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Abstract  

Tetranychus urticae Koch is a cosmopolitan phytophagous mite considered as the 

most polyphagous species among spider mites. This mite constitutes one of the key 

pests of clementine mandarins in the region of La Plana, where Spanish clementine 

production concentrates. Population genetic studies using molecular markers such as 

microsatellites have been proved to be extremely informative to address questions about 

population structure, phylogeography and host preferences. The aim of this study was to 

develop new microsatellite markers to differentiate T. urticae populations occurring in 

citrus orchards, in both the trees and weeds. Five different microsatellite DNA libraries 

were developed using probes with the motives CT, CTT, GT and CAC following the 

FIASCO protocol. Positive clones, those that included the insert with the microsatellite, 

were detected using the PIMA-PCR technique. On 22 of 32 new microsatellites loci 

combinations of primers were designed and their polymorphism was tested in four 

populations sampled along the eastern coast of Spain, obtaining 11 successful 

amplification. Cross amplification was tested in T. turkestani, T. evansi, T. okinawanus, 

Panonychus citri, Eutetranychus orientalis, E. banksi, Oligonychus perseae and 

Aphlonobia histricina, species belonging to the same Tetranychidae family, and in 

Typhlodromus phialatus, Neoseiulus californicus, N. barkeri, Euseius stipulatus, 

Phytoseiulus persimilis, Amblyseius swirskii, A. cucumeris and A. andersoni belonging 

to the Phytoseiidae family, obtaining 8 successful cross amplifications.   

The final goal of our research was to increase the available molecular tools to gain 

insight into the genetic structure of T. urticae populations of citrus orchards, which 

might help in its management.  
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Introduction 

Tetranychus urticae Koch (Acari: Tetranychidae) is an important pest of citrus in Spain 

(Aucejo-Romero et. al. 2004; Ansaloni et al. 2007; Aguilar-Fenollosa et al. 2011) as 

well as in some citrus growing areas, especially on mandarins under Mediterranean 

climate (Bodenheimer, 1951; Talhouk, 1975; Swirski, 1977; McMurtry, 1985; Vacante, 

1986; Hmimina et al. 1995; Souliotis et al. 1997). This mite constitutes the key pest of 

Clementine mandarins, Citrus clementina Hort. ex Tan., in the region of La Plana, the 

area around the city of Castelló de la Plana (39º 59’N; 00º 02’W), where Spanish 

Clementine production concentrates (around 1.5 106 tons; 60 103 ha). Mite infestations 

in Clementine varieties result in chlorotic spots on leaves, but more importantly, in fruit 

scarring, which decreases its commercial value. Our main goal is to study the genetic 

variation of this important pest in terms of host specialization, adaptation to different 

production systems (organic vs IPM), and phylogenetic relationships. The study of the 

genetic structure of populations of T. urticae in citrus groves appears as a powerful 

approach to estimate gene flow among mites infesting different plants in the 

agroecosystem. Different molecular techniques, such as microsatellite markers, isolated 

in T. urticae and other related mite species (Navajas et al. 1998a, 2000; Nishimura et al. 

2003, Uesugi et al. 2007, Abercrombie et al. 2009 and Hinomoto et al. 2010), and the 

sequence of mitochondrial DNA gene coding for cytochrome oxidase I (COI) have 

already been used in tetranychid mites to study both inter- and intraspecific variation 

among populations (Navajas, 1998; Navajas et al. 1998b, 1999, 2000; Navajas and 

Fenton 2000; Hinomoto and Takafuji 2001; Tixier et al. 2002a,b; Bailly et al. 2004; Xie 

et al. 2006; Ben-David et al. 2007; Carbonelle et al. 2007; Uesugi et al. 2009a,b; Li et 

al. 2009). Microsatellite markers have become one of the most popular genetic markers 

and they have been chosen in ecological studies because of their high polymorphism.  

The enormous adaptability of T. urticae to different host plants (Gould, 1979; Fry, 

1989, 1992; Agrawal, 2000), and the fact that in the citrus agrosystem, this mite can be 

found feeding on many plant species (Aucejo et al. 2003; Aguilar-Fenollosa et al. 

2011), have stirred our interest in determining the existence of host races of this species. 

