimilarities between women and computed
medoids is [0,0.23], while the range for the dissimilarities between women
and standard medoids is [0.27,3.16], so dissimilarities with respect to the
standard medoids are greater than the dissimilarities with respect to the
new computed medoids.

22



For all of these reasons, this plot serves to confirm that our method build
more reasonable sizes in which the women are more accommodated.
7?7 plots the first and second principal components of data.

5. Conclusions

There are two approaches in the literature to define a sizing system: tra-
ditional stepwise sizing and optimization methods. Traditional methodolo-
gies are based on segmentation of bivariant distributions of two indepen-
dent variables, typically stature and waist for lower garment and stature
and chest/bust for upper garment. The benefit of the traditional method
is the easy way to communicate the size to consumers. On the contrary,
variability of other principal anthropometric dimensions is not considered
and, in consequence, a large part of the population finds not to be properly
accommodated. Optimization methods try to find the minimum number of
sizes that can cover the maximum percentage of population. However, the
resulting sizing distribution based on multiple body dimensions presents sev-
eral difficulties for a consumers find their proper size. Our study combines
both approaches: the pre-segmentation based on bust, which is the primary
dimension for upper garment fitting and patterning, provides a first easy in-
put to choose the size, while the resulting morphotypes for each bust size
optimize sizing using the main anthropometric dissimilarities.

A methodology to develop an apparel size system has been introduced and
applied to a a recently obtained Anthropometric data base of Spanish women.
The core of our approach is to segment the data set using a principal dimen-
sion (Bust circumference) and apply a trimmed-k-medoids algorithm with
the number of sizes fixed within each class. We fix, too, a re-accommodating
rate and define the discrepancy between individuals and prototypes using
OWA operators. This approach has several advantages over currently used
systems. Among those stated in [22], our makes simultaneously the selection
of individual dis-commodities, the derivation of prototypes, and the assign-
ment of individuals to size classes but additionally, the prototypes are more
realistic because they correspond with real women of the data set. On the
other hand, the use of OWA operators has resulted in a more realistic dis-
similarity measure between individuals and prototypes.
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Appendix A: Ordered weighted averages

These operators were introduced in [31]. An OWA operator of dimension
n is a mapping f : R® — R with an associated weighting vector W =
(w1, ..., wy) such that 377 w; = 1 and where f(ay,...,a,) =) 7 w;b;
where b; is the j-th largest element of the collection of aggregated objects
ai,...,a,. The particular cases shown in table 6 can better illustrate the
idea underlying OWA operators.

Table 6. Illustrating examples of OWA aggregation values.

W ‘ f(al,...,an)

(1,0,...,0) max; a;
(0,0,...,1) min; a;
101 1 1 7

5 E”E) ZZ]:Z(IZ

As OWA operators are bounded by the max and min operators, Yager
[31] introduced a quantity called orness to measure the degree to which the
aggregation is like an or (max) operation:

orness(W) = ni 1 Z(n — i)w;. (8)

We have used a simple procedure to generate the set of weights W =
(w1, ...,wy,). They are obtained as a mixture of the binomial Bi(n — 1,p)
and the discrete uniform probability distributions, that is to say, w; = A -
T+ (1—=A)- %, where 7; is the binomial probability for each i =0,...,n—1,
see [19].

Remarkable advantages of this choice are its flexibility and simplicity: the
weights are easily obtained and are also easy to interpret. In addition, our
practical experiments have shown that it works well for this case.
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