Using the microsatellites developed by Navajas et al. (2002) in T. urticae populations of 

citrus orchards from Eastern Spain, we have found a low level of polymorphism in these 

populations. Only phylogeographic differences have been established in our populations 

(Hurtado et al. 2008a), with two T. urticae metapopulations: inland and coastal 
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populations. The massive use of acaricides in commercial citrus orchards may explain 

these results, which would result in genetic bottlenecks in founder populations and 

reduced genetic variability in the populations. The development of new microsatellites 

for T. urticae will increase the number of tools for genetic differentiation of mite 

populations, which may help in refining the management of this pest species. Moreover, 

these new microsatellite loci could prove useful in other economically important mite 

species like Phytoseiidae and other Tetranychidae. Bailly et al. (2004) used the T. 

urticae microsatellites developed by Navajas et al. (2002) in a closely related species, 

Tetranychus turkestani, and found geographical differences in this case, as well. Li at al. 

(2009) studied the genetic differences between T. urticae and T. cinnabarinus using the 

microsatellites developed by Navajas et al. (2002) and Uesugi and Osakabe (2007), 

having no amplification with the last ones loci, despite that in a more recent work the 

species status of T. cinnabarinus has been revised and assigned to the T. urticae species 

(de Mendoça et al. 2011). The genetic study of mite species can also address questions 

about mite genetic adaptation, which can be useful to understand the relationships 

between the mites present in a specific agroecosystem in order to develop suitable 

Biological Control strategies.  

In summary, our goal is to develop microsatellite markers for mites using T. urticae as 

model species. 

 

Materials and Methods 

Unless otherwise indicated, all molecular techniques and solutions were performed as 

described by Sambrook et al. (1989). 

Biological material 

Tetranychus urticae Koch were collected from a laboratory colony maintained at the 

Entomology unit of IVIA (Valencia, Spain) which originated from the stock colony of 

Universitat Jaume I (UJI). This colony was started in 2001 from field collected material 

in the Castelló area.  

Other mites (table 1) were field collected at different locations, individualized in 

eppendorf tubes and stored at -20ºC till DNA extraction. 

DNA extraction  
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Tetranychus urticae total DNA was isolated following ‘Salting out’ protocol (Sunnucks 

and Hales, 1996) from a pool of 100 individuals (both sexes) for the generation of 

enriched libraries.  

For testing the markers in all the species individualized extractions were performed 

following the same protocol.  

Enriched library 

T. urticae total DNA was enriched for microsatellite motifs CT, CTT, GT and CAC 

following the FIASCO protocol (Zane et al. 2002) using MseI and AluI as restriction 

enzymes for the genome fractionation. Enriched DNA fractions were cloned into 

pGEM-T easy (Promega Biotech Ibérica SL., Madrid, Spain) and transformed into 

DH5α electrocompetent E. coli cells (Invitrogen S.A., Barcelona, Spain) to obtain the 

libraries.  

Library screening 

Each library was plated on selective LB agar plates, white colonies were transferred to 

v-well plates containing 150 µl of liquid TB-glycerol medium with 50µg/ml ampiciline. 

Cultures were set at 37ºC, overnight without agitation. Cultured plates were stored at -

80ºC till used. Plates were subjected to colony PCR (Sabater-Muñoz et al. 2006) and 

PIMA-PCR technique (Lunt et al. 1999) to select clones with microsatellite motif 

(Figure 1). Positive clones, those that have included the insert with the microsatellite, 

were reamplified with M13 universal primers, purified with Sephadex G-50 superfine 

(GE-Amersham Healthcare, Chalfont St. Giles, UK) and verified by gel electrophoresis 

on a 2% agarose gel (Pronadisa, Sumilab S.L., Madrid, España). Purified PCR products 

were directly sequenced at Servicio Central de Soporte a la Investigación Experimental 

(SCSIE) at Universitat de València using Bigdye® v3.1 chemistry (Applied 

Biosystems, Foster City, CA, USA) with primers T7 and SP6 in 1/16 of the 

recommended reaction volume. 

Microsatellite markers design 

Electropherograms were checked and assembled into consensus sequences by using 

Staden package software (Staden et al. 2003) for each clone. Each consensus sequence 

was compared to GenBank by blast using blastN as implemented in NCBI web page to 

compare with other mite sequences. The sequences reported in this work have been 

deposited into GenBank at NCBI (National Center for Biotechnology Information) 

under accession numbers GU339354 to GU339386.  
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After these comparisons, primers were designed in conserved regions of 21 

microsatellite loci using Oligo software version v4.0 (Rychlik, 1991), amplification 

conditions were set up for each marker. Final successful conditions were 1x Taq pol 

buffer (Roche, Applied Science, Mannheim Germany), dNTPs, 2mM MgCl2, 0.2 µM 

primers, 1 u. Taq pol (Roche, Applied Science, Mannheim Germany) and 1µl of DNA 

template. Microsatellite makers were tested with ten individuals of the following 

populations: (1) the original T. urticae colony (2) Llíria (inland population; 39º38’N 

0º36’W), (3) Callosa d’En Sarrià (coastal population; 38º39’05’’N, 0º07’22’’W), (4) 

Vinaròs (coastal population; 40º28’N 0º29’E) and (5) Inca (Mallorca Island; 39º43’N 

2º54’E), as well as with 10 individuals from  each of the species listed in Table 1. 

Thermal profile was: a first denaturation at 94ºC for 2 min, 40 cycles at 94ºc for 15 sec, 

55-50ºC for 15 sec , and 72ºC for 15 sec, followed by a last cycle at 72ºC for 1 min, and 

a hold step at 4ºC. Amplification was performed in a PTC-200 thermal cycler (MJ 

Research, Bio-Rad Inc., Hercules, CA, USA). Several other manufactures (PCR 

reagents and thermocyclers) have been also tested positively.  

Amplification was verified either by acrylamide gel electrophoresis with silver staining 

or, when forward primer was labelled with FAM-6 analyzed in an ABI/PE 3130 

GeneAnalyzer (Applied Biosystems). Genotyping was performed using Peak Scanner 

v1.0 (Applied Biosystems 2006).  

 

Results 

Microsatellite markers design 

The FIASCO enrichment performed resulted in a total of 1,786 independent clones 

isolated from the six cDNA libraries, from which 407 clones were PIMA-PCR selected 

and single-pass sequenced. After sequence confirmation of microsatellite presence, 

bidirectional sequencing was performed for 34 clones. Only 2 out of the 34 selected 

clones by PIMA methodology did not contain a microsatellite sequence (but contained 

several bi or tri-repeats of the motifs which could not be set as a real microsatellite), 

which means that this methodology is a 95% successful in microsatellite detection. 

Microsatellite distribution in libraries was 40 % and 34 % from CAC and CTT libraries, 

respectively. The remaining 26% corresponded to CT and GT libraries. 

Blast comparisons showed that none of the clones obtained were already present in the 

data base. Only one clone produced a significant blast similarity with a mite sequence, 
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corresponding to a small microsatellite found in the 18S rDNA gene from 

Hypochthonius rufulus Koch, 1835 (Acari: Oribatida). From the remaining 32 clones, 

17 contained a perfect microsatellite motif and 15 contained imperfect motifs. 

Microsatellite loci names, motif and designed primers are listed in table 2.  

Amplification mismatches and other amplification patterns. 

Three loci yielded amplicons of larger than the expected. These amplicons were directly 

sequenced with the corresponding primers. The sequence comparison revealed that the 

amplicon corresponded to different microsatellite loci. These new sequences have been 

deposited in GeneBank under code numbers XX and XX.  

The forward primer designed for locus m14E02 was also found in other sequences of 

the loci described in this work, specifically in locus m11C09. Both loci were discarded 

as amplification pattern was of multiple polymorphic bands, a pattern described in this 

work as AFLP-like. Other loci with the same AFLP-like amplification pattern are listed 

in table 4.  

Polymorphism detection on microsatellite markers.  

The number of alleles for each microsatellite loci tested varied from 1 to 6, and are 

listed in Tables 2 and 3 for Tetranychidae and Phytoseiidae species, respectively.   

Interspecific use of microsatellite markers 

Designed markers were tested with the species listed in Table 1 for cross-amplification. 

Amplification conditions were the same as for the marker development, and no effort 

was undertaken to optimize amplification for unsuccessful or AFLP-like cross-

amplification. Tables 2 and 3 summarize this cross reactivity, including size and allele 

number of each marker per species. In summary, 8 loci were successfully cross-

amplified in other Tetranychidae species, and 7 in Phytoseiidae (Table 5).   

 

Discussion 

11 new microsatellite loci for the characterization of two spotted spider mite 

populations have been developed. These new loci have been sorted out from a library 

enrichment which resulted in a 95% successful microsatellite identification, an 

extremely higher percentage than that obtained in other works (Navajas et al. 1998, 

2002; Nishimura et al. 2003; Uesugi and Osakabe 2007). Our results are in agreement 

with another work in which CT and GT motifs were less represented (Navajas et al. 

1998). Simultaneously with our work, 16 new microsatellite loci for the same species 



 

8 
 

have been developed based on the CT and GT motifs (Uesugi and Osakabe 2007). In 

other closely related species, T. kanzawai, the motives CT and GT were also the targets 

for microsatellite characterization (Nishimura et al. 2003).  

We have obtained a similar rate of loci discarding as other authors (Navajas et al. 2002, 

Nishimura et al. 2003 and Uesugi et al. 2007). We were able to design 22 combinations 

of primers from the 32 microsatellite clones obtained. However, after amplification only 

11 microsatellite markers were selected. Li et al. (2009) used in their studies the 

microsatellites developed by Uesugi and Osakabe (2007) and got no amplification. 

Nevertheless, we have tested some of them (TuCA12, TuCA25, TuCA72, TuCA83, 

TuCA96, TuCT04, TuCT17, TuCT18, TuCT26, TuCT73 and TkMS015) in our 

populations (table 1) and obtained successful amplifications with at least two different 

alleles each. We have also included a population sampled in Florida (USA), which 

showed no amplification with our loci but which presented successful amplification in 9 

of the 11 Japanese loci tested (Nishimura et al. 2003, Uesugi and Osakabe 2007) (data 

not shown). These results address questions about the difficulty in transferring the T. 

urticae microsatellite markers between continents. Despite that Japan and Spain belong 

to the Palaearctic Region, whereas USA belongs to the Nearctic Region, the results 

obtained with these primers show a close relationship between Japanese and USA T. 

urticae populations than between those in the same biogeographical region. This 

question appeared also when ITS (Hurtado et al. 2008) and COI gene (Navajas et al. 

1998, Hinomoto et al. 2001) were analyzed and it deserves further research. 

Microsatellite markers in T. urticae are hard to obtain. In the present study 

microsatellites were not only isolated, but also characterized and tested in populations 

of T. urticae originating from different areas of the Mediterranean Western coast, as 

well as in other mite species of economical importance, such as predatory Phytoseiidae 

mites. The transfer of markers to other species is a key point, since they can be useful 

for population studies, including detection of the origin of invasive species such as 

Eutetranychus orientalis, E. banksi, or Olygonychus perseae, which have been recently 

introduced in Spain. 

The transference of microsatellites from the source species to closely related species is a 

subject of interest due to the difficulties and economical investment needed irrespective 

of the taxons studied (Bech et al. 2010, Canales-Aguirre et al. 2010, Olivatti et al. 2011 

or Telles et al. 2011). In Tephritid flies, a species group of economical interest in 

agriculture as the mites used in this work, microsatellites are transferable between 
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species with variable degree, ranging from 49% to as less as 24% when species belong 

to different genera from the one of the source species (Augustinos et al. 2008). In this 

work, the authors reported a locus size mean difference of less than 50 bp, estimated by 

agarose gel electrophoresis, between species when considering the same locus. This 

degree of PCR product size conservation was variable and also linked to the relatedness 

of species. Although we obtained similar results of cross-species transferability, our 

results taking into account percentage of functional primers and expected size, are not 

indicative of the phylogenetic history of the mite species, as proposed with Tephritidae. 

We obtained a similar percentage of cross amplification in phytophagous and predatory 

mites, which keep far phylogenetic relationships (Navajas et al. 1998b, 1999). This 

close “clustering” of cross amplification may be related to a parallel evolution or co-

evolution of phytophagous (prey) and entomophagous (predator) mites. In relation to 

this issue (predator-prey relationship) we made sure that the cross-amplification was 

true and not an artefact due to the presence of phytophagous DNA (prey) in the 

phytoseid gut (predator) by PCR based methods developed by our group (same authors, 

not yet published results).  

 

The usefulness of the markers presented in this study is obvious both from a basic (e.g. 

population studies, assessment of predation, etc.) and an applied (e.g. quality control in 

commercial insectaries) points of view. As stated before, due to the difficulties and the 

high economical investment needed to develop species specific microsatellite markers, 

the transference of microsatellite markers among species (heterologous amplification) is 

a very interesting alternative.  
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(100bp ladder, Invitrogen). Some lanes marked with a white arrow corresponded to clones containing microsatellites, as the two PCR products 
are formed by combination of universal M13 primers and microsatellite motif PIMA primer.  
 

 
 
 



Table 1. Mites species used in this work 
 
Family Species Code Origin 
Tetranychidae Tetranychus urticae TuCs Castelló 

T. urticae TuLi Llíria 
T. urticae TuMall Inca  
T. urticae TuVi Vinaròs 
T. urticae TuCa Callosa d’En Sarrià 
T. turkestani Tt Almenara 
T. evansi Te Murcia 
T. okinawanus To Florida 
Panonychus citri Pc Moncada  
Eotetranychus orientalis Eo Málaga 
E. banksi Eb Huelva 
Oligonychus perseae Op Málaga 
Aplonobia histricina Ah Moncada 

Phytoseidae Typhlodromus phialatus Tp Moncada 
Neoseiulus californicus Nc Koppert Biological Systems 
N. barkeri  Nb Castelló 
Euseius stipulatus Es Moncada 
Phytoseiulus persimilis Pp Koppert Biological Systems 
Amblyseius swirskii As Koppert Biological Systems 
A. andersoni Aa Biobest Biological Systems 
A. cucumeris Ac Koppert Biological Systems 

 
 



Table 2. Characteristics of loci microsatellite developed in Tetranychus urticae and cross amplification in other Tetranychidae species. Primer 

sequences for each locus are indicated for forward (for) and reverse (rev), with indication of the annealing temperature for each locus. For cross 

amplification, allele size range (in base pairs) and number of alleles (within brackets) are indicated.  

 
Locus Motif Primer sequences (5’à3’) Ann. T 

(ºC) 
TuCS TuLi TuVi TuCa TuMall Tt Te Pc Eo Eb Op Ah Tok 

M11b04 CAC GAG GTT GTC AGT CAT CGT TTC (for) 
CGA TGA GTC CTG AGT AAT GAT (rev) 

55  70-79 

(4) 

70-79 

(4) 

54-66 

(5) 

52-64 

(5) 

54 (1) 70-82 

(5) 

70-85 

(5) 

67-85 

(6) 

76-79 

(2) 

76 (1) 76-82 (2) 70-85 

(5) 

70-79 

(4) 

M11g09 CTT ACC TAA AGA AGA CGA GCA AGA (for) 
AAA GCA GCA GAC ACA ACA AAT (rev) 

55  122 

(1) 

122 (1) 122-

146 

(2) 

122-

146 

(2) 

122 (1) 122 

(1) 

156 

(1) 

90-99 

(2) 

- 122-146 

(2) 

110- 185 

(4) 

116-

122 

(2) 

122 (1) 

M11e03 CAC ATT TTC CAC TGG ATG ACC TGG (for) 
CCT CTT CCT CCT CAT CAT CAC (rev) 
 

55  182-
203 
(2) 

182-
203 (3) 

203-
215 
(2) 

190-
203 
(2) 

203 (1) 203(1) 182 
(1) 

182-
203 
(2) 

- 191-203 
(2) 
 

203 (1) 
 

AFLP 203 
(1) 

M11h03 CAC TGT TGA ACC CTG ACC TGG TAG (for) 
ACC AGG TGA GCC AGC ATA GTC (rev) 

50 100-
103 
(2) 

88-109 
(3) 

NS 97 (1) 97 (1) 100 
(1) 

100-
106 
(2) 

94-103 
(3) 

100-
103 
(2) 

100-103 
(2) 

79-100 (3) 97-103 
(3) 

97-100 
(2) 

M14a11a CAC CCT CTG GAG GTA ACC TTG GTC (for) 
TCC ATG TTC ATG TTC GTG GTC (rev) 

55  177 - 180-
185 
(2)  

- - - 158 
(1) 

- - - - - - 

M11h07 CTT GCT TCT TCT TCA TCT TCT TTA (for) 
AGT TCT CTT GGT CCT TTC TTA (rev) 

55  220-
226 
(2) 

211-
220  
(2) 

186-
229 
(4)  

196-
226 
(4)  

- 214 
(1) 

- - 200(1) 229(1) 223 (1) AFLP-
like 

220 (1) 

M11e11 AGA AAA GGA GAA GAA TGA AAA TAA (for) 
TTT TAT CAT TCT ATC TTC CAT (rev) 

55  180 
183 
(2) 

180 
195 (3) 

180 
198 
(3) 

180 
206 
(3) 

- 180 
(1) 

180 
(1) 

180-
199 
(2) 

204-
211 
(2) 

175 (1) 204 (1) 264-
292 
(2) 

-  

M11g06 GT TTT GTT GCA CGC AAA TGT CAC (for) 
CAG TGA TAA CAG TAC AAG AGG (rev) 

55  111-
113(2) 

111 (1) 95-101 
(3) 

111-
113 
(2) 

95 (1) 111 
(1) 

- - 101-
111 
(2) 

111 
 (1) 

- 103 
(1) 

- 

M11b05 GT GGG TCT GTT TTA AGA AGA TAA AG 
(for) 
TAG ATT AAT GCC TTT AAA TGT AC 
(rev) 
 

50 105 
(1) 

105 (1) 105 
(1) 

105 
(1) 

87 (1) - - 105 
(1) 

105 
(1) 

- - - - 

M11d04 ACC TTT GAA TAG CGA TGA CGA TGA GC 
(for) 
GTT CTT CAT ACC CTT AAA GAT CG 
(rev) 

50 103 
(1) 

103-
106 (2) 

120 
(1) 

103-
109 
(3) 
371 

159 (1) 100-
115 
(5) 

103-
106 
(2) 

-103 
(1) 

-103-
112 
(2) 

-100-
115(2) 

103(1) - 115(1) 

M11d04_
372 

ACC   369-
372 

372 (1) - 372 - 344 
(1) 

- - - - 318 (1) 301 
(1) 

363 (1) 



(2) 
M20a03 GAA TCA CGG GAA GTT TAC AAG TTG AAA 

G (for) 
GAA AAG GGA ATG GAA GAT GAA 
AGA G (rev) 

55 195-
249 
(4) 

195-
219 (4) 

230-
239 
(4) 

228-
243 
(3) 

- 195- 
216 
(3) 

195-
210 
(2) 

195-
210 
(2) 

195-
210 
(2) 

195-210 
(2) 

195-210 
(2) 

165-
219 
(3) 

165-225 
(6) 

bp, base pairs 

 



Table 3. Characteristics of new Tetranychus urticae microsatellite loci in cross 
amplification in Phytoseiidae species. Allele size range (in base pairs) and number of alleles 
(within brackets) or amplification pattern are indicated.  
 
Locus Nc Es Pp As Aa Ac Tp Nb 
M11b04 70-82 (4) 70-85 (4) 70-76 (3) 70-82 (4) 70-85 (5) 52-64  (5) 52-64 (5) 52-64 (5) 

M11g09 AFLP 
146-152 
(2) 

AFLP AFLP 221 (1) AFLP AFLP AFLP 

M11e03 AFLP AFLP AFLP AFLP AFLP AFLP AFLP AFLP 

M11h03 88-114 (5) 94-103 (3) 
100-117 
(2) 

100-103 
(2) 

82-117 (5) 94-103 (3) 97-103 (3) 82-103 (4) 

M14a11a - - - - - - - - 

M11h07 220 (1) - 220 (1) 
221-202 
(2) 

220 (1) - 208 (1) 208 (1) 

M11e11 217-304 
(3) 

171351 
(3) 

239 (1) - 221 (1) - 183 180 

M11g06 - 
105-117 
(2) 

138 (1) 
102-138 
(3) 

105-126 
(3) 

123-138 
(2) 

111-138  
(2) 

111 (1) 

M11b05 105 (1) 105 (1) - - 105 (1) 105 (1) 105 (1) 105 (1) 

M11d04 335-360 
(2) 

321 (1) 354 (1) 327 (1) 351 (1) 102  (1) 
102-105 
(2) 

102-118 
(2) 

M20a03 192- 222 
(4) 

165-222 
(5) 

165-222 
(6) 

168-219 
(6) 

165-219 
(6) 

228 (1) 
228-231 
(2) 

228 (1) 

AFLP, amplification pattern as AFLP-like; -, no amplification 

 
 



Table 4. Loci discarded by amplification failure or multiple banding results (AFLP-like 

loci) in Tetranychus urticae samples 

 
Locus Motif Primer sequences (5’à3’) Size (bp)* Annealing T 

(ºC) 
Amplification 

type  
Species 
tested 

TuCA1 GT CGA ATC ATA AAG AGA ATG GAG (for) 
TTC ATC TGG CTA TCT GGT GTC (rev) 

373  55  AFLP TuCS 

TuGTG1 CAC GAG CCT GAG ATT GAC GAT GAG (for) 
TCA GCA TCA CAA TCA GAC TCC (rev) 

124  55  AFLP TuCS 

TuGT1 GT TGG GAA GAT GAT GGT TTA ATG A 
(for) 
TTG CAT GCT TAA GGC CAT TT (rev) 

200  55  AFLP TuCS 

M16f04 CAC ATC GCT GGT GGA AAC AAA AGC (for) 
ATC ACT GTC CAC TAT CGT CAC (rev) 

122  55  AFLP TuCS 

M11b12 CTT AAA ATG TCA GTC AGT CTC AAT  (for) 
GTA AAG GAA AAA TCT CAA AAA (rev) 

191  55 AFLP TuCS 

M14g11 CAC GAG TTT ATT TGA TGT TGA GGA CGA 
T (for) 
TTT TTG GGT CTT CGC TGG GGT AAC 
T (rev) 

148  55 AFLP TuCS 

M17d08 GTG AAG CGC AAC TAG ATT GAC GTT GAT 
G (for) 
ACG ATG AGT CCT GAG TAA TAA TGG 
G (rev) 

115  55 No amplification TuCS 

M14e02 CTT ACG ATG AGT CCT GAG TAA GTG (for) 
GAT TAT TTT TGC TTG GGA AGC (rev) 

132  55  AFLP TuCS 

M14d02 CTT TCC TCA TCA TCA TCA TCT TCT (for) 
ATC TTT ATT CCC TTT ATT TCA (rev) 

125  55  AFLP-No 
amplification 

TuCS 

M11c09 CTT AAT GAA AGA AGT TGA AAG TTG CT 
(for) 
CCA ATC CAA TGA ATA ACA TTG AG 
(rev) 

318  50 No amplification TuCS 

*, expected size based on sequence data 

 



Table 5. Summary of cross-species amplification of T. urticae microsatellite markers in 17 
mite species.  
 

Family Specie Functional primer 
pairs 

Tetranychidae 

Tetranychus urticae * 11/22  
T. turkestani 10/22 
T. evansi 8/22 
T. okinawanus 8/22 
Tetranychus  7/11 
Eotetranychus orientalis 8/22 
E. banksi 9/22 
Eotetranychus 7/9 
Panonychus citri 8/22 
Oligonychus perseae 8/22 
Aplonobia histricina 7/22 

Phytoseidae 

Typhlodromus phialatus 8/22 
Neoseiulus californicus 7/22 
N. barkeri 8/22 
Neoseiulus 7/8 
Euseius stipulatus 7/22 
Phytoseiulus persimilis 7/22 
Amblyseius swirskii 6/22 
A. andersoni 9/22 
A. cucumeris  6/22 
Amblyseius 5/9 

The functional primer pairs number corresponds to those primer pairs that successfully 
amplified; *: mean of the five populations tested.  
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